JP3638434B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP3638434B2
JP3638434B2 JP15038398A JP15038398A JP3638434B2 JP 3638434 B2 JP3638434 B2 JP 3638434B2 JP 15038398 A JP15038398 A JP 15038398A JP 15038398 A JP15038398 A JP 15038398A JP 3638434 B2 JP3638434 B2 JP 3638434B2
Authority
JP
Japan
Prior art keywords
ladder
type
parallel
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15038398A
Other languages
Japanese (ja)
Other versions
JPH11346142A (en
Inventor
雅之 船見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15038398A priority Critical patent/JP3638434B2/en
Publication of JPH11346142A publication Critical patent/JPH11346142A/en
Application granted granted Critical
Publication of JP3638434B2 publication Critical patent/JP3638434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話等の移動体通信機器などに用いられる弾性表面波フィルタ等の弾性表面波装置に関するものであって、特に複数の弾性表面波共振子をラダー(梯子)型に配設した平衡入力―平衡出力型の弾性表面波装置に関する。
【0002】
【従来の技術とその問題点】
移動体通信用SAWフィルタは、携帯電話端末の小型化,省電力化のために低損失であることが望ましい。その上、受信用および送信用として用いられるSAWフィルタには、それぞれ通過帯域外に抑止帯域があり、通過帯域端部の近傍から広い範囲にわたって高減衰量であることが強く要求されており、移動体通信システムの仕様によっては、局所的に特定の周波数帯域のみかなり大きい減衰量が必要な場合がある。
【0003】
また従来、一般のSAWフィルタは不平衡入力−不平衡出力型であるため、SAWフィルタ後段と電子回路間に、バラン回路等の不平衡−平衡変換器を挿入した回路構成をとっていた。一方、SAWフィルタ前段の電子回路等が平衡出力型となっている場合は、前段の電子回路とSAWフィルタ間に平衡−不平衡変換器を挿入した回路構成としていた。
【0004】
近年、前記の回路構成から不平衡−平衡変換器あるいは平衡−不平衡変換器を除去するために、SAWフィルタ自体に平衡−不平衡変換器あるいは不平衡−平衡変換器の機能を持たせた、いわゆる不平衡−平衡出力型のSAWフィルタあるいは平衡−不平衡出力型のSAWフィルタ(以下、平衡型あるいはバランス型のSAWフィルタという)の実用化が進められている。
【0005】
従来より、SAWフィルタの電極構成を大別すると、伝搬型,共振器型,ラダー型(梯子型),ラティス型(格子型)の4種類がある。これらはそれぞれに特徴がある設計法であり、性能面で一長一短がある。しかし、この中でも設計の自由度が高く、特に有用性があるのはラダー型の設計である。
【0006】
図1に従来のラダー型の回路構成図を示す。ここで、SAWフィルタJは、圧電基板上に複数の弾性表面波共振子を直並列に接続しており、その直列腕に直列共振子4aが、並列腕に並列共振子4bが接続され、並列共振子4がグランド3に接地されている。
【0007】
このフィルタの特徴は、他の構造に比較して、急峻な肩特性を実現し易いという点にある。しかしながら、ラダー型の欠点は上記4種の中で唯一バランス入出力に対応できない(不平衡入力−不平衡出力型であるため平衡入出力が実現できない)。通常、携帯電話機セット中に組み込む場合、図6に示すように、バランス動作(平衡入出力)させるために、バラン素子9をSAWフィルタ10の(前)後に挿入して使用していた。このため、部品点数が増加するといった問題があった。なお、バランス動作の目的は、グランドに直接は接していないため、グランド経由のノイズ成分が乗りにくいというメリットがあるためである。
【0008】
また、携帯電話端末の小型,軽量化および低コスト化のために、使用部品の削減が急務となっており、そのためにSAWフィルタに新たな機能の付加が要求されてきている。その一つに、例えばRF(Radio Frequency :無線周波数) 段とIF(Intermediate Frequency : 中間周波数) 段数等に使用されるフィルタに対して、不平衡入力−平衡出力型、あるいは平衡入力−不平衡出力型、あるいは平衡入力−平衡出力型と構成できるようにするといった要求がある。
【0009】
そこで、本発明は、特性を変化させずに、平衡入出力型(バランス型)に対応でき、かつ耐電力性に優れたラダー型SAWフィルタの電極構成を提供することを目的とする。これにより、バラン素子を削減でき携帯電話機の小型・軽量・低コスト化が図ることができる。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の弾性表面波装置は、圧電基板上に複数の弾性表面波共振子を直並列に接続したラダー型回路を二つ配設するとともに、各ラダー型回路の並列腕に接続された並列共振子をグランドに接続させ、前記二つのラダー型回路の出力差を取り出すように成した。
【0011】
また特に、ラダー型回路の直列腕に接続された直列共振子と、並列腕に接続された並列共振子とを下記式を満足するように配設したことを特徴とする。
【0012】
Cp/Cs < 1.55
(ただし、Cp:並列共振子の容量の総和,Cs:直列共振子の容量の総和)
【0013】
【発明の実施の形態】
以下に本発明の実施形態について図面に基づき詳細に説明する。
【0014】
図2に示すように、本発明の弾性表面波装置Sは、不図示のニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、四ホウ酸リチウム単結晶、ランガサイト型単結晶などから成る圧電基板上に、複数の弾性表面波共振子を直並列に接続したラダー型回路を二つ配設して成る。そして、各ラダー型回路の並列腕に接続された並列共振子4aをグランド端子3に接続させ、二つのラダー型回路の出力差を取り出すように成したものである。さらに、Cp(並列共振子4aの容量の総和)とCs(直列共振子4bの容量の総和)との比率、すなわち、Cp/Csを1.55未満にしている。図中、上部のラダー回路における5が入力端子で7が出力端子である。また下部のラダー型回路において、6が入力端子で8が出力端子である。ここでグランド端子3は上部SAWフィルタと下部SAWフィルタとは共通にしており、このグランド端子3に対して二つの回路が対称配置されている。
【0015】
上記回路構成によれば、平衡入力信号を図中『IN』で示す端子5−6間に印加すると、図中『OUT』で示す端子7−8間にフィルタを通過した平衡出力信号が出力される。ここで、印加された入力信号はグランド端子から浮いているため、端子5と6の間の位相差は180°である。このため、上部SAWフィルタと下部SAWフィルタの構成が全く同一であるため、出力側の端子7と8との位相差は、入力時の位相差が保存され180°となり、完全なる平衡出力が得られる。
【0016】
また、図5(a)〜(d)に、端子間7−3と端子間8−3の振幅特性と位相特性を示す。図より明らかなように、振幅特性は端子7と8は全く同一の特性が現れる。これは上述したように、ラダー型SAWフィルタの構成要素が、上部フィルタと下部フィルタで全く同一であるからである。また、位相特性も通過帯域内で完全に180°反転している。これは、やはり上部フィルタと下部フィルタで全く同一であるため、入力時の位相差が完全に保存されるためである。
【0017】
また、本発明の構造のラダー型SAWフィルタは並列に2回路構成するために、電力は2等分され、SAWフィルタ全体の耐電力性(寿命)は2倍に向上する。
【0018】
また、本発明のラダー型フィルタの電気特性はラダー型回路を構成する直列共振子4a,並列共振子4bの容量比と関係があることが判明した。図7は共振子の容量比(Cp/Cs)と定在波比(VSWR)との関係を図示したものである。この図より共振子の容量比によってフィルタの通過帯域内でのインピーダンス整合条件が異なり、一般的な整合条件であるVSWR<2の条件を満たすのは、容量比が1.55未満であることが判明した。また、図7に示すように、容量比と所望の通過帯域幅での最大挿入損失との関係から、上記容量比範囲にて安定した挿入損失が得られることが判明した。
【0019】
なお、本発明は基板材料を42°YカットLiTaO3としたが、36°〜42°YカットLiTaO3あるいは、64°YカットLiNbO3等としても良く、要旨を逸脱しない範囲内で適宜変更し実施しうる。
【0020】
【実施例】
次に、本発明に係るラダー型SAWフィルタを具体的に作製した実施例について説明する。
【0021】
タンタル酸リチウム単結晶の42°Yカット基板上に、Alを主成分とする微細電極パターン(規格化電極膜厚:9.6%)を形成した。パターン作製には、Deep−UV光を用いた密着露光機によりフォトリソグラフィーを行なった。
【0022】
まず、上記基板材料をアセトン・IPA等によって超音波をかけながら洗浄し有機分を除去した。次に、クリーンオーブンによって充分に基板乾燥を行なった後、基板上にフォトレジストをスピンコーターによって約1μm 厚み回転塗布した。
【0023】
フォトマスクは石英ガラスを主成分とした厚み0.09インチで外形5インチサイズとした。電極成膜には、電子ビーム蒸着機を使用し、AlもしくはAl- Cu(2%)の材料を蒸着によって成膜した。この電極膜厚は約4200Åとした。
【0024】
次に、レジスト剥離液中で基板に超音波をかけることで、不要Alパターンをリフトオフした。なお、リフトオフでAl等の材料をリフトオフするためには、レジストの断面形状を逆テーパにするための条件出しが必要となる(あるいは2層レジスト等の工夫が必要)。
【0025】
この後、保護膜工程を行った。保護膜材料としてSiを採用した。Siは電子ビーム蒸着機にて蒸着し、これもまたレジストを逆テーパにすることでリフトオフによってパターニングした。なお、Si膜厚は250Åで金属粉によるショートが防止できる。次に、基板をスクライブラインに沿ってダイシングし、チップごとに分割した。
【0026】
そして、各チップはダイボンダーにかけられ、ピックアップされ、Si樹脂を主成分とするダイボンド樹脂でSMDパッケージ内キャビティに接着した。この後加熱し、乾燥・硬化させた。SMDパッケージは3mm角積層構造とし、チップサイズは1.6×1.0mmとした。
【0027】
次に、30μφAu ワイヤーをSMDパッケージのパッド部とチップ上のAlパッド上にボールボンディングした後、パッケージリッドをパッケージにかぶせ、シームシーラーにてシーリングして完成となった。なお、チップ上のグランドは各々分離して配線され、Au ワイヤーボンディングにてパッケージ上のグランドパッドにボンディングした。なお、本電極は同一チップ上に配線するため、同一パッケージ内に納められる。
【0028】
ラダー型SAWフィルタを構成するSAW共振子は、IDTの対数が40〜120対、交差幅が10〜30λで、弾性表面波の波長は直列と並列で違えてあるが、概略4.4μmとした。また、反射電極本数は直列共振子側で20本、並列共振子側で20本とした。
【0029】
また、比較のため、図1に示す従来構成のフィルタも作製した。
【0030】
ここで重要なのは、本発明では並列に2回路構成されたラダー型フィルタの電極設計を全く同一にすることである。これにより、出力波形の振幅は同一で、位相のみ180°違う応答が得られた。
【0031】
特性測定には、ネットワークアナライザを用い、図3(本発明)及び図4(従来構成)に示す周波数特性結果を得た。これらの図より明らかなように、周波数特性の変化は、通過帯域内では従来特性とあまり大きな差は見られなかった。
【0032】
【発明の効果】
以上説明したように、本発明の電極構成によって作製すれば、特性を変化させることなく、平衡入出力型(バランス型)に対応でき、かつ耐電力性に優れたラダー型SAWフィルタを提供でき、さらに、従来必要であったバラン素子を削減でき、携帯電話機の小型・軽量・低コスト化が図ることができる。
【図面の簡単な説明】
【図1】従来のラダー型弾性表面波フィルタの回路構成図である。
【図2】本発明の平衡入出力対応のラダー型弾性表面波フィルタの回路構成図である。
【図3】本発明に係る弾性表面波フィルタの周波数特性図である。
【図4】従来構成の弾性表面波フィルタの周波数特性図である。
【図5】(a)〜(d)はそれぞれ本発明の平衡入出力対応ラダー型弾性表面波フィルタのバランス動作の確認結果を説明する図である。
【図6】従来の不平衡入出力ラダー型弾性表面波フィルタの前後にバラン素子を挿入して、平衡入出力を得るための構成を示す図である。
【図7】本発明のラダー型フィルタのVSWRと共振子容量比との関係を示す図である。
【図8】本発明のラダー型フィルタの帯域内最大挿入損失と共振子容量比との関係を示す図である。
【符号の説明】
1:入力端子
2:出力端子
3:グランド端子
4a:直列共振子
4b:並列共振子
5、6:入力端子(バランス型)
7、8:出力端子(バランス型)
9:バラン素子
10:従来のラダー型SAWフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device such as a surface acoustic wave filter used for mobile communication equipment such as a mobile phone, and more particularly, a plurality of surface acoustic wave resonators are arranged in a ladder shape. The present invention relates to a balanced input-balanced output type surface acoustic wave device.
[0002]
[Prior art and its problems]
The SAW filter for mobile communication is desirably low loss in order to reduce the size and power consumption of the mobile phone terminal. In addition, SAW filters used for reception and transmission each have a suppression band outside the passband and are strongly required to have a high attenuation over a wide range from the vicinity of the end of the passband. Depending on the specifications of the body communication system, a considerably large attenuation amount may be required only in a specific frequency band locally.
[0003]
Conventionally, since a general SAW filter is an unbalanced input-unbalanced output type, a circuit configuration has been adopted in which an unbalanced-balanced converter such as a balun circuit is inserted between the latter stage of the SAW filter and an electronic circuit. On the other hand, when the electronic circuit etc. of the front stage of the SAW filter is a balanced output type, the circuit configuration is such that a balanced-unbalanced converter is inserted between the electronic circuit of the previous stage and the SAW filter.
[0004]
In recent years, in order to remove the unbalanced-balanced converter or balanced-unbalanced converter from the above circuit configuration, the SAW filter itself has the function of a balanced-unbalanced converter or unbalanced-balanced converter. A so-called unbalanced-balanced output type SAW filter or balanced-unbalanced output type SAW filter (hereinafter referred to as a balanced type or balanced type SAW filter) has been put into practical use.
[0005]
Conventionally, the electrode configuration of the SAW filter is roughly classified into four types: a propagation type, a resonator type, a ladder type (ladder type), and a lattice type (lattice type). Each of these is a design method with its own characteristics, and there are advantages and disadvantages in terms of performance. However, among them, the design freedom is high, and the ladder type design is particularly useful.
[0006]
FIG. 1 shows a conventional ladder type circuit configuration diagram. Here, in the SAW filter J, a plurality of surface acoustic wave resonators are connected in series and parallel on a piezoelectric substrate, a series resonator 4a is connected to the series arm, and a parallel resonator 4b is connected to the parallel arm. The resonator 4 is grounded to the ground 3.
[0007]
The feature of this filter is that it is easy to realize a steep shoulder characteristic as compared with other structures. However, the disadvantage of the ladder type cannot be applied to balanced input / output among the above four types (unbalanced input-unbalanced output type, so balanced input / output cannot be realized). Normally, when incorporated in a mobile phone set, as shown in FIG. 6, the balun element 9 is inserted and used after (before) the SAW filter 10 in order to perform a balancing operation (balanced input / output). For this reason, there was a problem that the number of parts increased. The purpose of the balance operation is that it is not directly in contact with the ground, and therefore has a merit that noise components via the ground are difficult to ride.
[0008]
In addition, in order to reduce the size, weight, and cost of mobile phone terminals, it is an urgent task to reduce the number of parts used. For this reason, it is required to add new functions to the SAW filter. For example, for filters used for RF (Radio Frequency) stages and IF (Intermediate Frequency) stages, for example, unbalanced input-balanced output type or balanced input-unbalanced output There is a demand to be able to be configured as a type or a balanced input-balanced output type.
[0009]
Therefore, an object of the present invention is to provide an electrode configuration of a ladder-type SAW filter that can cope with a balanced input / output type (balanced type) without changing characteristics and has excellent power durability. Thereby, the balun elements can be reduced, and the mobile phone can be reduced in size, weight, and cost.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a surface acoustic wave device according to the present invention includes two ladder-type circuits in which a plurality of surface acoustic wave resonators are connected in series and parallel on a piezoelectric substrate, and each ladder-type circuit includes: A parallel resonator connected to the parallel arm is connected to the ground, and an output difference between the two ladder circuits is taken out.
[0011]
In particular, the series resonator connected to the serial arm of the ladder circuit and the parallel resonator connected to the parallel arm are arranged so as to satisfy the following formula.
[0012]
Cp / Cs <1.55
(Where Cp is the sum of the capacities of the parallel resonators, Cs is the sum of the capacities of the series resonators)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0014]
As shown in FIG. 2, the surface acoustic wave device S of the present invention is formed on a piezoelectric substrate made of a lithium niobate single crystal, a lithium tantalate single crystal, a lithium tetraborate single crystal, a langasite type single crystal, etc. In addition, two ladder type circuits in which a plurality of surface acoustic wave resonators are connected in series and parallel are arranged. And the parallel resonator 4a connected to the parallel arm of each ladder type circuit is connected to the ground terminal 3, and the output difference of two ladder type circuits is taken out. Furthermore, the ratio of Cp (total capacitance of parallel resonator 4a) and Cs (total capacitance of series resonator 4b), that is, Cp / Cs is set to less than 1.55. In the figure, 5 is an input terminal and 7 is an output terminal in the upper ladder circuit. In the lower ladder circuit, 6 is an input terminal and 8 is an output terminal. Here, the ground terminal 3 is common to the upper SAW filter and the lower SAW filter, and two circuits are symmetrically arranged with respect to the ground terminal 3.
[0015]
According to the above circuit configuration, when a balanced input signal is applied between terminals 5-6 indicated by "IN" in the figure, a balanced output signal that has passed through the filter is output between terminals 7-8 indicated by "OUT" in the figure. The Here, since the applied input signal is floating from the ground terminal, the phase difference between the terminals 5 and 6 is 180 °. For this reason, since the configurations of the upper SAW filter and the lower SAW filter are exactly the same, the phase difference between the terminals 7 and 8 on the output side is 180 ° because the phase difference at the time of input is preserved, and a complete balanced output is obtained. It is done.
[0016]
5A to 5D show amplitude characteristics and phase characteristics of the terminal 7-3 and the terminal 8-3. As is apparent from the figure, the same amplitude characteristics appear at terminals 7 and 8 as the amplitude characteristics. This is because, as described above, the constituent elements of the ladder-type SAW filter are exactly the same in the upper filter and the lower filter. Further, the phase characteristic is also completely inverted by 180 ° within the pass band. This is because the phase difference at the time of input is completely preserved because the upper filter and the lower filter are exactly the same.
[0017]
In addition, since the ladder-type SAW filter having the structure of the present invention is configured in two circuits in parallel, the power is divided into two equal parts, and the power durability (life) of the entire SAW filter is doubled.
[0018]
It has also been found that the electrical characteristics of the ladder filter of the present invention are related to the capacitance ratio of the series resonator 4a and the parallel resonator 4b that constitute the ladder circuit. FIG. 7 illustrates the relationship between the capacitance ratio (Cp / Cs) of the resonator and the standing wave ratio (VSWR). From this figure, the impedance matching condition in the passband of the filter differs depending on the capacitance ratio of the resonator, and the capacitance ratio is less than 1.55 that satisfies the general matching condition VSWR <2. found. Further, as shown in FIG. 7, it has been found that a stable insertion loss can be obtained in the capacity ratio range from the relationship between the capacity ratio and the maximum insertion loss in a desired pass bandwidth.
[0019]
In the present invention, the substrate material is 42 ° Y-cut LiTaO 3, but it may be 36 ° to 42 ° Y-cut LiTaO 3, 64 ° Y-cut LiNbO 3, etc. .
[0020]
【Example】
Next, an example in which a ladder type SAW filter according to the present invention is specifically manufactured will be described.
[0021]
A fine electrode pattern (standardized electrode film thickness: 9.6%) containing Al as a main component was formed on a 42 ° Y-cut substrate of lithium tantalate single crystal. For pattern production, photolithography was performed with a contact exposure machine using Deep-UV light.
[0022]
First, the substrate material was washed with acetone, IPA or the like while applying ultrasonic waves to remove organic components. Next, after sufficiently drying the substrate with a clean oven, a photoresist was spin-coated on the substrate by a spin coater with a thickness of about 1 μm.
[0023]
The photomask had a thickness of 0.09 inch with quartz glass as the main component and an outer size of 5 inches. For electrode film formation, an electron beam evaporation machine was used, and an Al or Al-Cu (2%) material was formed by evaporation. The electrode film thickness was about 4200 mm.
[0024]
Next, the unnecessary Al pattern was lifted off by applying ultrasonic waves to the substrate in a resist stripping solution. In order to lift off a material such as Al by lift-off, it is necessary to set conditions for making the cross-sectional shape of the resist reversely tapered (or a device such as a two-layer resist is necessary).
[0025]
Then, the protective film process was performed. Si was adopted as a protective film material. Si was deposited by an electron beam deposition machine, and this was also patterned by lift-off by making the resist reversely tapered. Note that the Si film thickness is 250 mm and short-circuiting due to metal powder can be prevented. Next, the substrate was diced along a scribe line and divided into chips.
[0026]
Each chip was put on a die bonder, picked up, and bonded to the cavity in the SMD package with a die bond resin containing Si resin as a main component. Thereafter, it was heated, dried and cured. The SMD package had a 3 mm square laminated structure, and the chip size was 1.6 × 1.0 mm.
[0027]
Next, a 30 μφ Au wire was ball bonded onto the pad portion of the SMD package and the Al pad on the chip, and then the package lid was placed on the package and sealed with a seam sealer to complete. The ground on the chip was wired separately and bonded to the ground pad on the package by Au wire bonding. Since this electrode is wired on the same chip, it is housed in the same package.
[0028]
The SAW resonator constituting the ladder-type SAW filter has an IDT logarithm of 40 to 120 pairs, an intersection width of 10 to 30λ, and the wavelength of the surface acoustic wave is different between series and parallel, but is approximately 4.4 μm. . The number of reflective electrodes was 20 on the series resonator side and 20 on the parallel resonator side.
[0029]
For comparison, a filter having a conventional configuration shown in FIG. 1 was also produced.
[0030]
What is important here is that in the present invention, the electrode design of the ladder type filter composed of two circuits in parallel is made the same. As a result, responses with the same output waveform amplitude and a phase difference of 180 ° were obtained.
[0031]
For the characteristic measurement, a network analyzer was used, and the frequency characteristic results shown in FIG. 3 (present invention) and FIG. 4 (conventional configuration) were obtained. As is clear from these figures, the change in the frequency characteristic was not so different from the conventional characteristic in the passband.
[0032]
【The invention's effect】
As described above, if manufactured by the electrode configuration of the present invention, it is possible to provide a ladder-type SAW filter that is compatible with a balanced input / output type (balanced type) and has excellent power durability without changing characteristics. Furthermore, the balun elements that have been necessary in the past can be reduced, and the mobile phone can be reduced in size, weight, and cost.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a conventional ladder-type surface acoustic wave filter.
FIG. 2 is a circuit configuration diagram of a ladder-type surface acoustic wave filter compatible with balanced input / output according to the present invention.
FIG. 3 is a frequency characteristic diagram of a surface acoustic wave filter according to the present invention.
FIG. 4 is a frequency characteristic diagram of a conventional surface acoustic wave filter.
FIGS. 5A to 5D are diagrams for explaining the confirmation results of the balancing operation of the balanced input / output compatible surface acoustic wave filter of the present invention. FIG.
FIG. 6 is a diagram showing a configuration for obtaining balanced input / output by inserting balun elements before and after a conventional unbalanced input / output ladder type surface acoustic wave filter.
FIG. 7 is a diagram showing the relationship between VSWR and resonator capacitance ratio of the ladder filter of the present invention.
FIG. 8 is a diagram showing the relationship between the maximum in-band insertion loss and the resonator capacitance ratio of the ladder filter of the present invention.
[Explanation of symbols]
1: input terminal 2: output terminal 3: ground terminal 4a: series resonator 4b: parallel resonator 5, 6: input terminal (balanced)
7, 8: Output terminal (balanced type)
9: Balun element 10: Conventional ladder type SAW filter

Claims (2)

圧電基板上に複数の弾性表面波共振子を直並列に接続したラダー型回路を二つ配設するとともに、各ラダー型回路の並列腕に接続された並列共振子をグランドに接続させ、前記二つのラダー型回路の出力差を取り出すように成した弾性表面波装置。Two ladder-type circuits in which a plurality of surface acoustic wave resonators are connected in series and parallel are arranged on a piezoelectric substrate, and parallel resonators connected to parallel arms of each ladder-type circuit are connected to the ground. A surface acoustic wave device designed to extract the output difference between two ladder-type circuits. 前記ラダー型回路の直列腕に接続された直列共振子と、並列腕に接続された並列共振子とを下記式を満足するように配設したことを特徴とする請求項1に記載の弾性表面波装置。
Cp/Cs < 1.55
(ただし、Cp:並列共振子の容量の総和,Cs:直列共振子の容量の総和)
The elastic surface according to claim 1, wherein a series resonator connected to a series arm of the ladder circuit and a parallel resonator connected to the parallel arm are arranged so as to satisfy the following formula. Wave equipment.
Cp / Cs <1.55
(Where Cp is the sum of the capacities of the parallel resonators, Cs is the sum of the capacities of the series resonators)
JP15038398A 1998-05-29 1998-05-29 Surface acoustic wave device Expired - Fee Related JP3638434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15038398A JP3638434B2 (en) 1998-05-29 1998-05-29 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15038398A JP3638434B2 (en) 1998-05-29 1998-05-29 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH11346142A JPH11346142A (en) 1999-12-14
JP3638434B2 true JP3638434B2 (en) 2005-04-13

Family

ID=15495807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15038398A Expired - Fee Related JP3638434B2 (en) 1998-05-29 1998-05-29 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3638434B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223554A (en) 2000-02-07 2001-08-17 Murata Mfg Co Ltd Surface acoustic wave filter
DE10007178A1 (en) * 2000-02-17 2001-08-23 Epcos Ag Surface wave filter on piezoelectric substrate is configured as balanced/balanced e.g. for GSM mobile telephones, has symmetrical inputs/outputs, is electrically symmetrical, has 4- or 2-pole reactance series elements
US6914493B2 (en) * 2001-03-08 2005-07-05 Rf Monolithics, Inc. Noise resistant low phase noise, frequency tracking oscillators and methods of operating the same
US6909334B2 (en) 2001-03-08 2005-06-21 Rf Monolithics, Inc. Low phase noise, wide tune range saw oscillators and methods of operating the same
US6600390B2 (en) * 2001-12-13 2003-07-29 Agilent Technologies, Inc. Differential filters with common mode rejection and broadband rejection
KR20030073842A (en) * 2002-03-13 2003-09-19 엘지이노텍 주식회사 Flim bulk acoustic resonator filter and manufacturing method for the same
JP4401380B2 (en) 2006-11-22 2010-01-20 富士通メディアデバイス株式会社 Filter device
WO2009025057A1 (en) * 2007-08-23 2009-02-26 Fujitsu Limited Branching filter, module including the branching filter, communication device
WO2009025056A1 (en) * 2007-08-23 2009-02-26 Fujitsu Limited Duplexer, communication module, and communication device
JP5172454B2 (en) * 2008-04-30 2013-03-27 太陽誘電株式会社 Filters, duplexers and communication equipment
JP5215767B2 (en) * 2008-07-31 2013-06-19 太陽誘電株式会社 Filters, duplexers, and communication equipment
JP5355958B2 (en) * 2008-07-31 2013-11-27 太陽誘電株式会社 Filters, duplexers, and communication equipment
KR101276944B1 (en) 2008-12-26 2013-06-19 다이요 유덴 가부시키가이샤 Demultiplexer and electronic device
JP5183459B2 (en) 2008-12-26 2013-04-17 太陽誘電株式会社 Duplexer, duplexer substrate and electronic device
JP5210253B2 (en) * 2009-07-01 2013-06-12 太陽誘電株式会社 Elastic wave device

Also Published As

Publication number Publication date
JPH11346142A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP3638434B2 (en) Surface acoustic wave device
US20070103254A1 (en) Balanced acoustic wave filter and acoustic wave filter
US7518470B2 (en) Surface acoustic wave element, surface acoustic wave device and communication device including the same
JP5010256B2 (en) Surface acoustic wave device and communication device including the same
JP2000114917A (en) Balance type acoustic wave filter
JP4901398B2 (en) Surface acoustic wave device
JP2000022493A (en) Surface acoustic wave filter
JP2002299997A (en) Surface acoustic wave filter
JP4377525B2 (en) Surface acoustic wave filter
JP3792409B2 (en) Surface acoustic wave filter
JP4601415B2 (en) Surface acoustic wave device and communication device
JP4841311B2 (en) Substrate mounted surface acoustic wave device, method for manufacturing the same, and communication device
JP4183165B2 (en) Surface acoustic wave resonator and ladder type surface acoustic wave filter using the same
JP4359978B2 (en) Ladder type surface acoustic wave filter
JP3878714B2 (en) Surface acoustic wave filter
JP4031686B2 (en) Surface acoustic wave filter
JP2000049567A (en) Surface acoustic wave filter
JP2000312126A (en) Surface acoustic wave unit
JP4601411B2 (en) Surface acoustic wave device and communication device
JP4502779B2 (en) Surface acoustic wave element and communication device
JP3384638B2 (en) Balanced surface acoustic wave filter
JP2002300004A (en) Surface acoustic wave filter
JP4471474B2 (en) Surface acoustic wave device and surface acoustic wave device using the same
JP3683737B2 (en) Surface acoustic wave device
JPH11284488A (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees