JP3640028B2 - Vertical waste heat recovery boiler - Google Patents

Vertical waste heat recovery boiler Download PDF

Info

Publication number
JP3640028B2
JP3640028B2 JP09235795A JP9235795A JP3640028B2 JP 3640028 B2 JP3640028 B2 JP 3640028B2 JP 09235795 A JP09235795 A JP 09235795A JP 9235795 A JP9235795 A JP 9235795A JP 3640028 B2 JP3640028 B2 JP 3640028B2
Authority
JP
Japan
Prior art keywords
catalyst
suspension
tube group
denitration
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09235795A
Other languages
Japanese (ja)
Other versions
JPH08285206A (en
Inventor
生男 高鷹
征弘 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP09235795A priority Critical patent/JP3640028B2/en
Publication of JPH08285206A publication Critical patent/JPH08285206A/en
Application granted granted Critical
Publication of JP3640028B2 publication Critical patent/JP3640028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/20Supporting arrangements, e.g. for securing water-tube sets

Description

【0001】
【産業上の利用分野】
本発明は、管群と脱硝装置を吊り下げた大型化に好適な構造の縦型廃熱回収ボイラに関する。
【0002】
【従来の技術】
従来の縦型廃熱回収ボイラは、脱硝装置を設置しない場合に内部装置支持大梁で管群を吊り下げる構造であり、脱硝装置を設置する場合に管群毎に管群支持梁で管群を吊り下げ、脱硝触媒を搭載した触媒支持架構をケーシングに固定し支持する構造である。
【0003】
図5は従来技術からなる縦型廃熱回収ボイラを示す縦断面図である。
本図に示すように、1は排ガス入口ダクト、2はケーシング、3は排ガス出口ダクト、5は低圧節炭器、10は低圧蒸発器、14は高圧節炭器、19a,19bは高圧蒸発器、21は高圧過熱器、23は管群支持梁、24は吊り金具、25は管群サポート、26は脱硝触媒、27は触媒支持架構である。
【0004】
低圧節炭器5から高圧過熱器21の管群は各管群の上部に設けられた管群支持梁23より吊り金具24、管群サポート25にて吊り下げられている。脱硝触媒26は触媒搬入、交換等を考慮しケーシング2に固定した触媒支持架構27に搭載されている。
【0005】
脱硝触媒26とケーシング2間における排ガスのショートパスを防ぐために脱硝触媒26にはシールバー、脱硝触媒26とケーシング2間にはシールプレート及び図5に示すようなスライド式シールプレート42が取りつけられている。
【0006】
脱硝触媒26の下部にある高圧蒸発器19a,19b及び高圧過熱器21は触媒支持架構27とは別の管群の振動防止に最適な間隔に設けられた管群支持梁23及び吊り金具24にて吊り下げられている。
【0007】
尚、上記スライド式シールプレート42は350℃の排ガスにより熱膨張する触媒支持架構27と内部断熱材で被覆されて熱膨張の少ないケーシング2間の排ガス流れ直角方向の伸び差吸収の為に設けられ一方向伸縮のエキスパンションが用いられる。
【0008】
図5において、温度約600℃の排ガスはボイラ下部の排ガス入口ダクト1より流入し高圧過熱器21、高圧蒸発器19b、脱硝触媒26、高圧蒸発器19a、及び高圧節炭器14、低圧蒸発器10、低圧節炭器5にて順次廃熱を回収され、温度は約150℃となり排ガス出口ダクト3より図示せざる煙突から大気に放出される。
【0009】
【発明が解決しようとする課題】
上記の従来技術は排ガス入口温度が約600℃で、排ガス量も約1000t/h、管群構成も複圧非再熱という低温中容量型であった為、図6におけるケーシング長手方向寸法も約5mと比較的短く、触媒支持架構27のスパンも短く支持が容易である。
【0010】
近年、縦型廃熱回収ボイラの上流に設置されるガスタービンは出力及び効率向上のため流量が増加し同時に排ガス温度も高くなり、排ガス入口温度は650℃、流量2200t/h、管群構成も三重圧再熱と大容量かつ複雑となってくるとケーシング長手方向寸法は低温中容量型の3倍の約15mとなり、脱硝触媒26底部の触媒支持架構27のスパンが長くなり、支持可能なスパンとすれば1塔で対応できず複数塔に分割する必要があり、敷地面積の増大とコストアップをもたらす。また、触媒支持架構27の長大なスパンに耐える材質は高温強度の点からステンレス系を使うことになり、熱膨張率の大きいステンレス系材料で長大なスパンを有することはケーシング2と触媒支持架構27の熱膨張差対策を煩雑とする。そして、毎日、起動・停止を繰り返すD.S.S運転がある場合に触媒支持架構27の強度を高めた部材と長大なスパンは熱疲労が問題となる。従って、排ガス出口の最低温部に内部装置支持大梁を設け、内部装置全体を吊り金具24、管群サポート25で吊り下げる構造が必須となる。この場合、各吊り金具24、管群サポート25は全て下方に伸びるため、脱硝装置26や高圧過熱器21等の下方への伸びは数十mmに達するが、内部断熱されているケーシング2の伸びはほとんどなく、伸び差対策が必要となる。
【0011】
そして、脱硝装置26を介して下部の高圧過熱器21等の荷重を上部の高圧蒸発器19に伝える必要があるが、従来の脱硝装置の強度は弱く、さらに脱硝触媒26の交換という問題がある。
更に、管群サポート25の間隔は振動防止上必要とされる間隔があり、触媒ブロックも標準寸法があり、脱硝触媒26の交換を考慮すると吊り金具24の配置間隔には配慮が必要である。
【0012】
本発明の課題は、脱硝装置を内蔵した縦型廃熱回収ボイラの大型化に1塔で対応可能とするとともに、脱硝触媒の搬入・搬出を容易にすることにある。
【0013】
【課題を解決するための手段】
上記課題を解決するために本発明の縦型廃熱回収ボイラは、ケーシングの頂部に設けた内部装置支持大梁と、この内部装置支持大梁から複数の第1の吊り金具で吊り下げられた管群と、第1の吊り金具によって管群よりも下方に吊り下げられた触媒吊り架構と、触媒吊り架構から複数の第2の吊り金具により吊り下げられた触媒支持架構と、この触媒支持架構に搭載された脱硝触媒とを備え、第1の吊り金具の配置間隔と第2の吊り金具の配置間隔とが異ならせ、第2の吊り金具を脱硝触媒のブロック寸法に対応した間隔で配置したことを特徴とする。
【0017】
【作用】
上記構成の脱硝触媒架構を脱硝触媒架構支持手段で上から吊り下げることにより、吊り橋の原理で等間隔で脱硝触媒架構を支持するから長いスパンの一体構造が無理なくして得られケーシングを分割する必要が無くなり、縦型廃熱回収ボイラの大型化に際し1塔で対応可能となる。更に、脱硝触媒架構支持手段の配置間隔を脱硝触媒のブロック標準寸法に対応した値とすることにより、脱硝触媒の搬入・搬出が容易になる
【0018】
【実施例】
以下、本発明の一実施例を図により詳細に説明する。図1は本発明の実施例の全体構成を示す縦断面図である。管群の構成は基本的に図5と同じであり、1は排ガス入口ダクト、2はケーシング、3は排ガス出口ダクト、21は高圧過熱器、24は第1の吊り金具である吊り金具、25は管群サポート、26は脱硝触媒、27は触媒支持架構、29は本体支持架構、30はアンモニア注入ノズル、31は内部装置支持大梁である。図2は本発明の実施例の詳細な構成を示す説明図である。
【0019】
図2は本発明の実施例の詳細な構成を示す説明図である。
図2に示すように28はシールバー、36は高さ調整金具、43は触媒吊り架構、44はモノレールである。従来は管(例えば低圧節炭器5)毎に管群支持梁23を設け吊り金具24により吊り下げていたが、本実施例では内部装置支持大梁31から吊り金具24、高さ調整金具36、管群サポート梁37、管群サポート25、管群サポート梁37の組合せで管群支持手段を構成し各管を吊り下げている。
【0020】
触媒支持架構27より下側の高圧過熱器21等の荷重と脱硝触媒26及び触媒支持架構27の荷重は上記隙間を通した第2の吊り金具である吊り金具38によって高さ調整金具36を介して触媒吊り架構43に伝えられる。触媒吊り架構43には触媒搬入・搬出用のモノレール44が取り付けられており、吊り架構の1部を構成している。触媒吊り架構43に伝えられた荷重は架構自身の荷重と共に、上部管群の周囲条件に適した管群サポート間隔に合せた吊り間隔の吊り金具24によって更に上部の管群サポート25に伝えられる。このようにして順次伝えられた荷重は最後に、最低温部に設けられた内部装置支持大梁31を介して本体支持架構29に伝えられ支持される。
【0021】
脱硝触媒26は触媒支持架構27に搭載され適当な個数毎に吊り金具38を通し、脱硝触媒26の出し入れを可能とする隙間を設けている。それらの隙間を含め各触媒間は触媒支持架構27、シールバー28あるいは直接溶接でシールされている。
高圧過熱器21及び高圧蒸発器19bの脱硝装置下部に設置された管群の荷重はそれらの周囲条件に最適な間隔にて配置された管群サポート25及び吊り金具24によって触媒支持架構27に伝えられる。
【0022】
図3は本発明の実施例のシール機構の構成を示す説明図である。
本図に示すように2はケーシング、27は触媒支持架構、32は断熱材、33はラギング、34はシールプレート、35は2方向性エキスパンションである。触媒支持架構27は縦型廃熱回収ボイラの運転中に下方へ数十mm移動する結果、ケーシング2に取り付けられたシールプレート34との相対変位は垂直方向及び水平方向の2方向に生じ、従来のシールプレートが水平方向にスライドするスライド式シールプレートあるいは1方向性エキスパンションであるために対処できないが、本実施例のシール機構である2方向性エキスパンション35を用いることにより、熱膨張による伸び差を吸収し排ガスのショートパスを防止できる。2方向性エキスパンション35は異なる方向の伸び差をそれぞれ吸収する2ヶの金属製ベローズでも良いが、1ヶのエキスパンションで2方向吸収可能な非金属性エキスパンションが好ましい。
【0023】
次に本発明の実施例における脱硝触媒の搬入と搬出を具体的に説明する。
図4は本発明の実施例の脱硝触媒の搬入・搬出を説明する説明図である。
本図に示すように45は触媒搬入口、46は触媒搬入装置である。
脱硝触媒26の搬入・搬出に際しケーシング2の一部を取り除き触媒搬入口45が開口し、触媒搬入・搬出用のモノレール44がケーシング2外まで延長される。触媒支持架構27は触媒吊り架構43より、脱硝触媒26の搬入・搬出を妨げない間隔にて設置された吊り金具38にて吊り下げられている。脱硝触媒26はケーシング2外で触媒搬入装置46により吊り上げられ、吊り金具38の間をモノレール44により水平移動し触媒支持架構27の所定位置に設置された後、図2に示すシールバー28が取り付けられる。全ての脱硝触媒26を設置した後、延長された部分のモノレール44が取り外され、取り除いたケーシング2の一部を復旧し搬入は完了する。脱硝触媒26の交換の際の搬出も搬入と逆の手順にて行なうことができる。
【0024】
以上述べたように本実施例によれば、脱硝装置を内蔵した縦型廃熱回収ボイラにおいて、排ガス流量が2000t/h以上と大型化しても2塔に分割する必要なく1塔で対応できる為、狭い敷他に用いられる縦型廃熱回収ボイラの特徴をより発揮させることができ、今後、増加する都市型火力のリプレース等にも適し、かつ、建設費の大幅な低減が図れる。
【0025】
【発明の効果】
本発明によれば、脱硝触媒を搭載する脱硝触媒架構を吊り下げて多点支持することにより、長いスパンの一体構造が得られケーシングを分割する必要が無くなり、縦型廃熱回収ボイラの大型化に際し1塔で対応可能となる。
また、2方向に伸縮可能な弾性材によりケーシングと脱硝触媒架構間をシールすることにより、運転中の脱硝触媒架構の垂直及び水平方向の移動を確実に吸収し、排ガスのショートパスを防止しできる。
【図面の簡単な説明】
【図1】本発明の実施例の全体構成を示す縦断面図である。
【図2】本発明の実施例の詳細な構成を示す説明図である。
【図3】本発明の実施例のシール機構の構成を示す説明図である。
【図4】本発明の実施例の脱硝触媒の搬入・搬出を説明する説明図である。
【図5】従来技術からなる縦型廃熱回収ボイラを示す縦断面図である。
【図6】図5のケーシング頂部の横断面図である。
【符号の説明】
1 排ガス入口ダクト
2 ケーシング
3 排ガス出口ダクト
5 低圧節炭器
10 低圧蒸発器
14 高圧節炭器
19a 高圧蒸発器
19b 高圧蒸発器
21 高圧過熱器
23 管群支持梁
24 吊り金具
25 管群サポート
26 脱硝触媒
27 触媒支持架構
28 シールバー
29 本体支持架構
30 アンモニア注入ノズル
31 内部装置支持大梁
32 断熱材
33 ラギング
34 シールプレート
35 2方向性エキスパンション
36 高さ調整金具
37 管群サポート梁
38 吊り金具
43 触媒吊り架構
44 モノレール
45 触媒搬入口
46 触媒搬入装置
[0001]
[Industrial application fields]
The present invention relates to a vertical waste heat recovery boiler having a structure suitable for enlargement in which a tube group and a denitration device are suspended.
[0002]
[Prior art]
A conventional vertical waste heat recovery boiler has a structure in which a pipe group is suspended by a large beam that supports an internal device when a denitration device is not installed, and when a denitration device is installed, the tube group is supported by a tube group support beam for each tube group. This is a structure in which a catalyst support frame mounted with a hanging and denitrating catalyst is fixed and supported on a casing.
[0003]
FIG. 5 is a longitudinal sectional view showing a vertical waste heat recovery boiler according to the prior art.
As shown in this figure, 1 is an exhaust gas inlet duct, 2 is a casing, 3 is an exhaust gas outlet duct, 5 is a low pressure economizer, 10 is a low pressure evaporator, 14 is a high pressure economizer, and 19a and 19b are high pressure evaporators. , 21 is a high pressure superheater, 23 is a tube group support beam, 24 is a hanging bracket, 25 is a tube group support, 26 is a denitration catalyst, and 27 is a catalyst support frame.
[0004]
The tube groups from the low-pressure economizer 5 to the high-pressure superheater 21 are suspended from the tube group support beam 23 provided at the upper portion of each tube group by the suspension fitting 24 and the tube group support 25. The denitration catalyst 26 is mounted on a catalyst support frame 27 fixed to the casing 2 in consideration of catalyst loading and replacement.
[0005]
In order to prevent a short path of exhaust gas between the denitration catalyst 26 and the casing 2, a seal bar is attached to the denitration catalyst 26, and a seal plate and a slide type seal plate 42 as shown in FIG. 5 are attached between the denitration catalyst 26 and the casing 2. Yes.
[0006]
The high-pressure evaporators 19a and 19b and the high-pressure superheater 21 below the denitration catalyst 26 are connected to a tube group support beam 23 and a suspension fitting 24 provided at an optimal interval for preventing vibration of a tube group different from the catalyst support frame 27. Is suspended.
[0007]
The sliding seal plate 42 is provided to absorb the difference in the expansion direction in the direction perpendicular to the exhaust gas flow between the casing 2 and the catalyst support frame 27 that is thermally expanded by the exhaust gas at 350 ° C. and the internal heat insulating material. A unidirectional expansion is used.
[0008]
In FIG. 5, the exhaust gas having a temperature of about 600 ° C. flows from the exhaust gas inlet duct 1 at the lower part of the boiler and enters the high pressure superheater 21, the high pressure evaporator 19b, the denitration catalyst 26, the high pressure evaporator 19a, the high pressure economizer 14, and the low pressure evaporator. 10. The waste heat is sequentially recovered by the low-pressure economizer 5, the temperature becomes about 150 ° C., and is discharged from the exhaust duct 3 through a chimney (not shown) to the atmosphere.
[0009]
[Problems to be solved by the invention]
Since the above prior art was a low temperature medium capacity type in which the exhaust gas inlet temperature was about 600 ° C., the exhaust gas amount was about 1000 t / h, and the tube group configuration was double pressure non-reheat, the longitudinal dimension of the casing in FIG. The catalyst support frame 27 has a relatively short span and is easy to support.
[0010]
In recent years, gas turbines installed upstream of vertical waste heat recovery boilers have increased flow rates and increased exhaust gas temperatures to improve output and efficiency, exhaust gas inlet temperatures are 650 ° C., flow rates are 2200 t / h, and tube group configurations are also included. When triple pressure reheating and large capacity and complexity are achieved, the longitudinal dimension of the casing is about 15 m, which is three times that of the low temperature medium capacity type, and the span of the catalyst support frame 27 at the bottom of the denitration catalyst 26 becomes longer, and the span that can be supported If this is the case, it cannot be handled by one tower and must be divided into a plurality of towers, resulting in an increase in site area and cost. In addition, the material that can withstand the long span of the catalyst support frame 27 is made of stainless steel in terms of high-temperature strength, and the stainless steel material having a large coefficient of thermal expansion has a long span and the casing 2 and the catalyst support frame 27 have a long span. The countermeasure for the thermal expansion difference is complicated. And every day, it starts and stops repeatedly. S. When there is an S operation, thermal fatigue is a problem for the members and the long spans that increase the strength of the catalyst support frame 27. Therefore, a structure in which an internal device support beam is provided at the lowest temperature portion of the exhaust gas outlet and the entire internal device is suspended by the hanging metal fitting 24 and the tube group support 25 is essential. In this case, since each suspension fitting 24 and the tube group support 25 all extend downward, the downward extension of the denitration device 26, the high-pressure superheater 21, etc. reaches several tens of millimeters, but the extension of the casing 2 that is internally insulated. There is almost no need for countermeasures against differential growth.
[0011]
The load of the lower high-pressure superheater 21 and the like needs to be transmitted to the upper high-pressure evaporator 19 through the denitration device 26. However, the strength of the conventional denitration device is weak and there is a problem of replacement of the denitration catalyst 26. .
Further, the interval between the tube group supports 25 is necessary for preventing vibration, the catalyst block has a standard size, and considering the replacement of the denitration catalyst 26, it is necessary to consider the arrangement interval of the hanging metal fittings 24.
[0012]
An object of the present invention is to make it possible to cope with an increase in the size of a vertical waste heat recovery boiler with a built-in denitration device in one tower and to easily carry in and carry out a denitration catalyst.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, a vertical waste heat recovery boiler according to the present invention includes an internal device supporting large beam provided at the top of a casing, and a tube group suspended from the internal device supporting large beam by a plurality of first suspension fittings. And a catalyst suspension frame suspended below the tube group by the first suspension bracket, a catalyst support frame suspended from the catalyst suspension frame by a plurality of second suspension brackets, and mounted on the catalyst support frame A denitration catalyst that is arranged, the arrangement interval of the first suspension fittings is different from the arrangement interval of the second suspension fittings, and the second suspension fittings are arranged at intervals corresponding to the block size of the denitration catalyst. Features.
[0017]
[Action]
By suspending the denitration catalyst frame of the above configuration from above with the denitration catalyst frame support means, the denitration catalyst frame is supported at equal intervals by the principle of the suspension bridge, so that a long span integrated structure can be obtained without difficulty and the casing needs to be divided Therefore, one tower can be used to increase the size of the vertical waste heat recovery boiler. Furthermore, by setting the arrangement interval of the denitration catalyst frame support means to a value corresponding to the block standard dimension of the denitration catalyst, it becomes easy to carry in and carry out the denitration catalyst .
[0018]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing the overall configuration of an embodiment of the present invention. The configuration of the tube group is basically the same as in FIG. 5, 1 is an exhaust gas inlet duct, 2 is a casing, 3 is an exhaust gas outlet duct, 21 is a high-pressure superheater, 24 is a first hanging bracket, 25 Is a tube group support, 26 is a denitration catalyst, 27 is a catalyst support frame, 29 is a main body support frame, 30 is an ammonia injection nozzle, and 31 is an internal device support beam. FIG. 2 is an explanatory diagram showing a detailed configuration of the embodiment of the present invention.
[0019]
FIG. 2 is an explanatory diagram showing a detailed configuration of the embodiment of the present invention.
As shown in FIG. 2, 28 is a seal bar, 36 is a height adjusting bracket, 43 is a catalyst suspension frame, and 44 is a monorail. Conventionally, a tube group support beam 23 is provided for each pipe (for example, the low-pressure economizer 5) and is suspended by a suspension bracket 24. In this embodiment, the suspension bracket 24, the height adjustment bracket 36, The tube group support beam 37, the tube group support 25, and the tube group support beam 37 constitute a tube group support means to suspend each tube.
[0020]
The load of the high-pressure superheater 21 and the like below the catalyst support frame 27 and the load of the denitration catalyst 26 and the catalyst support frame 27 are passed through the height adjustment bracket 36 by the suspension bracket 38 that is the second suspension bracket through the gap. To the catalyst suspension frame 43. A catalyst loading / unloading monorail 44 is attached to the catalyst suspension frame 43 and constitutes a part of the suspension frame. The load transmitted to the catalyst suspension frame 43 is transmitted to the upper tube group support 25 together with the load of the frame itself by the suspension bracket 24 having a suspension interval that matches the tube group support interval suitable for the surrounding conditions of the upper tube group. The load sequentially transmitted in this way is finally transmitted to and supported by the main body support frame 29 via the internal device support large beam 31 provided in the lowest temperature part.
[0021]
The denitration catalyst 26 is mounted on the catalyst support frame 27, and a gap is provided to allow the denitration catalyst 26 to be taken in and out through an appropriate number of suspension fittings 38. Each catalyst including those gaps is sealed by a catalyst support frame 27, a seal bar 28 or direct welding.
The load of the tube group installed in the lower part of the denitration device of the high-pressure superheater 21 and the high-pressure evaporator 19b is transmitted to the catalyst support frame 27 by the tube group support 25 and the hanging metal fitting 24 arranged at an optimum interval for the surrounding conditions. It is done.
[0022]
FIG. 3 is an explanatory view showing the configuration of the seal mechanism of the embodiment of the present invention.
As shown in this figure, 2 is a casing, 27 is a catalyst support frame, 32 is a heat insulating material, 33 is a lagging, 34 is a seal plate, and 35 is a bidirectional expansion. As a result of the catalyst support frame 27 moving downward several tens of millimeters during operation of the vertical waste heat recovery boiler, relative displacement with the seal plate 34 attached to the casing 2 occurs in two directions, the vertical direction and the horizontal direction. This is not possible because the seal plate is a slidable seal plate or a unidirectional expansion that slides in the horizontal direction. However, by using the bidirectional expansion 35 that is the sealing mechanism of this embodiment, the difference in elongation due to thermal expansion can be reduced. Absorbs and prevents short path of exhaust gas. The bi-directional expansion 35 may be two metal bellows that absorb the difference in elongation in different directions, but a non-metallic expansion that can absorb in two directions with one expansion is preferable.
[0023]
Next, the carrying-in and carrying-out of the denitration catalyst in the Example of this invention is demonstrated concretely.
FIG. 4 is an explanatory view for explaining loading / unloading of the denitration catalyst according to the embodiment of the present invention.
As shown in this figure, 45 is a catalyst carry-in port and 46 is a catalyst carry-in device.
When the denitration catalyst 26 is carried in / out, a part of the casing 2 is removed, the catalyst carry-in port 45 is opened, and the catalyst loading / unloading monorail 44 is extended to the outside of the casing 2. The catalyst support frame 27 is suspended from the catalyst suspension frame 43 by suspension brackets 38 that are installed at intervals that do not hinder the loading and unloading of the denitration catalyst 26. The denitration catalyst 26 is lifted by the catalyst carry-in device 46 outside the casing 2, moved horizontally between the suspension fittings 38 by the monorail 44 and installed at a predetermined position on the catalyst support frame 27, and then the seal bar 28 shown in FIG. 2 is attached. It is done. After all the denitration catalysts 26 are installed, the extended monorail 44 is removed, and the removed casing 2 is partially restored to complete the loading. Carrying out the replacement of the denitration catalyst 26 can also be performed in the reverse order of the carrying-in.
[0024]
As described above, according to this embodiment, in a vertical waste heat recovery boiler with a built-in denitration device, even if the exhaust gas flow rate is increased to 2000 t / h or more, it is possible to cope with one tower without having to divide into two towers. This makes it possible to exhibit the features of the vertical waste heat recovery boiler used for narrow floors, etc., and is suitable for replacing urban thermal power, which will increase in the future, and can greatly reduce the construction cost.
[0025]
【The invention's effect】
According to the present invention, the denitration catalyst frame carrying the denitration catalyst is suspended and supported at multiple points, so that an integrated structure with a long span is obtained, and there is no need to divide the casing, and the vertical waste heat recovery boiler is increased in size. At that time, one tower can be used.
In addition, by sealing the space between the casing and the denitration catalyst frame with an elastic material that can expand and contract in two directions, the vertical and horizontal movement of the denitration catalyst frame during operation can be reliably absorbed, and a short path of exhaust gas can be prevented. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an overall configuration of an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a detailed configuration of an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a configuration of a seal mechanism according to an embodiment of the present invention.
FIG. 4 is an explanatory view for explaining loading / unloading of a denitration catalyst according to an embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing a vertical waste heat recovery boiler according to the prior art.
6 is a cross-sectional view of the casing top of FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exhaust gas inlet duct 2 Casing 3 Exhaust gas outlet duct 5 Low pressure economizer 10 Low pressure evaporator 14 High pressure economizer 19a High pressure evaporator 19b High pressure evaporator 21 High pressure superheater 23 Tube group support beam 24 Hanging bracket 25 Tube group support 26 Denitration Catalyst 27 Catalyst support frame 28 Seal bar 29 Main body support frame 30 Ammonia injection nozzle 31 Internal device support beam 32 Heat insulating material 33 Lagging 34 Seal plate 35 Bidirectional expansion 36 Height adjustment bracket 37 Tube group support beam 38 Suspension bracket 43 Catalyst suspension Frame 44 Monorail 45 Catalyst loading port 46 Catalyst loading device

Claims (1)

ケーシングの頂部に設けた内部装置支持大梁と、該内部装置支持大梁から複数の第1の吊り金具で吊り下げられた管群と、前記第1の吊り金具によって前記管群よりも下方に吊り下げられた触媒吊り架構と、該触媒吊り架構から複数の第2の吊り金具により吊り下げられた触媒支持架構と、該触媒支持架構に搭載された脱硝触媒とを備え、前記第1の吊り金具の配置間隔と前記第2の吊り金具の配置間隔とが異なり、前記第2の吊り金具は前記脱硝触媒のブロック寸法に対応した間隔で配置されてなる縦型廃熱回収ボイラ。An internal device support girder provided at the top of the casing, a tube group suspended from the internal device support girder by a plurality of first suspension fittings, and suspended below the tube group by the first suspension fitting A catalyst suspension frame, a catalyst support frame suspended from the catalyst suspension frame by a plurality of second suspension metal fittings, and a denitration catalyst mounted on the catalyst support frame. A vertical waste heat recovery boiler in which an arrangement interval is different from an arrangement interval of the second suspension fitting, and the second suspension fitting is arranged at an interval corresponding to a block size of the denitration catalyst .
JP09235795A 1995-04-18 1995-04-18 Vertical waste heat recovery boiler Expired - Lifetime JP3640028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09235795A JP3640028B2 (en) 1995-04-18 1995-04-18 Vertical waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09235795A JP3640028B2 (en) 1995-04-18 1995-04-18 Vertical waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH08285206A JPH08285206A (en) 1996-11-01
JP3640028B2 true JP3640028B2 (en) 2005-04-20

Family

ID=14052158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09235795A Expired - Lifetime JP3640028B2 (en) 1995-04-18 1995-04-18 Vertical waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP3640028B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154357B2 (en) * 2008-10-01 2013-02-27 新日鉄住金エンジニアリング株式会社 Support structure of support beam of economizer in boiler
JP2011163755A (en) * 2011-04-11 2011-08-25 Mitsubishi Heavy Ind Ltd Boiler block
JP5696064B2 (en) * 2012-02-03 2015-04-08 三菱重工業株式会社 Exhaust gas catalytic equipment
JP6071833B2 (en) * 2013-02-18 2017-02-01 三菱日立パワーシステムズ株式会社 Exhaust gas catalytic equipment
CN111151131B (en) * 2020-02-28 2024-01-30 中国华能集团清洁能源技术研究院有限公司 Normal-temperature SCR denitration device and technology for improving denitration efficiency of boiler
US11719141B2 (en) 2020-06-29 2023-08-08 Lummus Technology Llc Recuperative heat exchanger system
US11821699B2 (en) * 2020-06-29 2023-11-21 Lummus Technology Llc Heat exchanger hanger system

Also Published As

Publication number Publication date
JPH08285206A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
KR102425823B1 (en) Air-cooled condenser system
US7021248B2 (en) Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
US6050226A (en) Exhaust heat recovery boiler
JP3640028B2 (en) Vertical waste heat recovery boiler
US9291342B2 (en) Arrangement for influencing an exhaust gas flow
JPH0774720B2 (en) Expansion seal assembly
CN100394110C (en) Gas turbine
US4426212A (en) Bracing assembly for cyclone diplegs in fluidized bed units
JP2001272001A (en) Boiler equipment
JPH08296807A (en) Support device for vertical flow type boiler
CN209415770U (en) A kind of integrated room combustion hot-water boiler of horizontal condensation
JPH0714461B2 (en) Denitration equipment
JPH08285207A (en) Support device for vertical flow type boiler
US3254704A (en) Bottom supported air heater
CN219083118U (en) Waste heat boiler matched with maleic anhydride waste gas incinerator
JPS6391494A (en) Device for supporting heat exchanger
CN109186093A (en) Fire hot-water boiler in a kind of vertical condensation one room
JPH085001A (en) Supporting device for group of heat transfer tubes
JP2001116201A (en) Waste heat recovery boiler
JPH0724595Y2 (en) Bypass chimney of complex plant
JPH10196906A (en) Supporting device in vertically flowing gas type waste heat recovery boiler
JPH11264501A (en) Waste heat recovery boiler
US7144560B2 (en) Frame structure for high-temperature denitration apparatus
JP2815163B2 (en) Denitration equipment
JPH10267206A (en) Waste heat recovery boiler

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term