JP3641211B2 - Anti-corrosion of ballast tank and marine pollution prevention method by ballast water - Google Patents

Anti-corrosion of ballast tank and marine pollution prevention method by ballast water Download PDF

Info

Publication number
JP3641211B2
JP3641211B2 JP2001033800A JP2001033800A JP3641211B2 JP 3641211 B2 JP3641211 B2 JP 3641211B2 JP 2001033800 A JP2001033800 A JP 2001033800A JP 2001033800 A JP2001033800 A JP 2001033800A JP 3641211 B2 JP3641211 B2 JP 3641211B2
Authority
JP
Japan
Prior art keywords
ballast
ballast tank
tank
water
ballast water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001033800A
Other languages
Japanese (ja)
Other versions
JP2002234487A (en
Inventor
正康 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001033800A priority Critical patent/JP3641211B2/en
Publication of JP2002234487A publication Critical patent/JP2002234487A/en
Application granted granted Critical
Publication of JP3641211B2 publication Critical patent/JP3641211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、船舶におけるバラストタンクの防食を行なうとともに、バラストタンク内の微小生物を死滅させてバラスト水による海洋汚染を防止する方法に関する。
【0002】
【従来の技術】
現在、ばら積み貨物船の場合を例にとると、バラスト水は荷物の陸揚地で積み込まれ、荷物の積込み地でバラスト水を排出しながら荷物を積み込んでいる。
バラスト水中には陸揚地付近の海に生息する大量の微小生物が混入されている。
【0003】
したがって、荷物の積込み地でバラスト水を排出するとその近辺の海域に、他地区に生息する微小生物を大量に放出することとなり、生態系の環境を破壊する恐れがある。このため、航海途中の洋上で一旦バラスト水を交換することを余儀なくされている。
【0004】
しかしながら、バラスト水の交換には時間がかかるのと、バラスト水を抜く手順を間違えると船体に予想外の応力が発生し、船体の損傷等危険な状態を起こす恐れがある。また、バラスト水の交換の手間を省くために、満タンのバラストタンクにバラスト水を供給して空気抜き管から強制的にオーバーフローさせてバラスト水の交換を行なう場合があるが、この場合、空気抜き管の閉塞などで圧力損失が増加し、バラストタンク内に過大な圧力がかかりタンクを破壊する危険性がある。
さらに、湾内の汚染されたバラスト水を洋上で排出することによりその海域を汚染し環境保護の観点から好ましくない。
【0005】
【発明が解決しようとする課題】
この発明は、バラストタンクを防食するとともに、バラストタンク内の微小生物を死滅させることにより、バラスト水を航海の途中で交換しなくても積込み基地でバラスト水を排出可能とし、輸送コストの低減を図り、海洋環境を保護することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者は、特開平6ー182369号公報に開示された、被処理水中に不活性ガスを注入し、被処理水中の溶存酸素濃度を低下させて、生物活性炭槽内に増殖する微小動物の活性を停止させ増殖を抑制し駆除する発明にヒントを得て、本発明者が特開2000−103395公報等で開示した窒素ガスによるバラストタンクの防食技術に応用して上記課題を解決することが可能となった。
【0007】
船舶のバラストタンク内へ窒素ガスを供給して、バラストタンク内の酸素濃度を低減させることにより該バラストタンクの防食を行なうとともに、バラストタンク内の微小生物を死滅させてバラスト水による海洋汚染を防止することを特徴とする。
【0008】
【発明の実施の形態】
図1に示すブロック図を参照してこの発明にかかるバラストタンクへの防食用および汚染防止用窒素ガス供給方法の実施の形態を原油タンカーを例にして説明する。
各バラストタンク2内への防食用窒素ガスの供給手段、各バラストタンク2内のバラスト水の給排水手段及び、各バラストタンク2に設置されている酸素濃度分析ガスラインRは公知の手段と同様である。
【0009】
原油タンカーではバラストタンクはタンカーの長さ方向に多数の仕切壁で仕切られて多数の密閉空間を構成しており、図面ではその中の1つのバラストタンクAを示す。
窒素ガスは液体窒素タンク3からの液体窒素を蒸発機4へ供給し、該蒸発機4で窒素ガスに気化させ、各バラストタンクへの供給管5の途中に供給弁6を介して供給している。
【0010】
各バラストタンクには窒素ガスの吐出弁7を有する吐出管8が設置されており、各バラストタンク内の圧力は各バラストタンク2に設けられた圧力計9で感知し、制御器10により供給弁6、吐出弁7を制御することにより設定値に制御されている。
なお、液体窒素は公知の液体窒素製造装置11により生産され液体窒素タンク3に供給されている。
【0011】
各バラストタンク2内のバラスト水はバラスト水ポンプ12により海水が弁13を介して注排水される。即ち、貨油タンク1内の原油をカーゴオイルポンプ(図示せず)を運転して荷揚げする際は、弁13を開き、海水をバラスト水ポンプ12によりバラストタンク2内に注入する。この時バラストタンク内の気相部分が圧縮されて圧力が上昇すると、制御器10からの指令により吐出弁7が開き気相部の窒素を大気中に放出し、タンク内の圧力を適性圧に保持している。
【0012】
次に、貨油タンク1へ原油を積込むときは、バルブ13を開きバラスト水ポンプ12によりバラスト水を舷外へ放出する。この時バラストタンク2内の気相部分は負圧になるため供給弁6が開き窒素ガスが供給管5からバラストタンク2内へ供給され、タンク内の圧力は適性圧に保持される。
航海中はバラストタンク内は許容耐圧を考慮して窒素ガスを一定圧力(0.05〜0.1atg程度)で充満させるように圧力計9からの信号を検知して制御器10により供給弁6と吐出弁7を制御している。
【0013】
防食および、バラスト水排出による海洋汚染防止の見地から供給弁6と吐出弁7は、バラストタンク2内の気相部分の酸素濃度が2%以下になるように制御されている。即ち、バラストタンク内の海水中に溶けている酸素が気相中に放出され、気相部の酸素濃度が2%以上に増加した場合には、吐出弁7を開くことよりバラストタンク2内のガスがタンク外へ放出され、バラストタンク内圧力が低下することにより供給弁6が開き、蒸発機4で蒸発気化して作られた窒素ガスがバラストタンク2内へ供給され酸素濃度が低減される。
【0014】
上記の酸素濃度を測定するために各バラストタンク2に酸素濃度分析ガスラインRを設置し、公知のジルコニア式酸素分析計14により行なっている。また、ジルコニア式酸素分析計は分析ガス中に多量の水分が含まれていると、センサー部の絶縁不良や、大きな測定誤差を生じるので酸素濃度分析ガスライン中にドレーンセパレータ15とシリカゲル吸湿器16を設置して分析ガスの脱水をしている。なお、17はドレーンセパレータの水抜き弁である。
【0015】
バラストタンク内の圧力と酸素濃度が所定の範囲に納まっている場合には、供給弁6は閉じられているため、液体窒素タンク3は熱侵入などにより液体窒素が蒸発してタンク3内の圧力が上昇するため、リリーフ弁18を設けて規定圧力以上になった場合には窒素ガスを大気に放出させるか、窒素ガスを管路19により各バラストタンク2内へ供給し、窒素ガスの消費量を節約している。
【0016】
バラストタンク内への窒素ガスの充填手段は、図1では蒸発機4からの窒素ガス供給管5の先端口および、管路19の先端口の両者ともバラストタンクのバラスト水中に開口しバブリングしている例を示しているが、何れか一方がバラストタンクの空所に、そして、他方がバラスト水中に開口させてバブリングさせる方法、両者ともバラストタンクの空所に開口させる方法が考えられるが、水中の溶存酸素を低減させる観点から図示の例を採用するのが最も好ましい。
【0017】
実験結果ではバラストタンク気相部の酸素濃度を2%以下に定常的に押さえれば著しい防食効果が確認されている。一方、実験結果ではバラストタンク気相部の酸素濃度を2%以下に定常的に保てれば2〜3日で海洋微小生物を死滅させることが確認されている。
図2は1000m3の海水中に窒素ガスを0.3Nm3/hrの割合で吹き込んだときと、4Nm3/hrの割合で吹き込んだときのバラストタンク気相中の酸 素濃度を実験したときの測定値である。
【0018】
バラストタンクに海洋中にある海水を張水すると、直後の溶存酸素濃度は通常10ppm程度である。この状態でバラストタンクの気相部の酸素濃度を2%に保ち続けると、溶存酸素濃度は1ppm程度に低下する。バラスト水中の溶存酸素を短時間に低減させるには大量の窒素ガスを供給すればよいことが容易に類推されるが装置が高価になる。
一方、窒素ガスの供給量を減少させれば装置を低廉化できるが酸素濃度を低下させるのに時間がかかる。
【0019】
バラスト水1000m3当たり吹き込む窒素ガスの量が0.3Nm3/hrでは、30日程度の航海においては、航海の終わりの方数日間はバラストタンク気相部の酸素濃度を2%以下に保つことが可能である。
したがって、航海日数が長い場合は酸素濃度を短時間に低減させる必要がないので低廉な装置で十分実施可能である。
【0020】
【発明の効果】
この発明によれば、バラストタンクの防食と同時に窒素ガスでバラストタンク内の微小生物を死滅させ、バラスト水の排出による海洋汚染を防止できる。
したがって、荷物の陸揚地で給水したバラスト水を積込み地で排出できるので、従来のようにバラスト水を航海の途中で交換する必要がなく、そのための時間と労力が節約でき、交換時のトラブルの恐れも皆無となり、輸送コストを低減できる。
【図面の簡単な説明】
【図1】この発明にかかるバラストタンクへの窒素ガス供給方法の実施の形態の説明図。
【図2】窒素吹き込み量によるバラストタンク内酸素濃度の変化を表す実験計測値
【符号の説明】
1 貨油タンク 2 バラストタンク
3 液体窒素タンク 4 蒸発機
5 供給管 6 供給弁
7 吐出弁 8 吐出管
9 圧力計 10 制御器
11 液体窒素製造装置 12 バラスト水ポンプ
13 弁
14 ジルコニア式酸素分析計
15 ドレーンセパレータ
16 シリカゲル吸湿器
17 コールドトラップ
18 リリーフ弁 19 管路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing marine pollution caused by ballast water by preventing corrosion of a ballast tank in a ship and killing micro-organisms in the ballast tank.
[0002]
[Prior art]
At present, taking the case of a bulk cargo ship as an example, ballast water is loaded at the landing site of the luggage, and the cargo is loaded while discharging the ballast water at the loading area of the luggage.
Ballast water contains a large amount of micro-organisms that inhabit the sea near the landing site.
[0003]
Therefore, if ballast water is discharged at the loading area, a large amount of micro-organisms inhabiting other areas will be released to the surrounding sea area, which may destroy the environment of the ecosystem. For this reason, it is forced to change ballast water once on the sea while sailing.
[0004]
However, replacement of ballast water takes time, and if the procedure for draining ballast water is wrong, unexpected stress is generated in the hull, which may cause dangerous conditions such as damage to the hull. In addition, in order to save the trouble of replacing the ballast water, the ballast water may be replaced by supplying the ballast water to a full ballast tank and forcibly overflowing the air vent pipe. There is a risk that the pressure loss will increase due to blockage of the tank, and excessive pressure will be applied to the ballast tank, destroying the tank.
Furthermore, the polluted ballast water in the bay is discharged offshore, which pollutes the sea area and is not preferable from the viewpoint of environmental protection.
[0005]
[Problems to be solved by the invention]
This invention protects the ballast tank and kills micro-organisms in the ballast tank, thereby enabling the ballast water to be discharged at the loading base without changing the ballast water during the voyage, thereby reducing the transportation cost. The purpose is to protect the marine environment.
[0006]
[Means for Solving the Problems]
The present inventor disclosed in Japanese Patent Application Laid-Open No. Hei 6-182369 by injecting an inert gas into the water to be treated, reducing the dissolved oxygen concentration in the water to be treated, and The inventor can solve the above-mentioned problems by applying the invention to the anti-corrosion technology for ballast tanks using nitrogen gas disclosed in Japanese Patent Application Laid-Open No. 2000-103395, etc. It has become possible.
[0007]
Nitrogen gas is supplied into the ship's ballast tank to reduce the oxygen concentration in the ballast tank, thereby preventing corrosion of the ballast tank and killing micro-organisms in the ballast tank to prevent marine pollution from ballast water. It is characterized by doing.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
With reference to a block diagram shown in FIG. 1, an embodiment of a nitrogen gas supply method for anticorrosion and contamination prevention to a ballast tank according to the present invention will be described taking a crude oil tanker as an example.
The means for supplying anticorrosive nitrogen gas into each ballast tank 2, the means for supplying and draining ballast water in each ballast tank 2, and the oxygen concentration analysis gas line R installed in each ballast tank 2 are the same as known means. is there.
[0009]
In a crude oil tanker, the ballast tank is partitioned by a number of partition walls in the length direction of the tanker to form a number of sealed spaces. In the drawing, one ballast tank A is shown.
Nitrogen gas supplies liquid nitrogen from the liquid nitrogen tank 3 to the evaporator 4, vaporizes the nitrogen gas with the evaporator 4, and supplies it through the supply valve 6 in the middle of the supply pipe 5 to each ballast tank. Yes.
[0010]
Each ballast tank is provided with a discharge pipe 8 having a discharge valve 7 for nitrogen gas. The pressure in each ballast tank is detected by a pressure gauge 9 provided in each ballast tank 2 and supplied by a controller 10. 6. It is controlled to a set value by controlling the discharge valve 7.
Liquid nitrogen is produced by a known liquid nitrogen production apparatus 11 and supplied to the liquid nitrogen tank 3.
[0011]
The ballast water in each ballast tank 2 is poured and drained by a ballast water pump 12 through a valve 13. That is, when the crude oil in the coin oil tank 1 is unloaded by operating a cargo oil pump (not shown), the valve 13 is opened and seawater is injected into the ballast tank 2 by the ballast water pump 12. At this time, when the gas phase portion in the ballast tank is compressed and the pressure rises, the discharge valve 7 is opened by a command from the controller 10 to release the nitrogen in the gas phase portion into the atmosphere, and the pressure in the tank is adjusted to an appropriate pressure. keeping.
[0012]
Next, when the crude oil is loaded into the coin oil tank 1, the valve 13 is opened and the ballast water pump 12 discharges the ballast water to the outside. At this time, since the gas phase portion in the ballast tank 2 becomes negative pressure, the supply valve 6 is opened, and nitrogen gas is supplied from the supply pipe 5 into the ballast tank 2, and the pressure in the tank is maintained at an appropriate pressure.
During the voyage, the signal from the pressure gauge 9 is detected so that the nitrogen gas is filled at a constant pressure (about 0.05 to 0.1 atg) in consideration of the allowable pressure resistance in the ballast tank, and the supply valve 6 is detected by the controller 10. And the discharge valve 7 are controlled.
[0013]
The supply valve 6 and the discharge valve 7 are controlled so that the oxygen concentration in the gas phase portion in the ballast tank 2 is 2% or less from the viewpoint of anticorrosion and prevention of marine pollution caused by ballast water discharge. That is, when oxygen dissolved in seawater in the ballast tank is released into the gas phase and the oxygen concentration in the gas phase increases to 2% or more, the discharge valve 7 is opened to open the ballast tank 2. When the gas is released to the outside of the tank and the pressure in the ballast tank is lowered, the supply valve 6 is opened, and nitrogen gas produced by evaporation and evaporation in the evaporator 4 is supplied into the ballast tank 2 to reduce the oxygen concentration. .
[0014]
In order to measure the oxygen concentration, an oxygen concentration analysis gas line R is installed in each ballast tank 2 and is performed by a known zirconia oxygen analyzer 14. In addition, if the analysis gas contains a large amount of water, the zirconia oxygen analyzer causes a poor insulation of the sensor part and a large measurement error. Therefore, the drain separator 15 and the silica gel moisture absorber 16 are included in the oxygen concentration analysis gas line. To dehydrate the analysis gas. Reference numeral 17 denotes a drain separator drain valve.
[0015]
When the pressure and oxygen concentration in the ballast tank are within a predetermined range, the supply valve 6 is closed, so that the liquid nitrogen tank 3 is evaporated due to heat intrusion or the like, so that the liquid nitrogen evaporates. Therefore, when the relief valve 18 is provided and the pressure exceeds the specified pressure, the nitrogen gas is discharged into the atmosphere, or the nitrogen gas is supplied into each ballast tank 2 through the pipe line 19 to consume the nitrogen gas. Saving.
[0016]
In FIG. 1, the means for filling the ballast tank with nitrogen gas is such that both the front end of the nitrogen gas supply pipe 5 from the evaporator 4 and the front end of the pipe 19 are opened and bubbled into the ballast water of the ballast tank. Although one of them can be opened in the ballast tank cavity and the other is opened in the ballast water for bubbling, both can be opened in the ballast tank cavity. It is most preferable to adopt the illustrated example from the viewpoint of reducing dissolved oxygen.
[0017]
In the experimental results, a remarkable anticorrosive effect has been confirmed if the oxygen concentration in the gas phase part of the ballast tank is constantly kept below 2%. On the other hand, experimental results have confirmed that marine micro-organisms can be killed in 2 to 3 days if the oxygen concentration in the gas phase part of the ballast tank is kept constant at 2% or less.
Figure 2 is when the experiment and when nitrogen gas was blown thereinto at a rate of 0.3 Nm 3 / hr in sea water of 1000 m 3, the oxygen concentration in the ballast tank vapor phase when blown at a rate of 4 Nm 3 / hr Is the measured value.
[0018]
When seawater in the ocean is filled in the ballast tank, the dissolved oxygen concentration immediately after is usually about 10 ppm. If the oxygen concentration in the gas phase portion of the ballast tank is kept at 2% in this state, the dissolved oxygen concentration is reduced to about 1 ppm. It can be easily estimated that a large amount of nitrogen gas should be supplied to reduce the dissolved oxygen in the ballast water in a short time, but the apparatus becomes expensive.
On the other hand, if the supply amount of nitrogen gas is reduced, the cost of the apparatus can be reduced, but it takes time to reduce the oxygen concentration.
[0019]
When the amount of nitrogen gas blown per 1000 m 3 of ballast water is 0.3 Nm 3 / hr, on a voyage of about 30 days, keep the oxygen concentration in the gas phase of the ballast tank at 2% or less for the last few days of the voyage. Is possible.
Therefore, when the number of voyage days is long, it is not necessary to reduce the oxygen concentration in a short time, and therefore it can be sufficiently implemented with an inexpensive device.
[0020]
【The invention's effect】
According to the present invention, at the same time as the anti-corrosion of the ballast tank, the micro-organisms in the ballast tank are killed with nitrogen gas, and marine pollution due to the discharge of ballast water can be prevented.
Therefore, since the ballast water supplied at the landing site can be discharged at the loading place, it is not necessary to replace the ballast water during the voyage as in the past. There is no fear of transport and the transportation cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a method for supplying nitrogen gas to a ballast tank according to the present invention.
[Fig. 2] Experimental measurement values representing changes in oxygen concentration in the ballast tank due to nitrogen blowing amount [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coal oil tank 2 Ballast tank 3 Liquid nitrogen tank 4 Evaporator 5 Supply pipe 6 Supply valve 7 Discharge valve 8 Discharge pipe 9 Pressure gauge 10 Controller 11 Liquid nitrogen production apparatus 12 Ballast water pump 13 Valve 14 Zirconia type oxygen analyzer 15 Drain separator 16 Silica gel moisture absorber 17 Cold trap 18 Relief valve 19 Pipe line

Claims (2)

船舶のバラストタンク内気相部の酸素濃度が2%以下になるように前記バラストタンク内へ窒素ガスを供給して、該バラストタンク内の酸素濃度を低減させることにより該バラストタンクの防食を行うとともに、バラストタンク内の微小生物を死滅させてバラスト水による海洋汚染を防止する方法。 Nitrogen gas is supplied into the ballast tank so that the oxygen concentration in the gas phase in the ballast tank of the ship is 2% or less, and the oxygen concentration in the ballast tank is reduced to prevent corrosion of the ballast tank. At the same time, a method of preventing marine pollution from ballast water by killing micro-organisms in the ballast tank. 窒素ガスの供給量はバラスト水1000m当たり0.3〜4Nm/hrであることを特徴とする請求項1記載のバラストタンクの防食を行うとともに、バラストタンク内の微小生物を死滅させてバラスト水による海洋汚染を防止する方法。The supply amount of nitrogen gas is 0.3 to 4 Nm 3 / hr per 1000 m 3 of ballast water, and the anti-corrosion of the ballast tank according to claim 1 is performed, and the micro-organisms in the ballast tank are killed to ballast the ballast tank. A method of preventing marine pollution from water.
JP2001033800A 2001-02-09 2001-02-09 Anti-corrosion of ballast tank and marine pollution prevention method by ballast water Expired - Fee Related JP3641211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033800A JP3641211B2 (en) 2001-02-09 2001-02-09 Anti-corrosion of ballast tank and marine pollution prevention method by ballast water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033800A JP3641211B2 (en) 2001-02-09 2001-02-09 Anti-corrosion of ballast tank and marine pollution prevention method by ballast water

Publications (2)

Publication Number Publication Date
JP2002234487A JP2002234487A (en) 2002-08-20
JP3641211B2 true JP3641211B2 (en) 2005-04-20

Family

ID=18897493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033800A Expired - Fee Related JP3641211B2 (en) 2001-02-09 2001-02-09 Anti-corrosion of ballast tank and marine pollution prevention method by ballast water

Country Status (1)

Country Link
JP (1) JP3641211B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618536B2 (en) * 2003-09-03 2009-11-17 Ekomarine Ab Method of treating a marine object
JP5135600B2 (en) 2004-07-30 2013-02-06 株式会社片山化学工業研究所 Ship ballast water treatment method
US9255017B2 (en) 2006-10-20 2016-02-09 Oceansaver As Liquid treatment methods and apparatus
KR101358611B1 (en) * 2006-12-09 2014-02-05 내셔널 유니버서티 코포레이션 요코하마 내셔널 유니버서티 Ship buoyancy control system
JP2008221122A (en) * 2007-03-12 2008-09-25 Sumitomo Heavy Ind Ltd Water treatment device
US7442304B1 (en) * 2007-04-12 2008-10-28 Sea Knight, Llc In-situ ballast water treatment method
CN103080564B (en) * 2010-06-29 2017-09-08 科尔德哈勃船舶有限公司 Gas-lift pump apparatus and method with ultrasonic generator
CN117657380B (en) * 2024-01-31 2024-04-16 江苏南极机械有限责任公司 Nitrogen-filled anti-corrosion system for ship ballast water tank and control method thereof
CN117657381B (en) * 2024-01-31 2024-05-31 江苏南极机械有限责任公司 Nitrogen-filled anti-corrosion system for ship water tank

Also Published As

Publication number Publication date
JP2002234487A (en) 2002-08-20

Similar Documents

Publication Publication Date Title
JP3641211B2 (en) Anti-corrosion of ballast tank and marine pollution prevention method by ballast water
BR112017025576B1 (en) APPLIANCE FOR PROTECTING AN UNDERGROUND FUEL STORAGE TANK SYSTEM AGAINST DETERIORATION
NO321484B1 (en) Vessel for floating production, storage and unloading, with internal turntable anchorage with an explosion prevention system
US5092259A (en) Inert gas control in a system to reduce spillage of oil due to rupture of ship's tank
JP3312005B2 (en) How to supply nitrogen gas for corrosion prevention in ballast tanks
JP4763915B2 (en) Liquefied carbon dioxide storage / discharge device and liquefied carbon dioxide underwater injection system
US3850206A (en) Foamed vapor barrier
EP1791772B1 (en) Method related to unloading a container containing liquefied gas fluid
US20180106430A1 (en) Low volume nitrogen systems
JP3450851B1 (en) Ship sway reducing water tank and control method thereof
KR101240305B1 (en) Water treatment method and apparatus of ballast tank
JPH11115887A (en) Inert gas supplying method to oil tank or ballast tank of crude oil tanker
JPH08175482A (en) Corrosion prevention method for ballast tank
CA2572974A1 (en) A method and a device for supplying fill gas to a cargo tank
JP3110421B2 (en) Vent equipment for liquid viscous cargo
KR102510271B1 (en) Circulation inert sealing system based on liquid sealing fluid container and QHSE storage transportation method
KR100194275B1 (en) Corrosion prevention method of seawater tank installed in offshore support structure and offshore support structure
JP2000177687A (en) Corrosion preventive inert gas supplying exhausting method within ballast tank
JPH08216979A (en) Anticorrosion method for ballast tank
JP7466747B1 (en) Ammonia gas treatment device and treatment method
US11390457B2 (en) Low volume nitrogen systems
JPH07267182A (en) Corrosion preventing method for ballast tank
JP3503171B2 (en) Cylinder storage device
RU2124990C1 (en) Fuel container
EP2988990B1 (en) Offshore supply vessel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees