JP3643534B2 - 加入者を特定する方法、視聴者を特定する方法、視聴者を特定するシステム、加入者を特定するプログラムを記録した記録媒体 - Google Patents
加入者を特定する方法、視聴者を特定する方法、視聴者を特定するシステム、加入者を特定するプログラムを記録した記録媒体 Download PDFInfo
- Publication number
- JP3643534B2 JP3643534B2 JP2000585806A JP2000585806A JP3643534B2 JP 3643534 B2 JP3643534 B2 JP 3643534B2 JP 2000585806 A JP2000585806 A JP 2000585806A JP 2000585806 A JP2000585806 A JP 2000585806A JP 3643534 B2 JP3643534 B2 JP 3643534B2
- Authority
- JP
- Japan
- Prior art keywords
- selection data
- viewing
- subscriber selection
- program
- session
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 53
- 239000013598 vector Substances 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 24
- 230000008859 change Effects 0.000 claims description 13
- 238000012544 monitoring process Methods 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims 6
- 238000010586 diagram Methods 0.000 description 17
- 238000013528 artificial neural network Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 9
- 238000012512 characterization method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 235000014510 cooky Nutrition 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 238000007418 data mining Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000007474 system interaction Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H60/00—Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
- H04H60/35—Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
- H04H60/45—Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying users
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/251—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/252—Processing of multiple end-users' preferences to derive collaborative data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/442—Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
- H04N21/44213—Monitoring of end-user related data
- H04N21/44222—Analytics of user selections, e.g. selection of programs or purchase activity
- H04N21/44224—Monitoring of user activity on external systems, e.g. Internet browsing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4662—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4662—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms
- H04N21/4666—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms using neural networks, e.g. processing the feedback provided by the user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/65—Transmission of management data between client and server
- H04N21/658—Transmission by the client directed to the server
- H04N21/6582—Data stored in the client, e.g. viewing habits, hardware capabilities, credit card number
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/173—Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
- H04N7/17309—Transmission or handling of upstream communications
- H04N7/17318—Direct or substantially direct transmission and handling of requests
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Health & Medical Sciences (AREA)
- Social Psychology (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Development Economics (AREA)
- General Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- Artificial Intelligence (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computing Systems (AREA)
- Economics (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Description
(技術分野)
エンターテインメント番組の加入者およびオンラインサービスのユーザに特定の広告を向ける能力は、彼らの製品の好みおよび人口統計を特定することに依存する。多くの技法が加入者の特徴を特定するために開発されており、データマイニング技法および協調フィルタリングを含む。
【0002】
加入者の特徴付けが実行できるときでも、多くの場合、番組を受信しているテレビ/セットトップまたはパーソナルコンピュータが1つの家庭の数人の家族メンバーによって使用される。家庭のこれらの家族メンバーが大変異なる人口統計学上の特徴および製品の好みを有することがあることを考えると、どの加入者がそのシステムを活用しているのかを特定できることは重要である。さらに、いったんその加入者がユーザのグループから特定されたら、加入者の過去の特徴付けを活用することができることも役立つだろう。ユーザを特定するための既知の従来の技術は、ウェブサーバにアクセスするときのPC機械を特定するためにブラウザクッキーを使用することに基づいている。ブラウザクッキーは、以下の製品参考文献に説明されるように、今日のインターネット広告技術でよく使用されている。
【0003】
(背景技術)
1998年6月30日にワールド ワイド ウェブサイト、http://www.aptex.com/products−selectcast−commerce.htmから印刷されたされた、アプテックスソフトウェア社(Aptex Software Inc.)の製品参考文献「Adサーバ用SeletCast(SelectCast for Ad Servers)」は、製品、Adサーバ用SelectCastを開示する。Adサーバ用のSelectCastは、すべてのユーザの動作のコンテンツを引き出し、指定された広告を届けるためにすべてのユーザの詳細な関心を学習する。SelectCastにより、広告主は、ライフスタイルまたは人口統計学に基づいて視聴者を目標にできるようにする。SelectCastは、個人を特定するためにブラウザクッキーを使用する。
【0004】
1998年6月30日にワールド ワイド ウェブサイトhttp://www.starpt.com/core/ad_Target.htmlから印刷されたイムジス社(Imgis Inc.)の製品参考文献「AdForce」は、広告目標システムを開示する。AdForceは、キャンペーンの計画と予定作成、目標設定、結果の送達および追跡調査を含む完全なサービスの端と端をつなぐインターネット広告管理である。AdForceは、ウェブユーザを特定するために、マッピングおよびクッキーなどの技法を使用する。
【0005】
前記理由から、家庭または企業内の加入者を特定し、過去の特徴付けを検索できる加入者識別システムに対するニーズがある。
【0006】
(発明の開示)
本発明は、家庭または企業からある特定の加入者を特定するためのシステムを包含する。
【0007】
本発明は、特定の視聴習慣および番組選択習慣に基づいて加入者を特定するための方法および装置を包含する。加入者がビデオまたはコンピュータシステムにチャンネル変更コマンドを入力すると、番組が聞かれている音量レベルを含む追加情報とともに、入力されたコマンドのシーケンスおよび選択された番組が記録される。好ましい実施態様においては、本情報は、神経ネットワークによって過去のセッションに基づいたその加入者の特色の認識に基づいて加入者を特定するために使用できるセッションデータベクトルを形成するために使用される。
【0008】
代替の実施態様では、加入者が見ているコンテンツ、または該コンテンツに関連付けられるテキストは、対象視聴者の人口統計、および見られているコンテンツの種別を含む番組に関する統計情報を作り出すために調べられる。この関連する情報の番組はまた、セッションデータベクトルに含まれ、加入者を特定するのに使われる。
【0009】
ある実施態様においては、加入者選択データが、セッションプロファイルごとにシグナチャを得るためにフーリエ変換を使用して処理され、そこではセッションプロファイルは、加入者の人口統計データおよび番組の特徴の蓋然論的な決定を備える。好ましい実施態様においては、分類システムは該セッションプロファイルをクラスタするために使用され、そこでは分類システムはきわめて相互に関連したシグナチャを有するセッションプロファイルを分類し、セッションプロファイルのグループはシグナチャから引き出される1つの共通識別子と関連付けられる。
【0010】
好ましい実施態様においては、該システムは、加入者選択データの処理されたバージョンを、システムに記憶されている加入者プロファイルの共通識別子と相互に関連させることにより加入者を識別する。
【0011】
本発明のこれらの、およびその他の特徴および目的は、添付図面を参照して読まれるべく好ましい実施態様の以下の詳細な説明からさらに完全に理解されるだろう。
【0012】
明細書に組み込まれている、および明細書の一部を形成する添付図面は、本発明の実施態様を示し、説明とともに発明の本質を説明するのに役立つ。
【0013】
(発明を実施するための最良の形態)
図に示されている本発明の好ましい実施態様を説明する際には、明確にするために特定の用語が使用されるだろう。しかしながら、本発明はそのように選択される特定の用語に制限されることが意図されるわけではなく、それぞれの特定の用語が、類似した目的を達成するために同様の方法で動作するすべての技術的な同等物を含むことが理解されるものである。
【0014】
一般的に、図面、および特に図1から図10に関しては、本発明の装置が開示される。
【0015】
本発明は、家庭内または企業内のどの加入者が番組を受信し、選択しているのかを突き止めるための方法および装置を目的としている。
【0016】
図1は、加入者識別システム100のコンテキスト図を示す。加入者識別システム100は、原資料110を用いてユーザ130の活動を監視し、該システムに記憶されている加入者プロファイル150の集合から適切な加入者プロファイルを選択することにより、ユーザ130を特定する。原資料110とは、ユーザ130が選択するコンテンツ、あるいは原資料に関連したテキストのことである。原資料110は、MPEG原資料またはHTMLファイルを含むビデオあるいはそれ以外の種類のマルチメディア原資料に埋め込まれているソース関連テキスト112であってよいが、それに制限されていない。このようなテキストは、電子番組表または閉鎖タイトル付けから派生してよい。
【0017】
ユーザ130の活動は、チャンネル変更134および音量調節信号132を含む。加入者識別システム100は、音量調節信号活動だけではなくチャンネル変更134も監視し、そのセッションの間に見られている番組を記述するセッション特徴を生成する。そのセッションの間に見られている番組の記述は、年齢、性別、収入およびその他のデータという点で対象人口統計グループを記述するだけではなく、番組のカテゴリ、サブカテゴリ、およびコンテンツ説明などの番組の特徴も含む。
【0018】
セッション特徴付けプロセス200は、図2に従って記述される。セッション特徴付けプロセス200で引き出されるセッションデータベクトル240は、ユーザ130を識別するために神経ネットワーク400に提示される。その例では、ユーザ130の識別は、加入者プロファイル150を決定することを意味する。加入者プロファイル150は、年齢、性別および番組と製品の好みを含む個人の特徴の蓋然論的な、もしくは決定論的な測定値を含む。
【0019】
図2に示されているように、セッションデータベクトル240は、原資料110およびユーザ130の活動から生成される。第1ステップでは、活動および原資料110が、セッション特徴付けプロセス200に提示される。このプロセスが、番組の特徴210、番組人口統計データ230、および加入者選択データ(SSD)250を決定する。
【0020】
番組の特徴210は、番組のカテゴリ、サブカテゴリ、およびコンテンツ記述から構成される。これらの特徴は、データマイニング技法または番組コンテンツに基づいた加入者特徴付け技法などの既知の方法を適用することにより得られる。
【0021】
番組人口統計データ230は、番組が目標としているグループの人口統計を記述する。人口統計特徴は、年齢、性別および収入を含むが、必ずしも制限されていない。
【0022】
加入者選択データ250は監視システムから得られ、音量レベル、チャンネル変更134、および番組タイトル、およびチャンネルIDを含む、どの加入者が選択したのかに関する詳細を含む。
【0023】
図2に示されているように、セッション特徴付けプロセス200の出力は、データ作成プロセス220に提示される。データは、データ作成プロセス220によって処理され、番組の特徴210、番組人口統計データ230、および加入者選択データ250を表す成分でセッションデータベクトル240を生成する。
【0024】
セッションデータベクトルの例は、図3に示される。図3のセッションデータベクトル240は、例示的な加入者の視聴セッションを要約する。ベクトルの成分は、その加入者の行為の時間的なプロファイルを提供する。
【0025】
図4は、好ましい実施態様において、加入者を識別するためにセッションデータベクトル240を処理するために使用できる神経ネットワーク400の学習プロセスを示す。図4に示されているように、N個のセッションデータベクトル240がデータ作成プロセス220から得られる。各セッションデータベクトル240は、視聴者に特定の特徴を備える。これらの特徴は、ベクトル成分の任意の1つに入れることができる。一例として、ある特定の加入者は、多くの場合、ある特定の喜劇、喜劇の再放送番組、または類似した対象人口統計の別の喜劇を見ることがある。代わりに、ある加入者は、つねに、家庭の家族の他のメンバーより高い音量で番組を見て、このようにしてその加入者のその特色からの識別を可能にする。加入者が番組を見る時刻も類似していることがあり、したがってその加入者を時刻特徴で特定することもできる。
【0026】
類似した特徴のあるすべてのセッションデータベクトルがともに分類されるように、セッションデータベクトル240を分類することにより、家庭の家族メンバーを特定することが可能である。図4に示されているように、その家庭のある特定の家族メンバーを表すセッションデータベクトル240のクラスタ430が形成される。
【0027】
好ましい実施態様においては、神経ネットワーク400は、クラスタ化動作を実行するために使用される。神経ネットワーク400は、セッションデータベクトル240に基づいて加入者の識別を実行するように訓練できる。訓練セッションでは、セッションデータベクトル240のN個のサンプルが神経ネットワーク400に別個に提示される。神経ネットワーク400は、同じ特徴を有する入力を認識し、それらを同じクラスタ430内で分類し直す。このプロセスの間、ノード間のリンクのシナプシス重量は、ネットワークがその定常状態に達するまで調整される。適用される学習規則は、各ニューロンがある特定のクラスタ430を表す競合的な学習規則である場合があり、従って、入力がそのクラスタ430内で表される特徴を提示する場合にのみ「発行」される。入力セットを分類できる他の学習規則もまた、利用される。このプロセスの最後で、M個のクラスタ430が形成され、それぞれが加入者を表す。
【0028】
図5では、競合単一層神経ネットワークの例が描かれている。このような神経ネットワークは、神経ネットワーク400を実現するために活用できる。好ましい実施態様では、陰影が付けられたニューロン500がパターンによって「発行」される。入力ベクトル、つまりこの例ではセッションデータベクトル240は、入力ノード510に提示される。それから、入力は、陰影が付けられたニューロン500に対応するクラスタ430のメンバーとして認識される。
【0029】
ある実施態様では、チャンネル変更および音量制御を含む加入者選択データ250は、シグナチャを得るためにさらに処理される。シグナチャは、加入者と原資料110の間の相互作用の表記である。加入者が、各加入者に特定の選択データのパターンに変換される独自の視聴習慣を有することは周知である。いわゆる「消去シンドローム」とは、加入者が1−2分毎に連続してチャンネルを変更する選択データの特定のパターンを示す。
【0030】
好ましい実施態様では、シグナチャは音量調節およびチャンネル変更を表す信号のフーリエ変換である。音量調節およびチャンネル変更信号は図6Aに示され、一方、シグナチャは図6Bに示される。当業者は、音量調節およびチャンネルへ交信号が、ウィンドウ関数または矩形パルスの連続により、したがって数式で表すことができることを認識するだろう。チャンネル変更は、点線で図6Aに表されているゼロレベルへの簡略な変換で表される。
【0031】
図6Bに示される離散スペクトルは、音量およびチャンネル変更信号のデジタルフーリエ変換から得ることができる。シグナチャを信号から得るそれ以外の方法は、当業者に周知であり、ウェーブレット変換を含む。
【0032】
本発明のこの実施態様では、シグナチャは、番組人口統計データ230および番組の特徴210とで組み合わされ、シグナチャ信号により識別されるセッションプロファイルを形成する。番組人口統計データ230および番組の特徴210は、図6Cから図6Gで表される。図6Cは番組カテゴリの蓋然論的な値を表す。図6Dおよび図6Eは、それぞれ番組サブカテゴリおよび番組コンテンツの蓋然論的な値を表す。
【0033】
番組受信者の年齢および性別の蓋然論的な値を含む番組人口統計データ230は、それぞれ図6Fおよび図6Gに示される。
【0034】
図7は、シグナチャ信号に基づいたセッションを分類するための構成要素の関係を示す。この実施態様では、同じシグナチャを有するセッションがともに分類される。セッション分類プロセス700は、さまざまなセッションプロファイル710のシグナチャを相互に関連付け、きわめて相互に関連しているシグナチャを有するセッションを同じクラス720に分類する。パターン分類で使用されるそれ以外の方法は、セッションをクラスに分類するために使用できる。本実施態様では、各クラス720は、共通したシグナチャを有するセッションプロファイルの集合で構成される。クラス内のセッションプロファイルの集合は、集合内のセッションプロファイルの番組の特徴210および番組人口統計データ230を平均化することによって加入者プロファイルに変換できる。例えば、番組カテゴリの蓋然的な値は、集合内の番組カテゴリのすべての蓋然的な値の平均となるだろう。
【0035】
1つの実施態様では、番組人口統計データ230の決定論的な表記は、共通プロファイルの内部でファジー論理規則を使用することにより得ることができる。共通プロファイルに適用可能な規則の例は、図8に提示されている。本実施態様では、番組人口統計データは、人口統計グループの一部であるために加入者の尤度を説明する蓋然的な値である。一例として、人口統計データは、加入者が女性であるという0.5、および男性であるという0.5という確率を含むことがある。図8に示されている規則などのファジー論理規則を使用することにより、これらの蓋然的な値は、性別の明瞭な値を推論するために番組の特徴210と関係する蓋然的な値と結合することができる。ファジー論理は、一般的にはファジー入力からの明瞭な結果を推論するために使用され、そこでは入力値はインターバル[a,b]内であらゆる考えられる値を取ることができる。
【0036】
クラス内のセッションプロファイルの集合から得られる加入者プロファイルは、そのクラス内のセッションプロファイルと関連しているシグナチャの平均化から引き出すことができる1つの共通の識別子と関連している。シグナチャの集合から1つの共通のシグナチャを決定するためのそれ以外の方法も適用できる。この例では、共通識別子は共通シグナチャと呼ばれる。
【0037】
代替の実施態様では、加入者プロファイル150は、加入者が一連の質問または一連の視聴セグメントを提示され、答えまたは視聴セグメントに対する応答が加入者プロファイル150を作成するために記録される、学習番組を含むことができるユーザシステム相互作用を通して得られる。
【0038】
さらに別の実施態様では、加入者プロファイル150は、加入者の特定の人口統計プロファイルを作成できる小売業者またはその他のデータ収集者であってよい第3ソースから得られる。
【0039】
1つの実施態様では、加入者プロファイル150は、その人口統計プロファイルを有するユーザと関連する人口統計データおよび視聴習慣に基づき作成されるその加入者の予測される視聴習慣のフーリエ変換表記と関連している。一例として、収入とチャンネル変更周波数の間の示される相互関係により、加入者の収入に関する知識に基づき、加入者プロファイルの生成を可能にする。この方法論を使用して、加入者プロファイル150の共通識別子の基礎を形成する、予測できる視聴習慣を作成することができる。
【0040】
図9は、最も番組を見ているだろう加入者を突き止めるために、加入者選択データ250が処理され、記憶される共通識別子930と相互に関連付けられる加入者識別プロセスを示す。図9に示されているように、加入者選択データ250は、記録SSDステップ900で記録される。好ましい実施態様では、加入者選択データ250はチャンネル変更および音量調節の組み合わせである。代わりに、チャンネル変更信号または音量調節信号はSSDとして使用される。プロセスSSDステップ910では、信号処理アルゴリズムが、SSDを処理し、SSDの処理済みバージョンを得るために使用できる。1つの実施態様では、信号処理アルゴリズムはフーリエ変換の使用に基づいている。この実施態様では、フーリエ変換はSSDの周波数成分を表し、加入者シグナチャとして使用できる。SSDステップ相互関連920では、プロセスSSDステップ910で得られる処理されたSSDが記憶される共通識別子930と相互に関連付けられる。記憶される共通の識別子930は、図7に従って説明されるセッション分類プロセス700から得られる。ピーク相互関連値は、どの加入者が最も番組を見ているのかを決定できるようにする。加入者識別ステップ940では、加入者選択データ250を作り出す加入者は、加入者の集合の間で識別される。
【0041】
1つの実施態様では、システムは、番組視聴の10分後に加入者を特定できる。この実施態様では、まず長さ10分というウィンドウ関数が、信号処理アルゴリズムによる処理の前に加入者選択データ250に適用される。同様に、本実施態様では、記憶されている共通識別子930が、同じ長さのウィンドウ関数を加入者選択データ250に適用した後に得られる。上記ウインドウ関数は、矩形のウィンドウあるいはデータを切り捨てることによって生じる歪みを最小限に抑えるそれ以外のウィンドウ関数である場合がある。当業者は、適切なウィンドウ関数を容易に識別することができる。
【0042】
代わりに、識別は、所定の時間量の視聴の後に実行でき、その場合、ウィンドウ関数の長さは結果的に設定される。
【0043】
本発明では、新規学習または分類プロセスを開始するために、学習プロセスまたは分類プロセスをリセットすることができる。加入者を識別するためにフーリエ変換および相互関連を使用する1つの実施態様では、リセット関数は、記憶された共通識別子930と新規の処理済みのSSDの間の相互関連基準が相対的に近くなるときに適用できる。
【0044】
前述したように、加入者の集合の中で個々の加入者を識別することは、その共通識別子が実際の視聴セッションの処理済み選択データときわめて相互に関連している加入者プロファイル150を見つけることとして考えることができる。
【0045】
図10は、本発明の識別プロセスを実現するために使用できる擬似コードを示す。図10に示されているように、視聴セッションの加入者選択データ250が記録される。加入者選択は、チャンネル変更シーケンス、音量調節シーケンス、または両方のシーケンスの組み合わせとなる場合がある。フーリエ変換は、視聴セッションと関連する加入者のプロファイルの表記であるシーケンスの周波数成分を得るためにシーケンスに適用される。好ましい実施態様では、フーリエ変換F_T_SEQが、システムに記憶されているN個の共通識別子のそれぞれと相互に関連付けられる。図10に示されているように、最大相互関連値が求められ、その引数は加入者プロファイル150の識別子の表記である。
【0046】
本発明は特定の実施態様を参照することにより示されるが、本発明の範囲内に明確に該当する多様な変更および修正が行われることは当業者にとっては明らかだろう。特に、神経ネットワークおよびフーリエ変換の例は制限として意図されていない。本発明を実現するためにはそれ以外の周知の方法も使用することができ、多くの神経ネットワーク、ファジー論理システムおよびそれ以外の同等なシステムが活用され、当業者にとって周知である。神経ネットワーク400を実現するためのこのような代替システムの追加の例は、Simon Haykinによる「神経ネットワーク、包括的な基礎」、およびStamatios V.Kartalopulosによる「神経ネットワークおよびファジー論理の理解」と題されるテキストに説明されており、その両方とも参照してここに組み込まれている。
【0047】
本発明は、添付クレームの先進性および範囲内で幅広く保護されることを意図されている。
【図面の簡単な説明】
【図1】 図1は、加入者識別システムのコンテキスト図である。
【図2】 図2は、セッションデータベクトルの生成のための構成要素の関係を示す図である。
【図3】 図3は、セッションデータベクトルの例を示す図である。
【図4】 図4は、神経ネットワークの学習プロセスを構成要素の関係性形式で示す図である。
【図5】 図5は、競合する学習を示す図である。
【図6A】 図6Aは、セッションプロファイルを表す図である。
【図6B】 図6Bは、セッションプロファイルを表す図である。
【図6C】 図6Cは、セッションプロファイルを表す図である。
【図6D】 図6Dは、セッションプロファイルを表す図である。
【図6E】 図6Eは、セッションプロファイルを表す図である。
【図6F】 図6Fは、セッションプロファイルを表す図である。
【図6G】 図6Gは、セッションプロファイルを表す図である。
【図7】 図7は、セッションプロファイルを分類するために構成要素の関係性を表す図である。
【図8】 図8は、ファジー論理規則の例を示す図である。
【図9】 図9は、加入者を識別するためのフローチャートを示す図である。
【図10】 図10は、本発明の識別プロセスを実現するための擬似コードを示す図である。
Claims (19)
- データ処理システムにおいて、
(a)複数の視聴セッションを監視するステップと、
(b)クラスタ内のセッションが、加入者選択データを表す共通の識別子を有する視聴セッションをクラスタするステップと、
(c)加入者選択データに基づいて視聴セッションのクラスタから加入者を特定するステップと、
を備え、
前記監視するステップ(a)が、さらに、
(i)視聴セッションごとに加入者選択データを記録するステップと、
(ii)視聴セッションごとに見られる番組から番組の特徴および番組人口統計データを生成するステップと、
を備える加入者を特定する方法。 - データ処理システムにおいて、
(a)複数の視聴セッションを監視するステップと、
(b)クラスタ内のセッションが、加入者選択データを表す共通の識別子を有する視聴セッションをクラスタするステップと、
(c)加入者選択データに基づいて視聴セッションのクラスタから加入者を特定するステップと、
を備え、
ステップ(b)が、さらに、
(i)視聴セッションごとの加入者選択データ、番組の特徴、および番組人口統計データからセッションデータベクトルを生成するステップと、
(ii)複数のセッションデータベクトルを分類システムに渡し、セッションデータベクトルのクラスタを形成するステップと、
を備える加入者を特定する方法。 - エンターテインメント/情報提供システムにおいて、
(a)加入者選択データを記録するステップと、
(b)信号処理アルゴリズムを該加入者選択データに適用し、加入者選択データの処理済みのバージョンを形成するステップと、
(c)該加入者選択データの処理済みバージョンの共通識別子との相互関連に基づき、加入者の集合から個々の加入者を特定するステップと、
を備え、
該加入者選択データが音量シーケンスである、加入者の集合から個々の加入者を特定するための方法。 - エンターテインメント/情報提供システムにおいて、
(a)加入者選択データを記録するステップと、
(b)信号処理アルゴリズムを該加入者選択データに適用し、加入者選択データの処理済みのバージョンを形成するステップと、
(c)該加入者選択データの処理済みバージョンの共通識別子との相互関連に基づき、加入者の集合から個々の加入者を特定するステップと、
を備え、
該加入者選択データが時刻視聴データである、加入者の集合から個々の加入者を特定するための方法。 - エンターテインメント/情報提供システムにおいて、
(a)加入者選択データを記録するステップと、
(b)信号処理アルゴリズムを該加入者選択データに適用し、加入者選択データの処理済みのバージョンを形成するステップと、
(c)該加入者選択データの処理済みバージョンの共通識別子との相互関連に基づき、加入者の集合から個々の加入者を特定するステップと、
を備え、
前記ステップ(b)の信号処理アルゴリズムが、フーリエ変換に基づいたアルゴリズムである、加入者の集合から個々の加入者を特定するための方法。 - 加入者の集合から個々の加入者を特定する方法をコンピュータで実行可能なプログラムを記録した記録媒体であって、
前記プログラムは、
(a)加入者選択データを記録するための加入者選択コードセグメントと、
(b)該加入者選択データを処理するため、および加入者選択データの処理済みバージョンを作成するための信号処理コードセグメントと、
(c)該加入者選択データの処理済みのバージョンの共通識別子との相互関連に基づいた加入者の集合から個々の加入者を特定するための特定コードセグメントと、
を備え、
前記加入者選択データが音量シーケンスである、記録媒体。 - 加入者の集合から個々の加入者を特定する方法をコンピュータで実行可能なプログラムを記録した記録媒体であって、
前記プログラムは、
(a)加入者選択データを記録するための加入者選択コードセグメントと、
(b)該加入者選択データを処理するため、および加入者選択データの処理済みバージョンを作成するための信号処理コードセグメントと、
(c)該加入者選択データの処理済みのバージョンの共通識別子との相互関連に基づいた加入者の集合から個々の加入者を特定するための特定コードセグメントと、
を備え、
前記加入者選択データが時刻視聴データである、記録媒体。 - 加入者の集合から個々の加入者を特定する方法をコンピュータで実行可能なプログラムを記録した記録媒体であって、
前記プログラムは、
(a)加入者選択データを記録するための加入者選択コードセグメントと、
(b)該加入者選択データを処理するため、および加入者選択データの処理済みバージョンを作成するための信号処理コードセグメントと、
(c)該加入者選択データの処理済みのバージョンの共通識別子との相互関連に基づいた加入者の集合から個々の加入者を特定するための特定コードセグメントと、
を備え、
前記ステップ(b)の信号処理アルゴリズムが、フーリエ変換に基づいたアルゴリズムである、記録媒体。 - 視聴特徴に基づき番組の視聴者を特定する方法であって、
複数の視聴セッションを監視することと、
該視聴セッションをクラスタに分離し、そこでは分離は、各クラスタ内の視聴セッションが視聴特徴を表す共通の識別子を有するように実行されることと、
該クラスタに関連付けられた視聴特徴に基づき視聴者を特定すること、
を備え、
前記監視が、
視聴セッションごとに視聴特徴を記録することと、
視聴されている番組の視聴セッションごとに、番組特徴プロファイルおよび人口統計プロファイルを生成すること、
を備える方法。 - 前記クラスタ化が、
視聴特徴に基づいたセッションごとのセッションデータベクトル、番組特徴プロファイル、および視聴セッション用の番組人口統計プロファイルデータを生成することと、
該セッションデータベクトルをクラスタに分離し、分離が、各クラスタ内のセッションデータベクトルが共通の識別子を有するように実行されること、
を含む、請求項9に記載の方法。 - 前記クラスタ化が、
視聴セッションごとに視聴特徴からシグナチャ信号を生成することと、
視聴特徴に基づいた視聴セッションごとのセッションプロファイル、番組特徴プロファイル、および視聴セッション用の番組人口統計プロファイルを生成することと、
セッションプロファイルをクラスタに分離し、各クラスタがシグナチャ信号と関連付けられること、
を含む、請求項9に記載の方法。 - 全員が情報およびエンターテインメントのソースにアクセスを有する加入者の集合から個々の加入者を特定する方法であって、
加入者選択データを記録することと、
該加入者選択データに信号処理アルゴリズムを適用し、処理済みの加入者選択データを生成することと、
共通の識別子との該処理済みの加入者選択データの相関性に基づき、加入者の該集合から該個々の加入者を特定すること、
を備え、
前記加入者選択データを記録することが、音量調節シーケンスを記録することを含む方法。 - 全員が情報およびエンターテインメントのソースにアクセスを有する加入者の集合から個々の加入者を特定する方法であって、
加入者選択データを記録することと、
該加入者選択データに信号処理アルゴリズムを適用し、処理済みの加入者選択データを生成することと、
共通の識別子との該処理済みの加入者選択データの相関性に基づき、加入者の該集合から該個々の加入者を特定すること、
を備え、
前記加入者選択データを記録することが、時刻視聴データを記録することを含む方法。 - 全員が情報およびエンターテインメントのソースにアクセスを有する加入者の集合から個々の加入者を特定する方法であって、
加入者選択データを記録することと、
該加入者選択データに信号処理アルゴリズムを適用し、処理済みの加入者選択データを生成することと、
共通の識別子との該処理済みの加入者選択データの相関性に基づき、加入者の該集合から該個々の加入者を特定すること、
を備え、
前記信号処理アルゴリズムを適用することが、フーリエ変換に基づいたアルゴリズムを適用することを含む方法。 - 視聴特徴に基づいて番組の視聴者を特定するシステムであって、
複数の視聴セッションを監視するための手段と、
該視聴セッションをクラスタに分離するための、分離が、各クラスタ内の視聴セッションが、視聴特徴を表す共通の識別子を有するように実行される手段と、
該クラスタに関連付けられた視聴特徴に基づいて、視聴者を特定するための手段と、
を備え、
前記監視するための手段が、
視聴セッションごとに視聴特徴を記録するための手段と、
視聴されている番組に基づき、視聴セッションごとに番組特徴プロファイルおよび番組人口統計プロファイルを生成するための手段と、
を含むシステム。 - 視聴特徴に基づいて番組の視聴者を特定するためのシステムであって、
複数の視聴セッションを監視するための手段と、
該視聴セッションをクラスタに分離するための、分離が、各クラスタ内の視聴セッションが、視聴特徴を表す共通の識別子を有するように実行される手段と、
該クラスタに関連付けられた視聴特徴に基づいて、視聴者を特定するための手段と、
を備え、
クラスタ化するための前記手段が、
視聴特徴に基づいたセッションごとのセッションデータベクトル、番組特徴プロファイル、および視聴セッション用の番組人口統計プロファイルデータを生成するための手段と、
該セッションデータベクトルをクラスタに分離するための、分離が、各クラスタ内のセッションベクトルが共通の識別子を有するように実行される手段と、
を含むシステム。 - 視聴特徴に基づいて番組の視聴者を特定するためのシステムであって、
複数の視聴セッションを監視するための手段と、
該視聴セッションをクラスタに分離するための、分離が、各クラスタ内の視聴セッションが、視聴特徴を表す共通の識別子を有するように実行される手段と、
該クラスタに関連付けられた視聴特徴に基づいて、視聴者を特定するための手段と、
を備え、
前記クラスタ化するための手段が、
視聴セッションごとに視聴特徴からシグナチャ信号を生成するための手段と、
視聴特徴に基づいた視聴セッションごとのセッションプロファイル、番組特徴ファイル、および視聴セッション用の番組人口統計プロファイルを生成するための手段と、
該セッションプロファイルをクラスタに分離するための、各クラスタがシグナチャ信号と関連付けられる手段と、
を含むシステム。 - 加入者の集合から個々の加入者を特定する方法をコンピュータで実行可能なプログラムを記録した記録媒体であって、
前記プログラムは、
加入者選択データを記録するためのソースコードセグメントと、
加入者選択データを処理し、処理済みの加入者選択データを生成するためのソースコードセグメントと、
共通識別子との処理済みの加入者選択データの相関性に基づいて加入者の集合から個々の加入者を特定するためのソースコードセグメントと、
を備え、
加入者選択データを記録するための前記ソースコードセグメントが、チャンネル変更シーケンス、音量調節シーケンス、および時刻視聴データを記録する、記録媒体。 - 加入者の集合から個々の加入者を特定する方法をコンピュータで実行可能なプログラムを記録した記録媒体であって、
前記プログラムは、
加入者選択データを記録するためのソースコードセグメントと、
加入者選択データを処理し、処理済みの加入者選択データを生成するためのソースコードセグメントと、
共通識別子との処理済みの加入者選択データの相関性に基づいて加入者の集合から個々の加入者を特定するためのソースコードセグメントと、
を備え、
加入者選択データを処理するための前記ソースコードセグメントが、フーリエ変換に基づいたアルゴリズムを適用することによって加入者選択データを処理する、記録媒体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11077098P | 1998-12-03 | 1998-12-03 | |
US60/110,770 | 1998-12-03 | ||
PCT/US1999/028600 WO2000033233A1 (en) | 1998-12-03 | 1999-12-02 | Subscriber identification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002531970A JP2002531970A (ja) | 2002-09-24 |
JP3643534B2 true JP3643534B2 (ja) | 2005-04-27 |
Family
ID=22334843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000585806A Expired - Fee Related JP3643534B2 (ja) | 1998-12-03 | 1999-12-02 | 加入者を特定する方法、視聴者を特定する方法、視聴者を特定するシステム、加入者を特定するプログラムを記録した記録媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100293165A1 (ja) |
EP (1) | EP1135742A4 (ja) |
JP (1) | JP3643534B2 (ja) |
AU (1) | AU761730B2 (ja) |
CA (1) | CA2353385C (ja) |
WO (1) | WO2000033233A1 (ja) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020083441A1 (en) | 2000-08-31 | 2002-06-27 | Flickinger Gregory C. | Advertisement filtering and storage for targeted advertisement systems |
US8151295B1 (en) | 2000-08-31 | 2012-04-03 | Prime Research Alliance E., Inc. | Queue based advertisement scheduling and sales |
US7185353B2 (en) * | 2000-08-31 | 2007-02-27 | Prime Research Alliance E., Inc. | System and method for delivering statistically scheduled advertisements |
US7260823B2 (en) | 2001-01-11 | 2007-08-21 | Prime Research Alliance E., Inc. | Profiling and identification of television viewers |
US8108245B1 (en) | 1999-09-17 | 2012-01-31 | Cox Communications, Inc. | Method and system for web user profiling and selective content delivery |
US6993245B1 (en) | 1999-11-18 | 2006-01-31 | Vulcan Patents Llc | Iterative, maximally probable, batch-mode commercial detection for audiovisual content |
US8910199B2 (en) | 2000-02-25 | 2014-12-09 | Interval Licensing Llc | Targeted television content display |
US6968565B1 (en) | 2000-02-25 | 2005-11-22 | Vulcan Patents Llc | Detection of content display observers with prevention of unauthorized access to identification signal |
WO2001063916A1 (en) | 2000-02-25 | 2001-08-30 | Interval Research Corporation | Method and system for selecting advertisements |
US7979880B2 (en) | 2000-04-21 | 2011-07-12 | Cox Communications, Inc. | Method and system for profiling iTV users and for providing selective content delivery |
CA2349914C (en) * | 2000-06-09 | 2013-07-30 | Invidi Technologies Corp. | Advertising delivery method |
US7870053B1 (en) | 2000-09-26 | 2011-01-11 | International Business Machines Corporation | Apparatus and methods for auctioning time and desktop space to product and service suppliers |
JP2006524009A (ja) | 2003-03-25 | 2006-10-19 | セドナ・パテント・サービシズ・エルエルシー | 視聴者分析結果の生成 |
US20060287915A1 (en) | 2005-01-12 | 2006-12-21 | Boulet Daniel A | Scheduling content insertion opportunities in a broadcast network |
US7657526B2 (en) | 2006-03-06 | 2010-02-02 | Veveo, Inc. | Methods and systems for selecting and presenting content based on activity level spikes associated with the content |
US8200688B2 (en) * | 2006-03-07 | 2012-06-12 | Samsung Electronics Co., Ltd. | Method and system for facilitating information searching on electronic devices |
US8316394B2 (en) | 2006-03-24 | 2012-11-20 | United Video Properties, Inc. | Interactive media guidance application with intelligent navigation and display features |
WO2008042280A2 (en) * | 2006-09-29 | 2008-04-10 | United Video Properties, Inc. | Systems and methods for automatically identifying a user profile |
US8850481B2 (en) | 2006-09-29 | 2014-09-30 | United Video Properties, Inc. | Systems and methods for modifying an interactive media guidance application interface based on time of day |
WO2008056349A2 (en) * | 2006-11-06 | 2008-05-15 | I-Spade Technologies Ltd. | Media session identification method for ip networks |
WO2008094960A2 (en) | 2007-01-30 | 2008-08-07 | Invidi Technologies Corporation | Asset targeting system for limited resource environments |
US8146126B2 (en) | 2007-02-01 | 2012-03-27 | Invidi Technologies Corporation | Request for information related to broadcast network content |
US9286385B2 (en) | 2007-04-25 | 2016-03-15 | Samsung Electronics Co., Ltd. | Method and system for providing access to information of potential interest to a user |
US8341663B2 (en) * | 2007-10-10 | 2012-12-25 | Cisco Technology, Inc. | Facilitating real-time triggers in association with media streams |
WO2010017315A2 (en) | 2008-08-05 | 2010-02-11 | Invidi Technologies Corporation | National insertion of targeted advertisment |
WO2010017379A2 (en) | 2008-08-06 | 2010-02-11 | Invidi Technologies Corporation | Third party data matching for targeted advertising |
US20100100618A1 (en) * | 2008-10-22 | 2010-04-22 | Matthew Kuhlke | Differentiating a User from Multiple Users Based on a Determined Pattern of Network Usage |
JP5546632B2 (ja) * | 2009-07-08 | 2014-07-09 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | マルチメディアコンテンツを分析するための方法および機構 |
GB2473809B (en) * | 2009-09-04 | 2011-09-28 | Nds Ltd | Detecting periodic activity patterns |
US20110264530A1 (en) | 2010-04-23 | 2011-10-27 | Bryan Santangelo | Apparatus and methods for dynamic secondary content and data insertion and delivery |
US9736524B2 (en) | 2011-01-06 | 2017-08-15 | Veveo, Inc. | Methods of and systems for content search based on environment sampling |
US8918352B2 (en) | 2011-05-23 | 2014-12-23 | Microsoft Corporation | Learning processes for single hidden layer neural networks with linear output units |
EP2961184A1 (en) * | 2011-08-15 | 2015-12-30 | Comigo Ltd. | Methods and systems for creating and managing multi participant sessions |
US20140006508A1 (en) * | 2012-06-27 | 2014-01-02 | Jean-Philippe Goyet | Method and system for real time subscriber profiling |
US8862155B2 (en) | 2012-08-30 | 2014-10-14 | Time Warner Cable Enterprises Llc | Apparatus and methods for enabling location-based services within a premises |
US10028025B2 (en) * | 2014-09-29 | 2018-07-17 | Time Warner Cable Enterprises Llc | Apparatus and methods for enabling presence-based and use-based services |
US9967631B2 (en) * | 2015-11-11 | 2018-05-08 | International Business Machines Corporation | Automated audio-based display indicia activation based on viewer preferences |
US10586023B2 (en) * | 2016-04-21 | 2020-03-10 | Time Warner Cable Enterprises Llc | Methods and apparatus for secondary content management and fraud prevention |
KR102536202B1 (ko) | 2016-08-26 | 2023-05-25 | 삼성전자주식회사 | 서버 장치, 그 제어 방법 및 컴퓨터 판독가능 기록 매체 |
CN109996063B (zh) * | 2019-04-04 | 2020-08-11 | 广东省安心加科技有限公司 | 视频图像花屏检测方法、装置、计算机设备和存储介质 |
US11403849B2 (en) | 2019-09-25 | 2022-08-02 | Charter Communications Operating, Llc | Methods and apparatus for characterization of digital content |
KR20220061431A (ko) * | 2020-11-06 | 2022-05-13 | 삼성전자주식회사 | 전자장치 및 그 제어방법 |
EP4050505A1 (en) * | 2021-02-25 | 2022-08-31 | Sky Italia S.r.L. | Methods, entities, computer programs and systems for training to assign user identifiers and to assign user identifiers in the consumption of audiovisual content |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US483330A (en) * | 1892-09-27 | schraube | ||
GB2027298A (en) * | 1978-07-31 | 1980-02-13 | Shiu Hung Cheung | Method of and apparatus for television audience analysis |
US4566030A (en) * | 1983-06-09 | 1986-01-21 | Ctba Associates | Television viewer data collection system |
US4621334A (en) * | 1983-08-26 | 1986-11-04 | Electronic Signature Lock Corporation | Personal identification apparatus |
US4833308A (en) * | 1986-07-24 | 1989-05-23 | Advance Promotion Technologies, Inc. | Checkout counter product promotion system and method |
US4779198A (en) * | 1986-08-26 | 1988-10-18 | Control Data Corporation | Audience monitoring system |
US5621812A (en) * | 1989-05-01 | 1997-04-15 | Credit Verification Corporation | Method and system for building a database for use with selective incentive marketing in response to customer shopping histories |
US5201010A (en) * | 1989-05-01 | 1993-04-06 | Credit Verification Corporation | Method and system for building a database and performing marketing based upon prior shopping history |
US5644723A (en) * | 1989-05-01 | 1997-07-01 | Credit Verification Corporation | Method and system for selective incentive point-of-sale marketing in response to customer shopping histories |
US6334108B1 (en) * | 1989-05-01 | 2001-12-25 | Catalina Marketing International, Inc. | Method and system for selective incentive point-of-sale marketing in response to customer shopping histories |
US5687322A (en) * | 1989-05-01 | 1997-11-11 | Credit Verification Corporation | Method and system for selective incentive point-of-sale marketing in response to customer shopping histories |
US5155591A (en) * | 1989-10-23 | 1992-10-13 | General Instrument Corporation | Method and apparatus for providing demographically targeted television commercials |
US5446919A (en) * | 1990-02-20 | 1995-08-29 | Wilkins; Jeff K. | Communication system and method with demographically or psychographically defined audiences |
US5251324A (en) * | 1990-03-20 | 1993-10-05 | Scientific-Atlanta, Inc. | Method and apparatus for generating and collecting viewing statistics for remote terminals in a cable television system |
US5351075A (en) * | 1990-03-20 | 1994-09-27 | Frederick Herz | Home video club television broadcasting system |
US5274714A (en) * | 1990-06-04 | 1993-12-28 | Neuristics, Inc. | Method and apparatus for determining and organizing feature vectors for neural network recognition |
US5319455A (en) * | 1990-09-28 | 1994-06-07 | Ictv Inc. | System for distributing customized commercials to television viewers |
US5361871A (en) * | 1991-08-20 | 1994-11-08 | Digicomp Research Corporation | Product information system for shoppers |
US5231494A (en) * | 1991-10-08 | 1993-07-27 | General Instrument Corporation | Selection of compressed television signals from single channel allocation based on viewer characteristics |
US6292786B1 (en) * | 1992-05-19 | 2001-09-18 | Incentech, Inc. | Method and system for generating incentives based on substantially real-time product purchase information |
US5223924A (en) * | 1992-05-27 | 1993-06-29 | North American Philips Corporation | System and method for automatically correlating user preferences with a T.V. program information database |
US5375244A (en) * | 1992-05-29 | 1994-12-20 | At&T Corp. | System and method for granting access to a resource |
DE69333811T2 (de) * | 1992-06-19 | 2006-05-11 | United Parcel Service Of America, Inc. | Verfahren und Gerät zur Erzeugung und Einstellung eines Neurones |
US5384895A (en) * | 1992-08-28 | 1995-01-24 | The United States Of America As Represented By The Secretary Of The Navy | Self-organizing neural network for classifying pattern signatures with `a posteriori` conditional class probability |
US5600364A (en) * | 1992-12-09 | 1997-02-04 | Discovery Communications, Inc. | Network controller for cable television delivery systems |
KR100289174B1 (ko) * | 1992-12-09 | 2001-05-02 | 마크 홀린저 | 케이블 텔레비젼 전달 시스템을 위한 세트 탑 터미날 |
US6463585B1 (en) * | 1992-12-09 | 2002-10-08 | Discovery Communications, Inc. | Targeted advertisement using television delivery systems |
US5550928A (en) * | 1992-12-15 | 1996-08-27 | A.C. Nielsen Company | Audience measurement system and method |
NZ250926A (en) * | 1993-02-23 | 1996-11-26 | Moore Business Forms Inc | Relational database: product, consumer and transactional data for retail shopping targeting |
US5835901A (en) * | 1994-01-25 | 1998-11-10 | Martin Marietta Corporation | Perceptive system including a neural network |
JP3500741B2 (ja) * | 1994-03-01 | 2004-02-23 | ソニー株式会社 | テレビ放送の選局方法及び選局装置 |
US5515098A (en) * | 1994-09-08 | 1996-05-07 | Carles; John B. | System and method for selectively distributing commercial messages over a communications network |
US5632007A (en) * | 1994-09-23 | 1997-05-20 | Actv, Inc. | Interactive system and method for offering expert based interactive programs |
US5724521A (en) * | 1994-11-03 | 1998-03-03 | Intel Corporation | Method and apparatus for providing electronic advertisements to end users in a consumer best-fit pricing manner |
IL111610A (en) * | 1994-11-11 | 1998-02-22 | News Datacom Ltd | Catv transmission systems |
US6460036B1 (en) * | 1994-11-29 | 2002-10-01 | Pinpoint Incorporated | System and method for providing customized electronic newspapers and target advertisements |
US6571279B1 (en) * | 1997-12-05 | 2003-05-27 | Pinpoint Incorporated | Location enhanced information delivery system |
US5758257A (en) * | 1994-11-29 | 1998-05-26 | Herz; Frederick | System and method for scheduling broadcast of and access to video programs and other data using customer profiles |
US6029195A (en) * | 1994-11-29 | 2000-02-22 | Herz; Frederick S. M. | System for customized electronic identification of desirable objects |
US5774170A (en) * | 1994-12-13 | 1998-06-30 | Hite; Kenneth C. | System and method for delivering targeted advertisements to consumers |
US5604542A (en) * | 1995-02-08 | 1997-02-18 | Intel Corporation | Using the vertical blanking interval for transporting electronic coupons |
US5710884A (en) * | 1995-03-29 | 1998-01-20 | Intel Corporation | System for automatically updating personal profile server with updates to additional user information gathered from monitoring user's electronic consuming habits generated on computer during use |
US5760821A (en) * | 1995-06-07 | 1998-06-02 | News America Publications, Inc. | Electronic program guide schedule localization system and method |
US6035280A (en) * | 1995-06-16 | 2000-03-07 | Christensen; Scott N. | Electronic discount couponing method and apparatus for generating an electronic list of coupons |
US5805974A (en) * | 1995-08-08 | 1998-09-08 | Hite; Kenneth C. | Method and apparatus for synchronizing commercial advertisements across multiple communication channels |
US6002393A (en) * | 1995-08-22 | 1999-12-14 | Hite; Kenneth C. | System and method for delivering targeted advertisements to consumers using direct commands |
US6732369B1 (en) * | 1995-10-02 | 2004-05-04 | Starsight Telecast, Inc. | Systems and methods for contextually linking television program information |
US5918014A (en) * | 1995-12-27 | 1999-06-29 | Athenium, L.L.C. | Automated collaborative filtering in world wide web advertising |
US5790935A (en) * | 1996-01-30 | 1998-08-04 | Hughes Aircraft Company | Virtual on-demand digital information delivery system and method |
US5848396A (en) * | 1996-04-26 | 1998-12-08 | Freedom Of Information, Inc. | Method and apparatus for determining behavioral profile of a computer user |
US6469753B1 (en) * | 1996-05-03 | 2002-10-22 | Starsight Telecast, Inc. | Information system |
DK0932398T3 (da) * | 1996-06-28 | 2006-09-25 | Ortho Mcneil Pharm Inc | Anvendelse af topiramat eller derivater deraf til fremstilling af et lægemiddel til behandling af maniodepressive bipolære forstyrrelser |
US5933811A (en) * | 1996-08-20 | 1999-08-03 | Paul D. Angles | System and method for delivering customized advertisements within interactive communication systems |
US5915243A (en) * | 1996-08-29 | 1999-06-22 | Smolen; Daniel T. | Method and apparatus for delivering consumer promotions |
US6108637A (en) * | 1996-09-03 | 2000-08-22 | Nielsen Media Research, Inc. | Content display monitor |
US6177931B1 (en) * | 1996-12-19 | 2001-01-23 | Index Systems, Inc. | Systems and methods for displaying and recording control interface with television programs, video, advertising information and program scheduling information |
US5912696A (en) * | 1996-12-23 | 1999-06-15 | Time Warner Cable | Multidimensional rating system for media content |
US5796952A (en) * | 1997-03-21 | 1998-08-18 | Dot Com Development, Inc. | Method and apparatus for tracking client interaction with a network resource and creating client profiles and resource database |
US6643696B2 (en) * | 1997-03-21 | 2003-11-04 | Owen Davis | Method and apparatus for tracking client interaction with a network resource and creating client profiles and resource database |
US20030088872A1 (en) * | 1997-07-03 | 2003-05-08 | Nds Limited | Advanced television system |
US6026370A (en) * | 1997-08-28 | 2000-02-15 | Catalina Marketing International, Inc. | Method and apparatus for generating purchase incentive mailing based on prior purchase history |
US6055510A (en) * | 1997-10-24 | 2000-04-25 | At&T Corp. | Method for performing targeted marketing over a large computer network |
US6005597A (en) * | 1997-10-27 | 1999-12-21 | Disney Enterprises, Inc. | Method and apparatus for program selection |
US6134532A (en) * | 1997-11-14 | 2000-10-17 | Aptex Software, Inc. | System and method for optimal adaptive matching of users to most relevant entity and information in real-time |
US6236978B1 (en) * | 1997-11-14 | 2001-05-22 | New York University | System and method for dynamic profiling of users in one-to-one applications |
US20020095676A1 (en) * | 1998-05-15 | 2002-07-18 | Robert A. Knee | Interactive television program guide system for determining user values for demographic categories |
US6141010A (en) * | 1998-07-17 | 2000-10-31 | B. E. Technology, Llc | Computer interface method and apparatus with targeted advertising |
US6285983B1 (en) * | 1998-10-21 | 2001-09-04 | Lend Lease Corporation Ltd. | Marketing systems and methods that preserve consumer privacy |
US6216129B1 (en) * | 1998-12-03 | 2001-04-10 | Expanse Networks, Inc. | Advertisement selection system supporting discretionary target market characteristics |
US6298348B1 (en) * | 1998-12-03 | 2001-10-02 | Expanse Networks, Inc. | Consumer profiling system |
US6560578B2 (en) * | 1999-03-12 | 2003-05-06 | Expanse Networks, Inc. | Advertisement selection system supporting discretionary target market characteristics |
US6684194B1 (en) * | 1998-12-03 | 2004-01-27 | Expanse Network, Inc. | Subscriber identification system |
US6609104B1 (en) * | 1999-05-26 | 2003-08-19 | Incentech, Inc. | Method and system for accumulating marginal discounts and applying an associated incentive |
US7062510B1 (en) * | 1999-12-02 | 2006-06-13 | Prime Research Alliance E., Inc. | Consumer profiling and advertisement selection system |
US8495679B2 (en) * | 2000-06-30 | 2013-07-23 | Thomson Licensing | Method and apparatus for delivery of television programs and targeted de-coupled advertising |
-
1999
- 1999-12-02 JP JP2000585806A patent/JP3643534B2/ja not_active Expired - Fee Related
- 1999-12-02 WO PCT/US1999/028600 patent/WO2000033233A1/en active IP Right Grant
- 1999-12-02 CA CA002353385A patent/CA2353385C/en not_active Expired - Lifetime
- 1999-12-02 AU AU24755/00A patent/AU761730B2/en not_active Ceased
- 1999-12-02 EP EP99968064A patent/EP1135742A4/en not_active Withdrawn
-
2010
- 2010-07-26 US US12/843,576 patent/US20100293165A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2475500A (en) | 2000-06-19 |
US20100293165A1 (en) | 2010-11-18 |
CA2353385C (en) | 2004-09-28 |
EP1135742A4 (en) | 2002-07-24 |
EP1135742A1 (en) | 2001-09-26 |
AU761730B2 (en) | 2003-06-05 |
WO2000033233A1 (en) | 2000-06-08 |
CA2353385A1 (en) | 2000-06-08 |
JP2002531970A (ja) | 2002-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3643534B2 (ja) | 加入者を特定する方法、視聴者を特定する方法、視聴者を特定するシステム、加入者を特定するプログラムを記録した記録媒体 | |
US6684194B1 (en) | Subscriber identification system | |
US7240355B1 (en) | Subscriber characterization system with filters | |
CA2353646C (en) | Subscriber characterization and advertisement monitoring system | |
US6457010B1 (en) | Client-server based subscriber characterization system | |
US9693086B2 (en) | Method and apparatus to perform real-time audience estimation and commercial selection suitable for targeted advertising | |
US7150030B1 (en) | Subscriber characterization system | |
US20040073919A1 (en) | Commercial recommender | |
US7949565B1 (en) | Privacy-protected advertising system | |
US7739140B2 (en) | Content reaction display | |
Spangler et al. | Using data mining to profile TV viewers | |
EP3420519A1 (en) | Processing video usage information for the delivery of advertising | |
CA2520117A1 (en) | Generating audience analytics | |
KR101769976B1 (ko) | 시청 가구 구성원 프로파일 추론 방법 및 장치 | |
WO2001065747A1 (en) | Advertisment monitoring and feedback system | |
AU2004201402B2 (en) | Generating a subscriber profile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050128 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120204 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130204 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |