JP3643260B2 - Lightweight concrete caisson - Google Patents

Lightweight concrete caisson Download PDF

Info

Publication number
JP3643260B2
JP3643260B2 JP16751499A JP16751499A JP3643260B2 JP 3643260 B2 JP3643260 B2 JP 3643260B2 JP 16751499 A JP16751499 A JP 16751499A JP 16751499 A JP16751499 A JP 16751499A JP 3643260 B2 JP3643260 B2 JP 3643260B2
Authority
JP
Japan
Prior art keywords
caisson
wall
concrete
lightweight concrete
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16751499A
Other languages
Japanese (ja)
Other versions
JP2000352030A (en
Inventor
弘 横田
享久 岡本
隆 栩木
昌男 笹島
理恵 松野
和夫 横沢
正 渡部
政司 舟橋
俊彦 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Taiheiyo Cement Corp
Maeda Corp
Original Assignee
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Taiheiyo Cement Corp
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE, Taiheiyo Cement Corp, Maeda Corp filed Critical INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Priority to JP16751499A priority Critical patent/JP3643260B2/en
Publication of JP2000352030A publication Critical patent/JP2000352030A/en
Application granted granted Critical
Publication of JP3643260B2 publication Critical patent/JP3643260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は主に港湾等の防波堤、護岸、岸壁に使用する軽量コンクリートケーソン及びこれを用いた施工方法に関する。
【0002】
【従来の技術】
一般に、防波堤、護岸、あるいは岸壁等を施工する場合、図5に示すようなコンクリートケーソンが用いられている。これは例えば箱状の構造物を支持マウンドまで沈下させて内部に砂を詰め、箱自身の重量により波浪等に抵抗するものである。
【0003】
このようなコンクリートケーソンは、床板10の上縁に外壁11を設け、この外壁11の内側を隔壁12で格子状に区画した箱型に形成されている。
その製法は、最初に床板10を構築した後、外壁11と隔壁12用の鉄筋(図示せず)を組み立て型枠をし設置し、その内部にコンクリートを打設して外壁11と隔壁12を完成するものである。この方法では、通常のコンクリート構造物の構築の場合と同様に、コンクリート養生後に型枠と支保工を解体するという一連の作業を繰り返して、所定の高さの構造物を得ていた。
【0004】
かかるコンクリートケーソンの製作にあたっては、陸上、または図6に示すフローティングドック13上にて行うのが一般的である。そして完成したコンクリートケーソン全体は、海上を所定の設置位置まで浮遊させて運搬し、中詰砂収容部に水を入れて重量を増加させ、海底に着底させた後、水を中詰砂に置換するようにしている。
【0005】
ところで、前記した従来のコンクリートケーソンでは、その全体が普通のコンクリートで形成されるために相当に比重が重くなる。ケーソンの設置位置の水深が深い場合ケーソンの高さも必然的に高くなる。この場合、このコンクリートケーソンを海上に浮かべて所定の位置まで移動させる場合喫水が深くなり浮遊せずに曳航不可能となるか、または浮遊しても水深が浅い場所では床板10が海底に接してしまう虞れがある。また浮力を大きくするために、完成後の波浪等に対する安定に必要以上ケーソンの幅を拡げなければならないケースもある。
【0006】
そこでコンクリートケーソンをできるだけ軽量化し、喫水を浅くすることでケーソンの高さが高い場合や水深が浅い所でも曳航や設置を可能にすることが望まれる。
【0007】
かかる要求に対し、具体的には図6に示すように、フローティングドック13上でコンクリートケーソンを製作する際、外壁11と隔壁12の高さを実際に必要な全高よりも低くして軽量化を図ることが考えられる。これによりコンクリートケーソンの自重が軽くなるため浅深度の海域でも移動が可能となる。しかしながら、このような方法では本来設置すべき位置に沈めた場合、外壁11の高さが低すぎて海面16下に水没することになる。
【0008】
そこで、図8に示すように、陸上やフローティングドツクで外壁や隔壁を途中まで立ち上げ、その状態で海上に引き出しで海底14に設置した仮置きマウンド15上にコンクリートケーソンを着底させ、これに継ぎ足し用外壁11aと隔壁12aを接続している。場合によっては、継ぎ足し用外壁11bと隔壁12aのように所定の高さに達するまで頂次海上で継ぎ足していくことになる(図9)。そして所定の高さまで完成したものを本設のマウンド17まで曳航し、床板10を着底させ、隔壁12間に形成された中詰砂18を詰めて完成させている。
【0009】
また、作業条件の著しく劣る海上での工事を減らすために、図11に示すように本来の目的である完成後の波浪等に対して安定するために必要な幅(図11(a)に示す幅)以上にケーソンの幅を拡げ、容積を大きくすることで浮力を増し喫水を浅くして曳航する場合もしばしばである。図11(b)には浮遊時の喫水で決定された幅の例を示し、本来必要な波浪等に対する安定に必要な幅よりも広い。
【0010】
【発明が解決しようとする課題】
ところが、前記した従来コンクリートケーソンを採用した場合、施工が複雑であるために工期の延長やコスト高を招くことは避けられない。特に作業環境に劣る海上での継ぎ足し作業は困難を伴うとともに、完成後の品質という点からみてもコンクリート表面に生じる豆板、あばた、及びコールドジョイント等の初期欠陥が発生しやすい。また、軽量コンクリートの使用が思いつくが、従来の軽量骨材を用いた軽量コンクリートは骨材の吸水性が大きいため、凍結融解抵抗性等耐久性やポンプ圧送性等施工性に問題があるために採用が難しい。
【0011】
さらに従来の軽量骨材を用いた軽量コンクリートは、張強度やせん断強度が弱いため、ケーソンを着底する地盤が軟弱で不等沈下が予想される場合にも採用が難しい。
【0012】
【課題を解決するための手段】
本発明は軽量コンクリートケーソン及びこの軽量コンクリートケーソンを用いた施工方法であり、前述した技術的課題を解決するために以下のように構成されている。すなわち、床板1及びこの床板1から立設した外壁2と、この外壁間をつなぐ隔壁7とにより形成された中詰砂収容部3を備え、海底4に着底して設置すべきケーソンであって、床板1外壁2及び隔壁7の全部または一部を、比重の調整が可能な低吸水高耐久軽量コンクリートで形成し、水中浮遊時における喫水が普通コンクリートを用いた場合よりも浅くなるよう構成した。
【0013】
低吸水高耐久軽量コンクリートとしては、真珠岩を主原料とす高性能軽量骨材を使用するものが使用できる。この軽量骨材では、原料を微粉砕、混合、造粒し、乾燥後焼成製
造工程で内部気孔を独立気孔としている。このことにより、従来の軽量骨材と比較して吸水率が5%以下と小さく、骨材の圧縮強度が1000N〜1500Nと従来の軽量骨材と比較して大きく高強度を得ることができる。
【0014】
また前記低吸水高耐久軽量コンクリートを流動化させ、かつ分離しにくい状態で軽量コンクリートケーソンを形成することで、従来3m以下に制限されていた製作上の1ロットの高さを延長することができ、工期を短縮化し、かつ施工コストの低減を図ることができる。
低吸水高耐久軽量コンクリートを流動化させるには、混和剤を添加してセメントを分散させて流動性を確保し、かつ骨材が分離しないようにする。混和剤としては、例えば、高性能エーイー減水剤のような分離低減型のもの(竹本油脂 HP70等)を使用することができる。
【0015】
このような高性能軽量骨材を粗骨材として使用して低吸水高耐久軽量コンクリートを製造する場合、粗骨材比重として0.85および1.2の二種類が用意されており、これらと天然砂を適宜組み合わせることにより、練り上がったコンクリートの比重で1.2〜1.8の範囲で所望の比重に調整することが可能である。
【0016】
また、外壁2の周囲に強化繊維補強層5を形成することができる。この強化繊維補強層5に用いる強化繊維としてはグラスファイバー、カーボン繊維、ステンレスファイバー及びスチィールファイバー等を例示することができる。これら強化繊維はコンクリートと混練して外壁2の周囲に強化繊維補強層5を形成する。
【0017】
この軽量コンクリートケーソンを用いた施工方法は、床板1から、施工完成後の全高と同一の全高で立設した外壁2とこの外壁間をつなぐ隔壁7とにより形成された中詰砂収容部3を備え、床板1、外壁2及び隔壁7のうち全部もしくは一部を低吸水高耐久軽量コンクリートで形成した軽量コンクリートケーソンを構築し、軽量コンクリートケーソン全体を所定の設置位置まで浮遊させて運搬して、海水を注水して沈設し海底に着底した後、中詰砂を入れて完成する。
【0018】
以上のように、床板、外壁及び隔壁の全部または一部を、所望の比重に調整した低吸水高耐久軽量コンクリートで形成したので、水中浮遊時における喫水が必要な程度に浅くなるように構成することができる。したがって壁高をフローティングドック上で全高構築しても曳航中にコンクリートケーソンが着底することがなくなる。このため従来のような海上で外壁や隔壁の継ぎ足しが不要となり、コンクリートケーソンを陸上やフローティングドック上で完成することが可能となる。
【0019】
また、作業条件の著しく劣る海上での工事を減らすために、図11(b)に示すように、本来の目的である完成後の波浪等に対する安定のために必要な幅(図11(a))以上にケーソンの幅を拡げ、容積を大きくすることで浮力を増し喫水を浅くして曳航するケースにおいても、コンクリートケーソンの比重を調整することで、ケーソンの幅を小さくできる。
【0020】
さらに、ケーソンが着底する地盤が軟弱で不等沈下が予想される場合にも、外壁の周囲に強化繊維補強層を形成することで、軽量コンクリートの欠点である引張強度やせん断強度の低下に対処できる。強化繊維補強層を設けるには、繊維補強されたプレキャスト埋設型枠を使用することができる。
【0021】
【発明の実施の形態】
以下、本発明の軽量コンクリートケーソン及び軽量コンクリートを用いたコンクリートケーソンの施工方法を図1から図4に示される実施形態について更に詳細に説明する。なお、従来技術における説明と同一部分には同一符号を付してその説明を省略する。
【0022】
図1はコンクリートケーソン全体を示し、床板1から矩形の外壁2を4面にわたり立設した構成となっている。そして、外壁2の内部は隔壁7で格子状に補強されているので多数の空間に分割されている。この図では隔壁7により3列5行に形成され、15個の中空の中詰砂収容部3が形成されている。
【0023】
中詰収容部3は中詰砂を入れてコンクリートケーソンの重量を増大させて波浪等の外力に対して、滑動や転倒することがないよう安定させたものである。そして、外壁2の外周の全体にわたり、強化繊維補強層5が形成されている。具体的には強化繊維補強層5をプレキャストコンクリート枠としてあり、ケーソンの引張抵抗力を高めている。
【0024】
また前記床板1、外壁2及び隔壁7は、低吸水高耐久軽量コンクリートで形成されている。ここで使用する低吸水高耐久軽量コンクリートの一例について示すと、軽量粗骨材に比重1.2を、細骨材に天然砂と軽量細骨材を混合したものをそれぞれ用いると、コンクリート比重1.5、圧縮強度49.1N/mm2となる。
【0025】
したがって、このコンクリートケーソン全体は、従来の普通コンクリート製のものと比較して軽量で、ケーソンの浮遊時における喫水が浅くなる。このため、外壁2及び隔壁7は製作当初から、陸上あるいはフローティングドック上で所望の高さ(施工完成後の全高と同一の全高)に形成できる場合が多くなる。
【0026】
このように陸上やフローティングドック上で製作後に継ぎ足し等を行うことがなくなれば、海上での劣悪な環境下での作業を減じることができる。これに伴い、工費の節減、施工期間の短縮、工事の安全性の向上が得られる。
【0027】
また、喫水を考慮してケーソンの幅を大きくする必要もないため、工費の節減及び施工期間の短縮が得られる。
図2はフローティングドック13上での製作を示しており、完成したコンクリートケーソンは図3に示すように、沈設位置まで曳航される。そして、中詰砂収容部に海水を注水して本設のマウンドに沈設した後、所定の重量となるよう砂を投入して完成する。
【0028】
なお、軽量コンクリートが低吸水型であるためコンクリートケーソン自体も低吸水であり、耐久性が向上する。
【0029】
【発明の効果】
本発明によれば、床板、外壁及び隔壁のうち全部または一部を低吸水高耐久軽量コンクリートで形成し、比重を従来のものより軽くしたので水深が浅くても多くの場合に浮遊が可能となる。したがって、海上で外壁及び隔壁を継ぎ足したり、喫水を浅くするためにケーソンの幅を大きくする必要がなくなり、当初から必要な高さで製作することができる。
【0030】
このため、施工が簡単で工期の短縮やコストの低減を図ることができる。さらに、初期欠陥である豆板や表面のあばたの発生が少ない優れた品質と強度が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態である軽量コンクリートケーソンの斜視図である。
【図2】本発明の一実施形態である軽量コンクリートケーソンをフローティングドック上で製作している状態を示す。
【図3】本発明の一実施形態である軽量コンクリートケーソンを水上で移動する状態を示す断面図である。
【図4】本発明の一実施形態である軽量コンクリートケーソンを水底に設置した状態を示す断面図である。
【図5】従来の普通コンクリートケーソンを示す斜視図である。
【図6】従来の普通コンクリートケーソンをフローティングドック上で製作している状態を示す断面図である。
【図7】従来の普通コンクリートケーソンの製作過程の初期状態を示す断面図である。
【図8】従来の普通コンクリートケーソンの製作過程の中期状態を示す断面図である。
【図9】従来の普通コンクリートケーソンの製作過程の後期状態を示す断面図である。
【図10】従来の普通コンクリートケーソンを水底に設置した状態を示す、断面図である。
【図11】(a)波浪等で決まる場合のケーソンの幅の従来例を示す図である(b)浮遊時の喫水で断面の幅が決定される従来例を示す図である。
【符号の説明】
1 床板
2 外壁
3 中詰砂収容部
4 海底
5 強化繊維補強層
6 中詰砂
7 隔壁
13 フローティングドック
14 海底
16 海面
17 マウンド
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a lightweight concrete caisson used for a breakwater such as a harbor, a revetment, a quay and a construction method using the same.
[0002]
[Prior art]
In general, when constructing a breakwater, revetment, or quay, a concrete caisson as shown in FIG. 5 is used. For example, a box-like structure is sunk to the support mound and filled with sand and resists waves and the like due to the weight of the box itself.
[0003]
Such a concrete caisson is formed in a box shape in which an outer wall 11 is provided at the upper edge of the floor board 10 and the inside of the outer wall 11 is partitioned by a partition wall 12 in a lattice shape.
In the manufacturing method, after the floor board 10 is first constructed, an outer wall 11 and a reinforcing bar (not shown) for the partition wall 12 are assembled and installed, and concrete is placed inside the outer wall 11 and the partition wall 12. It will be completed. In this method, as in the case of construction of a normal concrete structure, a series of operations of dismantling the formwork and support after the concrete curing were repeated to obtain a structure with a predetermined height.
[0004]
Such a concrete caisson is generally produced on land or on the floating dock 13 shown in FIG. The completed concrete caisson is then transported by floating the sea to a predetermined installation position, adding water to the filling sand container, increasing the weight, and laying on the bottom of the sea. I try to replace it.
[0005]
By the way, in the above-mentioned conventional concrete caisson, since the whole is formed with normal concrete, specific gravity becomes considerably heavy. If the water depth at the caisson is deep, the height of the caisson will inevitably increase. In this case, when the concrete caisson is floated on the sea and moved to a predetermined position, the draft becomes deep and it becomes impossible to tow without floating, or the floor board 10 is in contact with the seabed in a place where the water depth is shallow even if it floats. There is a risk of it. In addition, in order to increase buoyancy, there are cases where the width of the caisson has to be increased more than necessary for stability against waves after completion.
[0006]
Therefore, it is desirable to reduce the weight of the concrete caisson as much as possible and to make it possible to tow and install even when the caisson height is high or the water depth is shallow by making the draft shallow.
[0007]
Specifically, as shown in FIG. 6, when manufacturing a concrete caisson on the floating dock 13, the height of the outer wall 11 and the partition wall 12 is made lower than the total height actually required to reduce the weight. It is possible to plan. This reduces the weight of the concrete caisson so that it can be moved even in shallow waters. However, in such a method, when it is sunk to a position where it should be originally installed, the height of the outer wall 11 is too low and the water is submerged under the sea surface 16.
[0008]
Therefore, as shown in FIG. 8, the outer wall or bulkhead is raised halfway by land or floating dock, and in that state, a concrete caisson is placed on the temporary mound 15 that is pulled out to the sea and installed on the seabed 14. The connecting outer wall 11a and the partition wall 12a are connected. Depending on the case, it will be added on the top sea until it reaches a predetermined height like the outer wall 11b and the partition wall 12a (FIG. 9). The finished product is towed to the main mound 17, the floor board 10 is settled, and the filling sand 18 formed between the partition walls 12 is packed.
[0009]
Further, in order to reduce the construction work at sea where the working conditions are extremely inferior, as shown in FIG. 11, the width necessary for stabilizing the wave after completion, which is the original purpose (shown in FIG. 11A). In many cases, the width of the caisson is widened and the volume is increased to increase buoyancy and shallow drafts. FIG. 11 (b) shows an example of the width determined by the draft at the time of floating, which is wider than the width necessary for stability against waves that are originally required.
[0010]
[Problems to be solved by the invention]
However, when the above-described conventional concrete caisson is employed, it is inevitable that the construction period is extended and the cost is increased because the construction is complicated. In particular, the addition work at sea, which is inferior to the working environment, is difficult, and from the standpoint of quality after completion, initial defects such as bean plates, flaps, and cold joints that occur on the concrete surface are likely to occur. In addition, the use of lightweight concrete is conceivable, but because lightweight concrete using conventional lightweight aggregates has high water absorption, there are problems in durability such as freeze-thaw resistance and workability such as pumpability. Hiring is difficult.
[0011]
Furthermore, conventional lightweight concrete using lightweight aggregates is weak in tensile strength and shear strength, so that it is difficult to adopt even when the ground on which the caisson is ground is soft and uneven settlement is expected.
[0012]
[Means for Solving the Problems]
The present invention is a lightweight concrete caisson and a construction method using this lightweight concrete caisson, and is configured as follows in order to solve the technical problems described above. That is, it is a caisson that is provided with an inside sand receiving portion 3 formed by a floor board 1 and an outer wall 2 standing upright from the floor board 1 and a partition wall 7 connecting the outer walls, and should be installed on the sea floor 4. In addition, all or part of the floorboard 1 outer wall 2 and partition wall 7 are made of low water absorption and high durability light weight concrete whose specific gravity can be adjusted, and the draft when floating in water is configured to be shallower than when ordinary concrete is used. did.
[0013]
The low water absorption and high durability lightweight concrete, those that use high-performance lightweight aggregate you a pearl rock as the main raw material, can be used. In this lightweight aggregate, the raw materials are finely pulverized, mixed and granulated, and the internal pores are made into independent pores in the baking and manufacturing process after drying. As a result, the water absorption rate is as small as 5% or less as compared with the conventional lightweight aggregate, and the compressive strength of the aggregate is 1000N to 1500N, which can provide a high strength as compared with the conventional lightweight aggregate.
[0014]
In addition, by making the low water absorption and high durability lightweight concrete fluid and forming a lightweight concrete caisson in a state where it is difficult to separate, the height of one lot in production, which was conventionally limited to 3 m or less, can be extended. The construction period can be shortened and the construction cost can be reduced.
In order to fluidize low water absorption and high durability lightweight concrete, an admixture is added to disperse the cement to ensure fluidity and prevent the aggregate from separating. As the admixture, for example, a separation-reducing type such as a high-performance AE water reducing agent (Takemoto Oil HP70 or the like) can be used.
[0015]
When producing such low-water-absorbing and highly durable lightweight concrete using such high-performance lightweight aggregates as coarse aggregates, two types of coarse aggregate specific gravity of 0.85 and 1.2 are prepared. By appropriately combining natural sand, it is possible to adjust to a desired specific gravity in the range of 1.2 to 1.8 in terms of the specific gravity of the concrete that has been kneaded.
[0016]
Further, the reinforcing fiber reinforcing layer 5 can be formed around the outer wall 2. Examples of the reinforcing fibers used in the reinforcing fiber reinforcing layer 5 include glass fibers, carbon fibers, stainless steel fibers, and steel fibers. These reinforcing fibers are kneaded with concrete to form a reinforcing fiber reinforcing layer 5 around the outer wall 2.
[0017]
The construction method using this lightweight concrete caisson includes an inside sand containing portion 3 formed from a floor board 1 by an outer wall 2 erected at the same height as the completed height and a partition wall 7 connecting the outer walls. Equipped, constructing a lightweight concrete caisson in which all or part of the floorboard 1, outer wall 2 and partition wall 7 are made of low water absorption and high durability lightweight concrete, and float the entire lightweight concrete caisson to a predetermined installation position, After injecting seawater and laying it down and landing on the bottom of the sea, it will be completed with sand inside.
[0018]
As described above, all or part of the floorboard, outer wall, and partition walls are made of low water absorption and high durability lightweight concrete adjusted to the desired specific gravity, so that the draft is as shallow as necessary when floating in water. be able to. Therefore, even if the height of the wall is constructed on the floating dock, the concrete caisson will not settle during towing. For this reason, it is not necessary to add an outer wall or a bulkhead on the sea as in the past, and a concrete caisson can be completed on land or on a floating dock.
[0019]
Further, in order to reduce construction work at sea where the working conditions are extremely inferior, as shown in FIG. 11 (b), the width necessary for stability against the wave after completion, which is the original purpose (FIG. 11 (a)). ) The caisson width can be reduced by adjusting the specific gravity of the concrete caisson even in the case where the caisson is widened and the volume is increased to increase the buoyancy and shallow the draft.
[0020]
Furthermore, even when the ground where the caisson bottoms is soft and uneven settlement is expected, by forming a reinforcing fiber reinforcement layer around the outer wall, the tensile strength and shear strength, which are disadvantages of lightweight concrete, can be reduced. I can deal with it. In order to provide the reinforcing fiber reinforcing layer, a fiber-reinforced precast embedded formwork can be used.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the construction method of the concrete caisson using the lightweight concrete caisson and the lightweight concrete of the present invention will be described in more detail with respect to the embodiment shown in FIGS. In addition, the same code | symbol is attached | subjected to the part same as description in a prior art, and the description is abbreviate | omitted.
[0022]
FIG. 1 shows the entire concrete caisson, in which a rectangular outer wall 2 is erected over four sides from a floor board 1. And since the inside of the outer wall 2 is reinforced by the partition 7 in a lattice shape, it is divided into a large number of spaces. In this figure, the partition 7 is formed in 3 columns and 5 rows, and 15 hollow filled sand accommodating portions 3 are formed.
[0023]
The filling container 3 is filled with filling sand to increase the weight of the concrete caisson so that it does not slide or fall against external forces such as waves. A reinforcing fiber reinforcing layer 5 is formed over the entire outer periphery of the outer wall 2. Specifically, the reinforcing fiber reinforcing layer 5 is a precast concrete frame, which increases the tensile resistance of caisson.
[0024]
The floor board 1, the outer wall 2 and the partition wall 7 are made of low water absorption, high durability and lightweight concrete. An example of the low water absorption and high durability lightweight concrete used here is as follows. Specific gravity of 1 is obtained when a specific gravity of 1.2 is used for a light coarse aggregate, and a mixture of natural sand and lightweight fine aggregate is used for a fine aggregate. 5 and compressive strength of 49.1 N / mm 2.
[0025]
Therefore, the concrete caisson as a whole is lighter than conventional ordinary concrete and has a shallow draft when the caisson is floating. For this reason, the outer wall 2 and the partition wall 7 can often be formed at a desired height (the same height as the total height after completion of construction) on the land or the floating dock from the beginning of manufacture.
[0026]
In this way, if it is not necessary to perform addition after production on land or a floating dock, it is possible to reduce work in a poor environment at sea. Along with this, it is possible to reduce the construction cost, shorten the construction period, and improve the construction safety.
[0027]
Moreover, since it is not necessary to increase the width of the caisson in consideration of the draft, the construction cost can be reduced and the construction period can be shortened.
FIG. 2 shows the production on the floating dock 13, and the completed concrete caisson is towed to the set position as shown in FIG. And after pouring seawater into the filling sand accommodating part and sinking it to the main mound, sand is thrown in to a predetermined weight and completed.
[0028]
In addition, since the lightweight concrete is a low water absorption type, the concrete caisson itself has low water absorption, and durability is improved.
[0029]
【The invention's effect】
According to the present invention, all or part of the floorboard, outer wall, and partition walls are made of low water absorption and high durability lightweight concrete, and the specific gravity is lighter than the conventional one, so that it can float in many cases even when the water depth is shallow. Become. Therefore, it is not necessary to increase the width of the caisson in order to add an outer wall and a partition wall at sea, or to make the draft shallower, and it can be manufactured at a necessary height from the beginning.
[0030]
For this reason, construction is easy, and the construction period can be shortened and the cost can be reduced. Furthermore, excellent quality and strength can be obtained with less occurrence of bean plate and surface flutter, which are initial defects.
[Brief description of the drawings]
FIG. 1 is a perspective view of a lightweight concrete caisson according to an embodiment of the present invention.
FIG. 2 shows a state in which a lightweight concrete caisson according to an embodiment of the present invention is manufactured on a floating dock.
FIG. 3 is a cross-sectional view showing a state in which a lightweight concrete caisson according to an embodiment of the present invention is moved on water.
FIG. 4 is a cross-sectional view showing a state in which a lightweight concrete caisson according to an embodiment of the present invention is installed on a water bottom.
FIG. 5 is a perspective view showing a conventional ordinary concrete caisson.
FIG. 6 is a cross-sectional view showing a state where a conventional ordinary concrete caisson is manufactured on a floating dock.
FIG. 7 is a cross-sectional view showing an initial state of a manufacturing process of a conventional ordinary concrete caisson.
FIG. 8 is a cross-sectional view showing an intermediate state of a conventional ordinary concrete caisson manufacturing process.
FIG. 9 is a cross-sectional view showing a late state of a manufacturing process of a conventional ordinary concrete caisson.
FIG. 10 is a cross-sectional view showing a state in which a conventional ordinary concrete caisson is installed on the bottom of the water.
11A is a diagram showing a conventional example of caisson width when determined by waves or the like. FIG. 11B is a diagram showing a conventional example in which the width of a cross section is determined by draft when floating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Floor board 2 Outer wall 3 Filled sand accommodating part 4 Seabed 5 Reinforcement fiber reinforcement layer 6 Filled sand 7 Bulkhead 13 Floating dock 14 Seabed 16 Sea level 17 Mound

Claims (2)

床板及びこの床板から立設した外壁と、外壁間をつなぐ隔壁とにより形成された中詰砂収容部を備え、水底に着底して設置すべきケーソンであって、
外壁の周囲には強化繊維補強層が形成されているとともに、
前記床板、外壁及び隔壁の全部または一部は、吸水率5%以下の軽量骨材と天然砂とを適宜組み合わせてなるものが骨材として混入され、かつ、練り上がり時の比重が1.2〜1.8の低吸水高耐久軽量コンクリートで形成され、水中浮遊時の喫水が浅くなるようにしたことを特徴とする軽量コンクリートケーソン。
A caisson to be installed on the bottom of the water, provided with a filling sand containing portion formed by a floor plate and an outer wall erected from the floor plate, and a partition wall connecting the outer walls;
A reinforcing fiber reinforcement layer is formed around the outer wall,
The floor plate, all or a portion of the outer wall and the partition wall, made by combining a water absorption rate of 5% or less lightweight aggregate and natural sand as appropriate is incorporated as aggregate, and a specific gravity of at kneading up 1.2 A lightweight concrete caisson made of low-water-absorbing and highly-durable lightweight concrete with a thickness of ˜1.8, so that the draft when floating in water is shallow.
前記軽量骨材は、真珠岩を微粉砕した後、混合、造粒し、乾燥後焼成製造工程で内部気孔を独立気孔としたものを骨材として混入したことを特徴とする請求項1に記載の軽量コンクリートケーソン。The light-weight aggregate is obtained by mixing and granulating pearlite after finely pulverizing pearlite, and mixing it as an aggregate with internal pores as independent pores in a baking and manufacturing process after drying. Lightweight concrete caisson.
JP16751499A 1999-06-14 1999-06-14 Lightweight concrete caisson Expired - Fee Related JP3643260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16751499A JP3643260B2 (en) 1999-06-14 1999-06-14 Lightweight concrete caisson

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16751499A JP3643260B2 (en) 1999-06-14 1999-06-14 Lightweight concrete caisson

Publications (2)

Publication Number Publication Date
JP2000352030A JP2000352030A (en) 2000-12-19
JP3643260B2 true JP3643260B2 (en) 2005-04-27

Family

ID=15851106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16751499A Expired - Fee Related JP3643260B2 (en) 1999-06-14 1999-06-14 Lightweight concrete caisson

Country Status (1)

Country Link
JP (1) JP3643260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109736260A (en) * 2019-03-14 2019-05-10 王静波 U-shaped harbour and construction installation method
CN111676893A (en) * 2020-06-10 2020-09-18 中交第三航务工程勘察设计院有限公司 Temporary wharf structure and construction method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2327199B1 (en) 2008-04-24 2010-07-22 Acciona Windpower, S.A. SUPPORT SUPPORT FOR A MARINE AEROGENERATOR, MANUFACTURING PROCEDURE AND INSTALLATION METHOD.
KR101352095B1 (en) 2012-05-18 2014-01-15 재단법인 포항산업과학연구원 Suction pile substructure
KR101475443B1 (en) * 2013-06-11 2014-12-22 한국해양과학기술원 Caisson block having concavity and convexity and construction method using the same
ES2812984A1 (en) * 2019-09-06 2021-03-18 Acs Servicios Comunicaciones Y Energia S L Construction system for large structures that must be floating at some point in their construction, transportation or operation (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109736260A (en) * 2019-03-14 2019-05-10 王静波 U-shaped harbour and construction installation method
CN111676893A (en) * 2020-06-10 2020-09-18 中交第三航务工程勘察设计院有限公司 Temporary wharf structure and construction method thereof

Also Published As

Publication number Publication date
JP2000352030A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
JP3643260B2 (en) Lightweight concrete caisson
CN110886287A (en) Shallow soft soil foundation curing structure and construction method thereof
CN104314042A (en) Construction method of breakwater in pile-supported cylindrical caisson structure
DE102011100627A1 (en) Floating concrete platform for buildings, settlements, energy independent ecological cities and transport device for transporting houses, power plants, industrial plants and mass, has cavities surrounded by concrete components and layers
JPS58178706A (en) Caisson and its setting
JP2001040630A (en) Caisson marine structure
CN113026659B (en) Artificial intelligent wharf quay wall supporting structure and construction method thereof
KR19980702272A (en) Bonded low structure and installation method
CN101016735B (en) Construction method of underwater dam body fast continuous placing large artificial island
CN113047215A (en) Middle plate pile high pile wharf structure
JP3288137B2 (en) Artificial island construction method
CN111197317A (en) Construction method and structure of foundation cushion under condition of flowing plastic silt soil
CN219973156U (en) Mixing station host machine stands on deep silt pond foundation structure
EP4249683A1 (en) Block for building hydraulic structures
JPH0437882B2 (en)
CN110284462B (en) Shock-resistant economic caisson wharf and construction method thereof
JP3066788U (en) Steel bottomless caisson
JPH03197706A (en) Prevention of coastal erosion
JPS5934331A (en) Construction of sewage treatment facility
JPH0528286B2 (en)
Barber et al. THEDIODEWAVE DISSIPATION BLOCK.
JP2007016461A (en) Construction method of inclined bank
JPH0345179B2 (en)
JPH03244708A (en) Ground improvement with movable load
JPH05118015A (en) Construction of pile-type marine structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Ref document number: 3643260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees