JP3637831B2 - Air conditioner control device - Google Patents

Air conditioner control device Download PDF

Info

Publication number
JP3637831B2
JP3637831B2 JP2000047449A JP2000047449A JP3637831B2 JP 3637831 B2 JP3637831 B2 JP 3637831B2 JP 2000047449 A JP2000047449 A JP 2000047449A JP 2000047449 A JP2000047449 A JP 2000047449A JP 3637831 B2 JP3637831 B2 JP 3637831B2
Authority
JP
Japan
Prior art keywords
air conditioner
temperature
control device
address
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000047449A
Other languages
Japanese (ja)
Other versions
JP2001241739A (en
Inventor
和行 満嶋
政也 板垣
憲和 石川
和生 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000047449A priority Critical patent/JP3637831B2/en
Publication of JP2001241739A publication Critical patent/JP2001241739A/en
Application granted granted Critical
Publication of JP3637831B2 publication Critical patent/JP3637831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和機の制御装置に関するものである。
【0002】
【従来の技術】
従来の空気調和機の制御装置としては、例えば実開昭56−90638号公開公報があり、この公開公報の構成と動作を図11から13に示す。
なお、図8は空気調和機の概略構成を示す斜視図であり、図12は図11のサーモスタット動作温度の一例を示す説明図であり、図13は図11の電気回路図である。
【0003】
次に、この従来の空気調和機の制御装置の構成及び動作について説明する。
まず、図11に示すように、複数の空気調和機1、2、3が壁4の上部に取付けられ、これらの空気調和機のうち、その代表空気調和機1には、これらの空気調和機1、2、3を個別に運転または停止させる各サーモスタット5a、5b、5cが設けられている。
また、これらのサーモスタット5は各空気調和機1、2、3毎に動作がそれぞれ異なるように、各空気調和機毎に動作温度範囲がそれぞれ例えば下記のように設定されている。
【0004】
即ち、これらのサーモスタット5の動作温度範囲は図12に示すように、空気調和機1の電気回路に接続されたサーモスタット5aは27℃になるとその接点が閉路(ON)になり、26℃になると開路(OFF)なるように設定されており、また、空気調和機2のサーモスタット5bは28℃になるとその接点がON、27℃でOFFとなるように設定されており、また、空気調和機3のサーモスタット5cは29℃でその接点がON、28℃でOFFとなるように設定されている。
【0005】
この状態で電源6が入れられると、図13に示された各空気調和機1、2、3の機器(例えば、空気調和機1のコンプレッサーモータ1a、ファンモータ1b、1c)は、これらの設定温度に基づいて動作することになる。
即ち、室温が29℃以上の場合は、サーモスタット5の設定温度はいずれも29℃以下であるため、その各接点5a、5b、5cは閉路となり、すべての空気調和機1、2、3は運転状態となる。
【0006】
また、室温が28℃〜27℃の場合は、5a、5bが閉路で、5cは開路となるので、空気調和機1、2のみが運転状態となる。
同様に、27℃〜26℃の場合は、サーモスタット5aのみが閉路となるので、空気調和機1のみが運転状態となる。
また、26℃以下の場合にはサーモスタット5a、5b、5cがいずれも開路となるので、すべての空気調和機1、2、3が停止状態となる。
【0007】
従って、この運転状態を継続すると、各空気調和機の運転時間が偏り、寿命期間に差異が生じるため、運転時間を平準化するために、一定期間毎に、サーモスタット5a、5b、5cを空気調和機1、2、3内で定期的にローテーションをするのが一般的であった。
【0008】
また、サーモスタットの機能や価格を考慮して設定温度が一定のものを採用するのが一般的であるため、各空気調和機の動作設定温度を変更する場合は、上記サーモスタット5a、5b、5cのそれぞれを作動温度の異なる別々のサーモスタットになっているため、それぞれ交換して設定温度を変更していた。
【0009】
また、これらの各サーモスタット間にバラツキがあった場合は、そのバラツキいた設定温度で各空気調和機の動作を制御するため、即ち、実際の負荷に対応して各空気調和機の動作を制御しないため、過度な冷暖房をしたり、充分に冷暖房をしなかったりしていた。
【0010】
【発明が解決しようとする課題】
以上説明したように従来の空気調和機の制御装置は、各空気調和機の台数に応じた多くのサーモスタットを必要とするという問題点があった。
【0011】
また、各サーモスタット間の設定温度のバラツキに応じて各空気調和機の動作を制御するため、過度な冷暖房をしたり、充分に冷暖房をしなかったりするという問題点があった。
【0012】
また、各空調機の運転時間を平準化する場合には、各サーモスタットをわざわざ交換する必要があった。
【0013】
この発明は、上記のような問題点を解決するためになされたもので、少ない構成部品で、室内負荷に対応してスピーデイに冷暖房する経済的な空気調和機の制御装置を得ることを目的とする。
【0014】
また、複数の空調機の運転台数を少なくしてスピーデイに冷暖房する省エネタイプの経済的な空気調和機の制御装置を得ることを目的とする。
【0015】
また、各空調機の運転寿命時間が長く、信頼性が向上した空気調和機の制御装置を得ることを目的とする。
【0016】
【課題を解決するための手段】
この発明に係る空気調和機の制御装置は、室内を空調する複数の空気調和機と、これら各空気調和機のアドレス番号を所定の番号から順次設定するアドレス設定手段と、このアドレス設定手段の設定結果に基づいて前記各空気調和機の運転動作を制御する制御装置と、を備え、前記制御装置が、前記各空気調和機のアドレス番号と予め設定された温度係数から演算した各所定温度を前記室内の検出温度に加算又は減算し、この加算又は減算した前記各空気調和機の演算検出温度と前記室内の目標温度とを比較して前記各空気調和機の運転動作を制御するものである。
【0017】
また、前記制御装置が、前記室内の検出温度から前記所定温度を減算して前記各空気調和機の冷房運転時の前記演算検出温度を求めるものである。
【0018】
また、前記制御装置が、前記室内の検出温度から前記所定温度を加算して前記各空気調和機の暖房運転時の前記演算検出温度を求めるものである。
【0019】
また、前記制御装置が、前記室内の検出温度から前記所定温度を加算又は減算のいずれか一方のみの演算で前記各空気調和機の冷・暖房運転時の前記演算検出温度を求めるものである。
【0020】
また、室内を空調する複数の空気調和機と、これら各空気調和機のアドレス番号を所定の番号から順次設定するアドレス設定手段と、このアドレス設定手段の設定結果に基づいて前記各空気調和機の運転動作を制御する制御装置と、を備え、前記制御装置が、前記各空気調和機のアドレス番号と予め設定された温度係数から演算した各所定温度を前記室内の目標温度に加算又は減算し、この加算又は減算した前記各空気調和機の演算目標温度と前記室内の検出温度とを比較して前記各空気調和機の運転動作を制御するものである。
【0021】
また、前記制御装置が、前記室内の目標温度から前記所定温度を加算して前記各空気調和機の冷房運転時の前記演算目標温度を求めるものである。
【0022】
また、前記制御装置が、前記室内の目標温度から前記所定温度を減算して前記各空気調和機の暖房運転時の前記演算目標温度を求めるものである。
【0023】
また、前記制御装置が、前記室内の目標温度から前記所定温度を加算又は減算のいずれか一方のみの演算で前記各空気調和機の冷・暖房運転時の前記演算目標温度を求めるものである。
【0024】
また、前記制御装置にローテーション手段を設け、このローテーション手段が、前記アドレス設定手段が設定した各空気調和機のアドレスを所定空気調和機の一定運転時間後に順次ローテーションするものである。
【0025】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1における複数の空気調和機の動作を制御する該略構成図である。
この図において、1、2、3は室内の壁等に配置され、室内を空調する空気調和機であり、これらの空気調和機1、2、3はそれぞれアドレス設定スイッチ1a、2a、3aを備えている。
また、4は空気調和機1、2、3の運転・停止(電源入・切)、並びに、室内温度を設定するリモートコントローラであり、このリモコン4は室内温度を検出する室温検出センサ4a、および室内温度設定部4bを備えている。
【0026】
また、10はリモートコントローラ4及び又は空気調和機1、2、3の間に設けられ、当該間の通信を伝送する通信線である。
なお、室温検出センサ4a、および室内温度設定部4bは必ずしも、リモコン4内になければならないものではない。
【0027】
また、図2は図1の空気調和機1、2、3の冷房運転時の運転状態を示した図であり、この図において、TORはリモコン4の室内温度設定部4bで設定した室内目標温度、THSは室温検出センサ4aで検出された室内検出温度、TH0、TH1、TH2は各空気調和機1、2、3のアドレス号機ナンバーあり、このアドレスナンバーは後述するアドレス設定スイッチで設定したり、制御装置(図示せず)が各空気調和機1、2、3間とのやり取りで設定した各空気調和機1、2、3のアドレス番号である。
【0028】
次に、この空気調和機の動作について説明する。
まず、リモートコントローラ4の運転操作(電源入)により、空調機1、2、3が運転されると、リモートコントローラ4の室内温度設定部4bで設定された室内目標温度TOR、並びに室内検出温度部4aで検出された室内検出温度THSが通信線10を通じて制御装置に送信されるとともに、各空気調和機1、2、3のアドレス設定部1a、2a、3aで設定されたアドレスナンバーADi、例えば、0、1、2も制御装置に送信されるので、これらの室内検出温度THSとアドレスADiに基づいて制御装置は各空調機の演算検出温度THiを、THi=THS―ADi*ΔTの式から演算する。(なお、ΔTは予め設定された温度係数であり、この温度係数は正の係数であっても、負の係数であっても良いが、この実施の形態1では正の係数について説明する。)
【0029】
次に、この演算結果に基づいて制御装置は室内目標温度TORと演算検出温度THiと比較し、この比較結果から各空調機1、2、3の運転をすることになる。
即ち、例えば、温度係数ΔTを0.5℃としたときは、上記式はTHi=THS―0.5℃*ADiとなり、この式から演算検出温度を計算し、この計算結果と室内目標温度TORとを比較し、この比較結果で各空気調和機の運転を制御することになる。
【0030】
従って、室内検出温度THSが24℃の場合は、アドレス0の演算検出温度TH0はアドレス0のため、上記式で演算すると演算検出温度は24℃となり、アドレス1の演算検出温度TH1は23.5℃となり、アドレス2の演算検出温度は23℃となるので、例えば、室内目標温度TORが24℃の時は、アドレス0、1、2の全空気調和機の室内目標温度TORが演算検出温度以内となるため、OFF状態となり、全空気調和機が停止される。
【0031】
また、室内検出温度THSが24.5℃の場合、アドレス0の演算検出温度TH0は24.5℃となり、アドレス1の演算検出温度TH1は24℃となり、アドレス2の演算検出温度は23.5℃となるため、アドレス0の空気調和機1の室内目標温度TOR(24℃)が演算検出温度を超えるため、ON 状態となり、アドレス1、2の空気調和機2,3の室内目標温度TORが演算検出温度以内となるため、OFF状態となり、空気調和機1のみが運転される。
【0032】
また、室内検出温度THSが25℃の場合、アドレス0の演算検出温度TH0は25℃、アドレス1の演算検出温度TH1は24.5℃、アドレス2の演算検出温度は24℃となり、アドレス0、1の空気調和機1,2がON、アドレス2の空気調和機3がOFFとなるので、空気調和機1,2が運転される。
【0033】
また、室内検出温度THSが25.5℃に上昇した場合、アドレス0の演算検出温度TH0は25.5℃、アドレス1の演算検出温度TH1は25℃、アドレス2の演算検出温度は24.5℃となり、室内目標温度TORの24℃を超えるので、アドレス0、1、2の全空気調和機がONとなり、全空気調和機1、2、3が運転される。
【0034】
なお、この室内検出温度THSが変化しない状態で、即ち、THSが25.5℃の状態で、室内目標温度が25℃に変更された場合は、前述した結果でアドレス0の空気調和機のみが室内目標温度25℃を超えた25.5℃となるので、ONとなり、アドレス1、2の空気調和機がOFFとなるので、空気調和機1が運転される。
【0035】
また、室内目標温度TORが更に26℃に設定変更された場合は、アドレス0の空気調和機1も室内目標温度25℃以内になるので、全アドレス0、1、2の空気調和機がOFFとなり、全空気調和機1、2、3は停止する。
【0036】
次に、この冷房モードから暖房モードに切換り、室内検出温度THSが各空調機の演算検出温度THi以上になると、制御装置は各空調機をOFF(停止)するように動作する。即ち、前述した冷房モードの逆の動作で各空調機を制御するようになる。即ち、図3のようになる。
【0037】
また、以上説明した冷・暖房運転時の各空気調和機のアドレスと室内検出温度THSから演算した演算検出温度THiと室内目標温度TORとの比較結果の各空気調和機の運転状態を図3、4に示す。
この図からも解るように、室内検出温度THSから計算した演算検出温度THiと室内目標温度TORとの温度差によって空気調和機の運転台数が可変されることになる。言い換えれば、各空気調和機毎にそれぞれサーモを設けなくとも、空気調和機の運転状態を制御できると共に、サーモのバラツキによる誤作動もなくなるため、経済的で、信頼性の高い空気調和機の制御装置が得られる。
【0038】
また、温度係数を正にして検出温度THSから所定温度を減算するようにすると、演算検出温度THiが常に実検出温度THSよりも低くなり、室内目標温度TORに対して低い方向、即ち空調機を停止する方向となるので、冷房時の空調機運転台数が少なるため、省エネ冷房運転をする経済的な空気調和機の制御装置が得られる。
また逆に、暖房時の空調機運転台数は多くなるため、スピーディに暖房する空気調和機の制御装置となる。
【0039】
また、図3、4からも解るように、冷房時と暖房時共に、温度係数を同じ正にして減算すると、冷房時と暖房時の運転が開始される順番が逆になるので、各空気調和機の冷房運転時間と暖房運転時間とのトータル運転時間が平準化されるため、各空気調和機間の運転寿命時間のトラブルが少なく、信頼性が向上した空気調和機の制御装置が得られる。
【0040】
また、温度係数を冷房時に正、暖房時に負にしても、各空気調和機の運転時間の平準化は図られないものの、複数台の空気調和機を1つのサーモで運転制御して室内目標温度に制御できるようになるため、経済的な空気調和機の制御装置が得られる。
【0041】
実施の形態2.
この実施の形態2においては、実施の形態1におけるTHi=THS―ADi*ΔTの式において、冷房モード及び暖房モードの温度係数を負にした時の空気調和機の制御装置に関するものである。
なお、その他の構成は実施の形態1とほぼ同じである。
【0042】
次に、この動作について図5、6で説明する。
まず、冷房運転モードについて説明するが、例えば、冷房モードの温度係数を−0.5℃とすると、室内検出温度THS及び室内目標温度TORの関係は図5のようになる。
即ち、温度係数を−0.5℃にしたので、前述した式はTHi=THS+0.5℃*ADiとなるので、例えば、室内検出温度THSが24℃の場合は、アドレス0の演算検出温度TH0はアドレス0のため、上記式で演算すると演算検出温度は24℃となり、アドレス1の演算検出温度TH1は24.5℃となり、アドレス2の演算検出温度は25℃となる。
【0043】
従って、室内目標温度TORを24℃とすると、アドレス0、1、2の全空気調和機の演算検出温度が室内目標温度TORを超えるため、ON状態となり、全空気調和機が運転される。
【0044】
次に、この運転状態で室内検出温度THSが低下して23.5℃になった場合は、アドレス0の演算検出温度TH0は23.5℃となり、アドレス1の演算検出温度TH1は24℃となり、アドレス2の演算検出温度は24.5℃になるので、アドレス0の空気調和機1の演算検出温度が室内目標温度TOR以下になるため、OFF状態となり、アドレス1、2の空気調和機2,3の演算検出温度が室内目標温度TORを超えているため、ON状態となり、空気調和機1のみが停止される。
【0045】
また、室内検出温度THSが更に低下して23℃になった場合は、アドレス0の演算検出温度TH0は23℃、アドレス1の演算検出温度TH1は23.5℃、アドレス2の演算検出温度は24℃となり、アドレス0、1の空気調和機1,2がOFF、アドレス2の空気調和機3のみがONとなり、空気調和機3のみが運転される。
【0046】
また更に、室内検出温度THSが低下して22.5℃になった場合は、アドレス0の演算検出温度TH0は22.5℃、アドレス1の演算検出温度TH1は23℃、アドレス2の演算検出温度は23.5℃となるので、アドレス0、1、2の全空気調和機がOFFとなり、全空気調和機1、2、3が停止される。
【0047】
次に、暖房モード運転について図6で説明する。
まず、上記冷房モードから暖房モードに切換わると、室内検出温度THSが各空調機の演算検出温度THi以上になると、制御装置は各空調機をOFF(停止)するように動作する。即ち、冷房モードの逆の動作をするように各空調機を制御するようになる。
【0048】
従って、室内検出温度THSが24℃の場合は、アドレス0の演算検出温度TH0はアドレス0のため、上記式で演算すると演算検出温度は24℃となり、アドレス1の演算検出温度TH1は24.5℃となり、アドレス2の演算検出温度は25℃となり、この時、室内目標温度TORを24℃とすると、アドレス0、1、2の全空気調和機の演算検出温度が室内目標温度TORを超えた状態となるため、OFF状態となり、全空気調和機が停止される。
【0049】
なお、上記以外の動作は前述した冷房モードの逆動作となるので、詳細な説明は割愛するが、その結果をまとめると、図6に示したようになる。
この図からも解るように、室内検出温度THSから計算した演算検出温度THiと室内目標温度TORとの温度差によって空気調和機の運転台数が可変されることになる。言い換えれば、各空気調和機毎にそれぞれサーモを設けなくとも、空気調和機の運転状態を制御できると共に、サーモのバラツキによる誤作動もなくなるため、経済的で、信頼性の高い空気調和機の制御装置が得られる。
【0050】
また、温度係数を負にすることにより、演算検出温度THiが常に検出温度THSよりも高くなるので、暖房時の空調機運転台数を少ない台数で運転するため、暖房時に省エネ運転をする経済的な空気調和機の制御装置が得られる。
また、冷房時の空調機運転台数が多くなるため、スピーディに冷房する空気調和機の制御装置が得られる。
【0051】
また、これらの図5、6からも解るように、冷房時と暖房時共に、温度係数を負にすると、冷房時と暖房時の運転が開始される順番が逆になるので、各空気調和機の冷房運転時間と暖房運転時間とのトータル運転時間が平準化されるため、各空気調和機間の運転寿命時間のトラブルが少なく、信頼性が向上した空気調和機の制御装置が得られる。
【0052】
実施の形態3.
この実施の形態3においては、実施の形態1で説明した室内検出温度THSと各空気調和機1、2、3のアドレス番号から演算検出温度THiを演算し、この演算結果と室内目標温度TORとを比較し、この比較結果に基づいて各空気調和機1、2、3の動作を制御する換わりに、室内目標温度TORと各空気調和機1、2、3のアドレス番号から演算目標温度TORiを演算し、この演算結果TORiと室内検出温度THSとを比較し、この比較結果に基づいて各空気調和機1、2、3の動作を制御するものである。
【0053】
即ち、制御装置がリモコン4の室内温度設定部4bで設定した室内目標温度TORと、アドレス設定スイッチで設定した各空気調和機1、2、3のアドレス番号とを、TORi=TOR―ADi*ΔTの式に入れ、演算目標温度TORiを算出し、この演算結果TORiと室内検出温度THSとを比較し、この比較結果に基づいて各空気調和機1、2、3の動作を制御するものである。
(なお、ΔTは温度係数であり、この温度係数は正の係数であっても、負の係数であっても良いが、この実施の形態4では正の係数について説明する。)
また、その他の構成は実施の形態1とほぼ同じなので、説明を割愛する。
【0054】
次に、この動作について図7で説明する。
まず、冷房モードにおいて、温度係数を正にし、例えば、0.5℃にすると、前述した式TORi=TOR−0.5℃*ADiから、予め設定された温度である室内目標温度TORが24℃の場合は、アドレス0の空気調和機1の室内演算目標温度TOR0は、アドレス0から24℃となり、アドレス1の室内演算目標温度TOR1は23.5℃となり、アドレス2の室内演算目標温度TOR2は23℃となる。
【0055】
従って、室内検出温度THSが24℃の時は、アドレス0、1、2の全空気調和機の室内演算目標温度TORiが室内検出温度THS以下となるため、言い換えれば、室内検出温度THSが室内演算目標温度TORiを超えているため、ON状態となり、全空気調和機が運転される。
【0056】
また、室内検出温度THSが23.5℃になった時は、図8に示すように、アドレス0の空気調和機1の室内演算目標温度TORiのみが室内検出温度THSを超えるため、ON状態となり、アドレス1、2の空気調和機2、3の室内演算目標温度TORiが室内検出温度THS以下のため、OFF状態となり、アドレス0の空気調和機1のみが運転される。
【0057】
以下同様に、室内演算目標温度TORiが計算され、この計算結果TORiと室内検出温度THSとを比較し、この比較結果に基づいて各空気調和機1、2、3の動作を制御する。
【0058】
また、この冷房モードから暖房モードに切換り、室内検出温度THSが各空調機の演算検出温度THi以上になると、制御装置は各空調機をOFF(停止)するように動作する。即ち、前述した冷房モードの逆の動作で各空調機を制御するようになる。
【0059】
以上説明したように、室内検出温度THS室内目標温度TORから計算した演算目標温度TORiと室内検出温度THSとの温度差によって空気調和機の運転台数が可変されることになる。言い換えれば、各空気調和機毎にそれぞれサーモを設けなくとも、空気調和機の運転状態を制御できるようになると共に、サーモのバラツキによる誤作動もなくなるため、経済的で、信頼性の高い空気調和機の制御装置が得られる。
【0060】
また、温度係数を正にすることにより、演算目標温度TORiが常に室内目標温度TORよりも低くなるので、暖房時の空調機運転台数を少ない台数で運転するため、暖房時に省エネ運転をする経済的な空気調和機の制御装置が得られる。
また、冷房時の空調機運転台数が多くなるため、スピーディに冷房する空気調和機の制御装置が得られる。
【0061】
また、冷房時と暖房時共に、温度係数を負にすると、冷房時と暖房時の運転が開始される順番が逆になるので、各空気調和機の冷房運転時間と暖房運転時間とのトータル運転時間が平準化されるため、各空気調和機間の運転寿命時間のトラブルが少なく、信頼性が向上した空気調和機の制御装置が得られる。
【0062】
実施の形態4.
この実施の形態4においては、実施の形態3におけるTORi=TOR―ADi*ΔTの温度係数を、冷房モードと暖房モード共に負にしたものである。
なお、その他の構成は実施の形態3とほぼ同じである。
【0063】
次に、この動作について図9で説明する。
まず、冷房モードにおいて、温度係数を負、例えば、−0.5℃とすると、前述した式はTORi=TOR+ADi*ΔTとなるので、室内目標温度TORが24℃の場合における各空気調和機1、2、3の室内目標温度TORを計算すると、アドレス0の空気調和機1の演算目標温度TOR0は、24℃となり、アドレス1の室内演算目標温度TOR1は24.5℃となり、アドレス2の室内演算目標温度TOR2は25℃となる。
【0064】
従って、室内検出温度THSが24℃の時は、アドレス0、1、2の全空気調和機の室内演算目標温度TORiが室内検出温度THSを超えているため、OFF状態となり、全空気調和機が停止される。
【0065】
また、室内検出温度THSが24.5℃になった時は、表3に示すように、アドレス0の空気調和機1の室内演算目標温度TORiのみが室内検出温度THS以下となるため、ON状態となり、アドレス1、2の空気調和機2、3の室内演算目標温度TORiが室内検出温度THSを超えている以下のため、OFF状態となり、アドレス0の空気調和機1のみが運転される。
【0066】
以下同様に、室内演算目標温度TORiが計算され、この計算結果TORiと室内検出温度THSとを比較し、この比較結果に基づいて各空気調和機1、2、3の動作を制御することになるので、図8の記載の通りとなり、これをグラフ化すると、図9となる。
【0067】
また、この冷房モードから暖房モードに切換り、室内検出温度THSが各空調機の演算目標温度TORi以上になると、制御装置は各空調機をOFF(停止)するように動作する。即ち、前述した冷房モードの逆の動作で各空調機を制御するようになる。
【0068】
以上説明しように、室内検出温度THS室内目標温度TORから計算した演算目標温度TORiと室内検出温度THSとの温度差によって空気調和機の運転台数が可変されることになる。言い換えれば、各空気調和機毎にそれぞれサーモを設けなくとも、空気調和機の運転状態を制御できるようになると共に、サーモのバラツキによる誤作動もなくなるため、経済的で、信頼性の高い空気調和機の制御装置が得られる。
【0069】
また、温度係数を負にすることにより、演算目標温度TORiが常に室内目標温度TORよりも高くなるので、冷房時の空調機運転台数を少ない台数で運転するようになるため、暖房時に省エネ運転をする経済的な空気調和機の制御装置が得られる。
また、暖房時の空調機運転台数が多くなるため、スピーディに冷房する空気調和機の制御装置が得られる。
【0070】
また、冷房時と暖房時共に、温度係数を負にすると、冷房時と暖房時の運転が開始される順番が逆になるので、各空気調和機の冷房運転時間と暖房運転時間とのトータル運転時間が平準化されるため、各空気調和機間の運転寿命時間のトラブルが少なく、信頼性が向上した空気調和機の制御装置が得られる。
【0071】
実施の形態5.
この実施の形態5においては、例えば、図10に示すように、実施の形態1から4において、制御装置が各空気調和機のADiを所定運転時間毎(例えば、図のように1年毎や10時間毎や全空調機運転毎)に変化させるローテーション手段(図示せず)を具備したものである。
即ち、ローテーション手段が実施の形態1から4で説明したアドレス設定スイッチ1a、2a、3a又は各空気調和機1、2、3間とのやり取りで設定した各空気調和機1、2、3のアドレス番号を所定運転時間毎に変える。
【0072】
次に、この動作について説明する。
まず、実施の形態1または2にローテーション手段を設けた場合は、各空調機1、2、3が冷房又は暖房運転され、所定運転時間後に各空気調和機1、2、3のアドレス番号をローテーション手段がローテーションするので、この変わったアドレス番号に基づいて、制御装置は検出温度THSの検出結果から各空気調和機1、2、3の演算検出温度THiを計算し、この計算結果THiと室内目標温度TORとを比較し、この比較結果によって各空気調和機1、2、3の運転動作を制御するようになる。
【0073】
一方、実施の形態3または4にローテーション手段を設けた場合も同様に、各空調機1、2、3が冷房又は暖房運転され、所定運転時間後に各空気調和機1、2、3のアドレス番号をローテーション手段がローテーションするので、この変わったアドレス番号に基づいて制御装置は室内目標温度TORから各空気調和機1、2、3の室内演算目標温度TORiを計算し、この計算結果TORiと室内検出温度THSとを比較し、この比較結果に基づいて各空気調和機1、2、3の動作を制御するようになる。
【0074】
従って、アドレス番号がローテーションされることによって、各空気調和機1、2、3の運転開始と停止の順番が、所定運転時間後に、図10のようにローテーションされるので、地域差による冷房期間と暖房期間との差や昼・夜の温度差に関わらず各空気調和機の運転寿命時間の平準化が図られるようになるため、更に確実に、運転寿命時間のトラブルが少なく、運転寿命期間が長く、信頼性が向上した使い勝手の良い空気調和機の制御装置が得られる。
【0075】
【発明の効果】
この発明は、以上説明したように、以下に示すような効果を奏する。
【0076】
この発明の空気調和機の制御装置は、制御装置が、各空気調和機のアドレス番号と予め設定された温度係数から演算した各所定温度を室内の検出温度に加算又は減算し、この加算又は減算した各空気調和機の演算検出温度と室内の目標温度とを比較して各空気調和機の運転動作を制御するので、室内温度を検出するだけで、即ち、空気調和機の台数より少ないサーモで、各空気調和機の運転動作を制御できるようになるため、少ない構成部品で、室内負荷に対応してスピーデイに冷暖房する経済的な空気調和機の制御装置が得られる。
【0077】
また、前記制御装置が、前記室内の検出温度から前記所定温度を減算して前記各空気調和機の冷房運転時の前記演算検出温度を求めるので、冷房時の空調機運転台数が少なるため、省エネ冷房運転をする経済的な空気調和機の制御装置が得られる。
【0078】
また、前記制御装置が、前記室内の検出温度から前記所定温度を加算して前記各空気調和機の暖房運転時の前記演算検出温度を求めるので、暖房時の空調機運転台数が少なるため、省エネ暖房運転をする経済的な空気調和機の制御装置が得られる。
【0079】
また、前記制御装置が、前記室内の検出温度から前記所定温度を加算又は減算のいずれか一方のみの演算で前記各空気調和機の冷・暖房運転時の前記演算検出温度を求めるので、冷房時と暖房時との運転開始の順番が逆になり、各空気調和機の冷房運転時間と暖房運転時間とのトータル運転時間が平準化されるため、各空気調和機間の運転寿命時間のトラブルが少なく、信頼性が向上した空気調和機の制御装置が得られる。
【0080】
また、制御装置が、各空気調和機のアドレス番号と予め設定された温度係数から演算した各所定温度を室内の目標温度に加算又は減算し、この加算又は減算した各空気調和機の演算目標温度と室内の検出温度とを比較して各空気調和機の運転動作を制御するので、室内温度を検出するだけで、即ち、空気調和機の台数より少ないサーモで、各空気調和機の運転動作を制御できるようになるため、少ない構成部品で、室内負荷に対応してスピーデイに冷暖房する経済的な空気調和機の制御装置が得られる。
【0081】
また、前記制御装置が、前記室内の目標温度から前記所定温度を加算して前記各空気調和機の冷房運転時の前記演算目標温度を求めるので、冷房時の空調機運転台数が少なくなるため、省エネ冷房運転をする経済的な空気調和機の制御装置が得られる。
【0082】
また、前記制御装置が、前記室内の目標温度から前記所定温度を減算して前記各空気調和機の暖房運転時の前記演算目標温度を求めるので、暖房時の空調機運転台数が少なるため、省エネ暖房運転をする経済的な空気調和機の制御装置が得られる。
【0083】
また、前記制御装置が、前記室内の目標温度から前記所定温度を加算又は減算のいずれか一方のみの演算で前記各空気調和機の冷・暖房運転時の前記演算目標温度を求めるので、冷房時と暖房時との運転開始の順番が逆になり、各空気調和機の冷房運転時間と暖房運転時間とのトータル運転時間が平準化されるため、各空気調和機間の運転寿命時間のトラブルが少なく、信頼性が向上した空気調和機の制御装置が得られる。
【0084】
また、ローテーション手段が、前記アドレス設定手段が設定した各空気調和機のアドレスを前記各空気調和機の所定空気調和機の一定運転時間後に順次ローテーションするので、各空気調和機の運転開始と停止の順番がローテーションされ、運転時間のバランスが良くなり、平準化が図られるため、更に確実に、運転寿命時間のトラブルが少なく、運転寿命期間が長く、信頼性が向上した使い勝手の良い空気調和機の制御装置が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における複数の空気調和機の動作を制御する該略構成図である
【図2】 この発明の実施の形態1における冷房運転時の代表動作表図である。
【図3】 この発明の実施の形態1における冷房運転時の代表動作グラフ図である。
【図4】 この発明の実施の形態1における暖房運転時の代表動作グラフ図である。
【図5】 この発明の実施の形態2における冷房運転時の代表動作グラフ図である。
【図6】 この発明の実施の形態2における暖房運転時の代表動作グラフ図である。
【図7】 この発明の実施の形態3における冷房運転時の代表動作グラフ図である。
【図8】 この発明の実施の形態4における冷房運転時の代表動作グラフ図である。
【図9】 この発明の実施の形態4における冷房運転時の代表動作グラフ図である。
【図10】 この発明の実施の形態5における代表ロテーション図である。
【図11】 従来の発明の空気調和機を示す斜視図。
【図12】 従来の発明のサーモスタット動作温度の一例を示す説明図。
【図13】 従来の発明の電気回路図。
【符号の説明】
1、2、3 空気調和装置、 4 リモートコントローラ、 4a 室温検出センサ、 4b 室内温度設定部、 10 通信線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner control device.
[0002]
[Prior art]
As a conventional control device for an air conditioner, there is, for example, Japanese Utility Model Publication No. 56-90638, and the configuration and operation of this publication are shown in FIGS.
8 is a perspective view showing a schematic configuration of the air conditioner, FIG. 12 is an explanatory view showing an example of the thermostat operating temperature of FIG. 11, and FIG. 13 is an electric circuit diagram of FIG.
[0003]
Next, the configuration and operation of this conventional air conditioner control device will be described.
First, as shown in FIG. 11, a plurality of air conditioners 1, 2, and 3 are attached to the upper portion of the wall 4. Among these air conditioners, the representative air conditioner 1 includes these air conditioners. Thermostats 5a, 5b, and 5c for individually operating or stopping 1, 2, and 3 are provided.
The thermostat 5 has an operating temperature range set for each air conditioner as follows, for example, so that the operation differs for each air conditioner 1, 2, and 3.
[0004]
That is, as shown in FIG. 12, the operating temperature range of these thermostats 5 is that when the thermostat 5a connected to the electric circuit of the air conditioner 1 reaches 27 ° C., its contact is closed (ON), and when it reaches 26 ° C. The thermostat 5b of the air conditioner 2 is set to be ON when the temperature is 28 ° C., and OFF when the temperature is 27 ° C., and the air conditioner 3 is set to be OFF. The thermostat 5c is set so that the contact is turned on at 29 ° C. and turned off at 28 ° C.
[0005]
When the power supply 6 is turned on in this state, the devices of the air conditioners 1, 2, and 3 shown in FIG. 13 (for example, the compressor motor 1a and the fan motors 1b and 1c of the air conditioner 1) are set to these settings. It will operate based on temperature.
That is, when the room temperature is 29 ° C. or higher, the set temperature of the thermostat 5 is 29 ° C. or lower, so that the respective contacts 5a, 5b and 5c are closed, and all the air conditioners 1, 2 and 3 are operated. It becomes a state.
[0006]
When the room temperature is 28 ° C. to 27 ° C., 5a and 5b are closed and 5c is opened, so that only the air conditioners 1 and 2 are in an operating state.
Similarly, in the case of 27 ° C. to 26 ° C., only the thermostat 5a is closed, so that only the air conditioner 1 is in an operating state.
When the temperature is 26 ° C. or lower, the thermostats 5a, 5b, and 5c are all open, so that all the air conditioners 1, 2, and 3 are stopped.
[0007]
Therefore, if this operation state is continued, the operation time of each air conditioner is biased and the life period is different. Therefore, in order to equalize the operation time, the thermostats 5a, 5b, 5c are air-conditioned at regular intervals. It was common to rotate regularly in the machines 1, 2, and 3.
[0008]
In addition, since it is common to adopt a constant set temperature in consideration of the function and price of the thermostat, when changing the set operating temperature of each air conditioner, the thermostats 5a, 5b, 5c Since each was a separate thermostat with a different operating temperature, the set temperature was changed by changing each one.
[0009]
Also, if there is a variation between these thermostats, the operation of each air conditioner is controlled at the varied set temperature, that is, the operation of each air conditioner is not controlled according to the actual load. For this reason, excessive cooling or heating was performed, or cooling or heating was not performed sufficiently.
[0010]
[Problems to be solved by the invention]
As described above, the conventional control device for an air conditioner has a problem that many thermostats corresponding to the number of each air conditioner are required.
[0011]
In addition, since the operation of each air conditioner is controlled according to the variation in the set temperature between the thermostats, there is a problem that the air conditioning is excessively air-cooled or not sufficiently air-conditioned.
[0012]
Further, when leveling the operation time of each air conditioner, it was necessary to bother to replace each thermostat.
[0013]
The present invention has been made to solve the above-described problems, and an object thereof is to obtain an economical control device for an air conditioner that quickly cools and heats a building in response to an indoor load with a small number of components. To do.
[0014]
It is another object of the present invention to obtain an energy-saving economical air conditioner control device that quickly cools and heats the air conditioner by reducing the number of operating air conditioners.
[0015]
It is another object of the present invention to obtain an air conditioner control device that has a long operation life time and improved reliability.
[0016]
[Means for Solving the Problems]
The control device for an air conditioner according to the present invention includes a plurality of air conditioners for air-conditioning a room, and address numbers of the respective air conditioners. Predetermined number Address setting means for sequentially setting from the above, and a control device for controlling the operation of each air conditioner based on the setting result of the address setting means, wherein the control device has an address number of each air conditioner And each predetermined temperature calculated from a preset temperature coefficient is added to or subtracted from the detected temperature in the room, and the calculated detected temperature of each air conditioner and the target temperature in the room are compared. The operation of each air conditioner is controlled.
[0017]
Moreover, the said control apparatus calculates | requires the said calculation detection temperature at the time of the cooling operation of each said air conditioner by subtracting the said predetermined temperature from the detection temperature in the said room | chamber interior.
[0018]
Moreover, the said control apparatus adds the said predetermined temperature from the detected temperature of the said inside, and calculates | requires the said calculated detected temperature at the time of the heating operation of each said air conditioner.
[0019]
Further, the control device obtains the calculated detected temperature during the cooling / heating operation of each air conditioner by calculating only one of addition or subtraction of the predetermined temperature from the detected temperature in the room.
[0020]
In addition, the air conditioners that air-condition the room and the address numbers of these air conditioners Predetermined number Address setting means for sequentially setting from the above, and a control device for controlling the operation of each air conditioner based on the setting result of the address setting means, wherein the control device has an address number of each air conditioner And each predetermined temperature calculated from a preset temperature coefficient is added to or subtracted from the indoor target temperature, and the calculated target temperature of each air conditioner thus added or subtracted is compared with the detected temperature in the room. The operation of each air conditioner is controlled.
[0021]
Moreover, the said control apparatus adds the said predetermined temperature from the indoor target temperature, and calculates | requires the said calculation target temperature at the time of the cooling operation of each said air conditioner.
[0022]
Moreover, the said control apparatus calculates | requires the said calculation target temperature at the time of the heating operation of each said air conditioner by subtracting the said predetermined temperature from the indoor target temperature.
[0023]
Further, the control device obtains the calculated target temperature during the cooling / heating operation of each air conditioner by calculating only one of addition and subtraction of the predetermined temperature from the indoor target temperature.
[0024]
Also, The control device is provided with a rotation means, and this Rotation means is the address of each air conditioner set by the address setting means Where Rotation is performed sequentially after a certain operating time of the constant air conditioner.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram for controlling operations of a plurality of air conditioners according to Embodiment 1 of the present invention.
In this figure, reference numerals 1, 2, and 3 denote air conditioners that are arranged on indoor walls and the like to air-condition the room, and these air conditioners 1, 2, and 3 include address setting switches 1a, 2a, and 3a, respectively. ing.
Reference numeral 4 denotes a remote controller that sets the operation / stop (power on / off) of the air conditioners 1, 2, and 3 and the room temperature. The remote controller 4 includes a room temperature detection sensor 4a that detects the room temperature, and An indoor temperature setting unit 4b is provided.
[0026]
Reference numeral 10 denotes a communication line that is provided between the remote controller 4 and / or the air conditioners 1, 2, and 3 and transmits communication therebetween.
The room temperature detection sensor 4a and the room temperature setting unit 4b are not necessarily in the remote controller 4.
[0027]
FIG. 2 is a diagram showing an operating state during the cooling operation of the air conditioners 1, 2, and 3 in FIG. 1. In this figure, TOR is the indoor target temperature set by the indoor temperature setting unit 4 b of the remote controller 4. , THS is the room temperature detected by the room temperature detection sensor 4a, TH0, TH1, TH2 is the address number of each air conditioner 1, 2, 3 and this address number can be set with an address setting switch described later, This is the address number of each air conditioner 1, 2, 3 set by a control device (not shown) in the exchange between each air conditioner 1, 2, 3.
[0028]
Next, the operation of this air conditioner will be described.
First, when the air conditioners 1, 2, and 3 are operated by operating the remote controller 4 (power-on), the indoor target temperature TOR set by the indoor temperature setting unit 4b of the remote controller 4 and the indoor detection temperature unit The indoor detected temperature THS detected in 4a is transmitted to the control device through the communication line 10, and the address number ADi set in the address setting units 1a, 2a, 3a of each of the air conditioners 1, 2, 3, for example, Since 0, 1, and 2 are also transmitted to the control device, the control device calculates the operation detection temperature THi of each air conditioner from the expression THi = THS−ADi * ΔT based on the indoor detection temperature THS and the address ADi. To do. (ΔT is a temperature coefficient set in advance, and this temperature coefficient may be a positive coefficient or a negative coefficient. In the first embodiment, the positive coefficient will be described.)
[0029]
Next, based on the calculation result, the control device compares the indoor target temperature TOR with the calculated detection temperature THi, and the air conditioners 1, 2, and 3 are operated based on the comparison result.
That is, for example, when the temperature coefficient ΔT is 0.5 ° C., the above equation becomes THi = THS−0.5 ° C. * ADi, and the calculated detection temperature is calculated from this equation, and the calculation result and the indoor target temperature TOR are calculated. And the operation of each air conditioner is controlled based on the comparison result.
[0030]
Therefore, when the indoor detection temperature THS is 24 ° C., the calculation detection temperature TH0 at address 0 is address 0, so that the calculation detection temperature becomes 24 ° C. when calculated using the above equation, and the calculation detection temperature TH1 at address 1 is 23.5. Since the calculation detection temperature at address 2 is 23 ° C., for example, when the indoor target temperature TOR is 24 ° C., the indoor target temperature TOR of all the air conditioners at addresses 0, 1, and 2 is within the calculation detection temperature. Therefore, the air conditioner is turned off and the all air conditioner is stopped.
[0031]
When the indoor detection temperature THS is 24.5 ° C., the calculation detection temperature TH0 at address 0 is 24.5 ° C., the calculation detection temperature TH1 at address 1 is 24 ° C., and the calculation detection temperature at address 2 is 23.5 ° C. Because the temperature becomes ℃, the indoor target temperature TOR (24 ℃) of the air conditioner 1 with address 0 exceeds the calculated detection temperature, so it is turned on, and the indoor target temperature TOR of the air conditioners 2 and 3 with address 1 and 2 is Since the temperature is within the calculated detection temperature, the air conditioner 1 is operated only in the OFF state.
[0032]
When the indoor detection temperature THS is 25 ° C., the calculation detection temperature TH0 at address 0 is 25 ° C., the calculation detection temperature TH1 at address 1 is 24.5 ° C., and the calculation detection temperature at address 2 is 24 ° C. The air conditioners 1 and 2 of the address 1 are turned on and the air conditioner 3 of the address 2 is turned off, so that the air conditioners 1 and 2 are operated.
[0033]
When the indoor detection temperature THS rises to 25.5 ° C., the calculation detection temperature TH0 at address 0 is 25.5 ° C., the calculation detection temperature TH1 at address 1 is 25 ° C., and the calculation detection temperature at address 2 is 24.5. Since the temperature exceeds 24 ° C. of the indoor target temperature TOR, all the air conditioners at addresses 0, 1, and 2 are turned on, and all the air conditioners 1, 2, and 3 are operated.
[0034]
When the indoor detected temperature THS is not changed, that is, when the indoor target temperature is changed to 25 ° C. while the THS is 25.5 ° C., only the air conditioner with the address 0 is obtained as described above. Since it becomes 25.5 degreeC exceeding indoor target temperature 25 degreeC, it will be set to ON and the air conditioner of the addresses 1 and 2 will be turned OFF, and the air conditioner 1 will be drive | operated.
[0035]
If the indoor target temperature TOR is further changed to 26 ° C, the air conditioner 1 with address 0 is also within the indoor target temperature 25 ° C, so the air conditioners with all addresses 0, 1, and 2 are turned off. All the air conditioners 1, 2, and 3 are stopped.
[0036]
Next, when the cooling mode is switched to the heating mode and the indoor detection temperature THS becomes equal to or higher than the calculated detection temperature THi of each air conditioner, the control device operates to turn off (stop) each air conditioner. That is, each air conditioner is controlled by the reverse operation of the cooling mode described above. That is, as shown in FIG.
[0037]
In addition, FIG. 3 shows the operation state of each air conditioner as a result of comparison between the calculated detected temperature THi calculated from the address of each air conditioner and the detected indoor temperature THS and the indoor target temperature TOR during the cooling / heating operation described above. 4 shows.
As can be seen from this figure, the number of operating air conditioners varies depending on the temperature difference between the calculated detected temperature THi calculated from the indoor detected temperature THS and the indoor target temperature TOR. In other words, it is possible to control the operating condition of the air conditioner without providing a thermo for each air conditioner, and eliminate the malfunction caused by the variation of the thermostat. A device is obtained.
[0038]
If the temperature coefficient is made positive and the predetermined temperature is subtracted from the detected temperature THS, the calculated detected temperature THi is always lower than the actual detected temperature THS, and the air conditioner is turned in a direction lower than the indoor target temperature TOR. Since it is in the direction to stop, the number of operating air conditioners during cooling is small, so an economical air conditioner control device that performs energy-saving cooling operation can be obtained.
Conversely, since the number of operating air conditioners during heating increases, it becomes a control device for an air conditioner that heats up quickly.
[0039]
Also, as can be seen from FIGS. 3 and 4, if the temperature coefficient is subtracted with the same positive value for both cooling and heating, the order in which the cooling and heating operations are started is reversed. Since the total operation time of the cooling operation time and the heating operation time of the machine is leveled, the trouble of the operation life time between the air conditioners is reduced, and an air conditioner control device with improved reliability can be obtained.
[0040]
Even if the temperature coefficient is positive during cooling and negative during heating, the operation time of each air conditioner cannot be leveled. However, a plurality of air conditioners are operated and controlled with one thermostat, and the indoor target temperature is set. Therefore, an economical control device for an air conditioner can be obtained.
[0041]
Embodiment 2. FIG.
The second embodiment relates to a control device for an air conditioner when the temperature coefficient of the cooling mode and the heating mode is made negative in the formula THi = THS−ADi * ΔT in the first embodiment.
Other configurations are substantially the same as those of the first embodiment.
[0042]
Next, this operation will be described with reference to FIGS.
First, the cooling operation mode will be described. For example, when the temperature coefficient of the cooling mode is −0.5 ° C., the relationship between the indoor detection temperature THS and the indoor target temperature TOR is as shown in FIG.
That is, since the temperature coefficient is set to −0.5 ° C., the above-described equation becomes THi = THS + 0.5 ° C. * ADi. For example, when the indoor detection temperature THS is 24 ° C., the calculation detection temperature TH0 at address 0 Since address 0 is calculated by the above formula, the calculation detection temperature is 24 ° C., the calculation detection temperature TH 1 of address 1 is 24.5 ° C., and the calculation detection temperature of address 2 is 25 ° C.
[0043]
Therefore, if the indoor target temperature TOR is 24 ° C., the calculation detection temperature of all the air conditioners at addresses 0, 1 and 2 exceeds the indoor target temperature TOR, so that it is turned on and the all air conditioner is operated.
[0044]
Next, when the indoor detection temperature THS decreases to 23.5 ° C. in this operating state, the calculation detection temperature TH0 at address 0 is 23.5 ° C., and the calculation detection temperature TH1 at address 1 is 24 ° C. Since the calculation detection temperature of the address 2 is 24.5 ° C., the calculation detection temperature of the air conditioner 1 of the address 0 is lower than the indoor target temperature TOR. , 3 exceeds the indoor target temperature TOR, and is turned on, and only the air conditioner 1 is stopped.
[0045]
When the indoor detection temperature THS further decreases to 23 ° C., the calculation detection temperature TH0 at address 0 is 23 ° C., the calculation detection temperature TH1 at address 1 is 23.5 ° C., and the calculation detection temperature at address 2 is At 24 ° C., the air conditioners 1 and 2 with addresses 0 and 1 are OFF, only the air conditioner 3 with address 2 is ON, and only the air conditioner 3 is operated.
[0046]
Furthermore, when the indoor detection temperature THS decreases to 22.5 ° C., the calculation detection temperature TH0 at address 0 is 22.5 ° C., the calculation detection temperature TH1 at address 1 is 23 ° C., and the calculation detection at address 2 is performed. Since the temperature is 23.5 ° C., all the air conditioners at addresses 0, 1, and 2 are turned off, and all the air conditioners 1, 2, and 3 are stopped.
[0047]
Next, the heating mode operation will be described with reference to FIG.
First, when the cooling mode is switched to the heating mode, the control device operates to turn off (stop) each air conditioner when the indoor detected temperature THS becomes equal to or higher than the calculated detection temperature THi of each air conditioner. That is, each air conditioner is controlled to perform the reverse operation of the cooling mode.
[0048]
Therefore, when the indoor detection temperature THS is 24 ° C., the calculation detection temperature TH0 at address 0 is address 0, so that the calculation detection temperature TH1 at address 1 is 24 ° C. When the indoor target temperature TOR is 24 ° C, the calculated detection temperature of all the air conditioners at addresses 0, 1, and 2 exceeds the indoor target temperature TOR. Therefore, the air conditioner is turned off and the all-air conditioner is stopped.
[0049]
Since the operation other than the above is the reverse operation of the cooling mode described above, a detailed description is omitted, but the results are summarized as shown in FIG.
As can be seen from this figure, the number of operating air conditioners varies depending on the temperature difference between the calculated detected temperature THi calculated from the indoor detected temperature THS and the indoor target temperature TOR. In other words, it is possible to control the operating condition of the air conditioner without providing a thermo for each air conditioner, and eliminate the malfunction caused by the variation of the thermostat. A device is obtained.
[0050]
Further, by making the temperature coefficient negative, the calculation detection temperature THi is always higher than the detection temperature THS. Therefore, since the number of operating air conditioners during heating is small, it is economical to perform energy saving operation during heating. An air conditioner control device is obtained.
In addition, since the number of operating air conditioners during cooling increases, a control device for an air conditioner that cools quickly can be obtained.
[0051]
Further, as can be seen from FIGS. 5 and 6, if the temperature coefficient is negative for both cooling and heating, the order in which the cooling and heating operations are started is reversed. Since the total operation time of the cooling operation time and the heating operation time is leveled, there is little trouble in the operation life time between the air conditioners, and an air conditioner control apparatus with improved reliability can be obtained.
[0052]
Embodiment 3 FIG.
In the third embodiment, the calculated detected temperature THi is calculated from the indoor detected temperature THS described in the first embodiment and the address numbers of the air conditioners 1, 2, and 3, and the calculated result and the indoor target temperature TOR are calculated. , And instead of controlling the operation of each of the air conditioners 1, 2, 3 based on the comparison result, the calculated target temperature TOri is calculated from the indoor target temperature TOR and the address number of each air conditioner 1, 2, 3. The calculation is performed, the calculation result TOri is compared with the indoor detection temperature THS, and the operations of the air conditioners 1, 2, and 3 are controlled based on the comparison result.
[0053]
That is, the indoor target temperature TOR set by the control device in the room temperature setting unit 4b of the remote controller 4 and the address numbers of the air conditioners 1, 2, and 3 set by the address setting switch are set to TOri = TOR−ADi * ΔT The calculation target temperature TOri is calculated, the calculation result TOri is compared with the indoor detection temperature THS, and the operations of the air conditioners 1, 2, and 3 are controlled based on the comparison result. .
(Note that ΔT is a temperature coefficient, and this temperature coefficient may be a positive coefficient or a negative coefficient, but in Embodiment 4, a positive coefficient will be described.)
Other configurations are almost the same as those of the first embodiment, and thus description thereof is omitted.
[0054]
Next, this operation will be described with reference to FIG.
First, in the cooling mode, when the temperature coefficient is set to a positive value, for example, 0.5 ° C., the indoor target temperature TO, which is a preset temperature, is 24 ° C. from the above-described formula TOri = TOR−0.5 ° C. * ADi. In this case, the indoor calculation target temperature TOR0 of the air conditioner 1 at address 0 is 24 ° C. from the address 0, the indoor calculation target temperature TOR1 at address 1 is 23.5 ° C., and the indoor calculation target temperature TOR2 at address 2 is 23 ° C.
[0055]
Therefore, when the indoor detection temperature THS is 24 ° C., the indoor calculation target temperature TOri of all the air conditioners at addresses 0, 1, and 2 is equal to or lower than the indoor detection temperature THS. In other words, the indoor detection temperature THS is calculated as the indoor calculation temperature THS. Since it exceeds the target temperature TOLi, it is turned on and the all air conditioner is operated.
[0056]
When the indoor detection temperature THS reaches 23.5 ° C., as shown in FIG. 8, only the indoor calculation target temperature TOri of the air conditioner 1 at address 0 exceeds the indoor detection temperature THS, so that the ON state is set. Since the indoor calculation target temperature TOri of the air conditioners 2 and 3 at addresses 1 and 2 is equal to or lower than the indoor detection temperature THS, the air conditioner 1 at address 0 is operated.
[0057]
Similarly, the indoor calculation target temperature TOLi is calculated, the calculated result TOLi is compared with the indoor detection temperature THS, and the operations of the air conditioners 1, 2, and 3 are controlled based on the comparison result.
[0058]
When the cooling mode is switched to the heating mode and the indoor detection temperature THS becomes equal to or higher than the calculated detection temperature THi of each air conditioner, the control device operates to turn off (stop) each air conditioner. That is, each air conditioner is controlled by the reverse operation of the cooling mode described above.
[0059]
As described above, the number of operating air conditioners is varied depending on the temperature difference between the calculated target temperature TOri calculated from the indoor detected temperature THS indoor target temperature TOR and the indoor detected temperature THS. In other words, it is possible to control the operating state of the air conditioner without providing a thermo for each air conditioner, and there is no malfunction due to variations in the thermostat. A machine control device is obtained.
[0060]
In addition, by making the temperature coefficient positive, the calculation target temperature TOri is always lower than the indoor target temperature TOR. Therefore, since the number of air conditioners operated during heating is reduced, the energy-saving operation during heating is economical. An air conditioner control device can be obtained.
In addition, since the number of operating air conditioners during cooling increases, a control device for an air conditioner that cools quickly can be obtained.
[0061]
Also, if the temperature coefficient is negative for both cooling and heating, the order in which the cooling and heating operations start will be reversed, so the total operation of the cooling and heating times of each air conditioner Since the time is leveled, the trouble of the operating life time between the air conditioners is reduced, and an air conditioner control device with improved reliability can be obtained.
[0062]
Embodiment 4 FIG.
In the fourth embodiment, the temperature coefficient of TOLi = TOR−ADi * ΔT in the third embodiment is negative in both the cooling mode and the heating mode.
Other configurations are substantially the same as those of the third embodiment.
[0063]
Next, this operation will be described with reference to FIG.
First, in the cooling mode, if the temperature coefficient is negative, for example, −0.5 ° C., the above-described equation becomes TOLi = TOR + ADi * ΔT, and thus each air conditioner 1 when the indoor target temperature TO is 24 ° C., When the indoor target temperature TOR of 2 and 3 is calculated, the calculation target temperature TOR0 of the air conditioner 1 at address 0 is 24 ° C., the indoor calculation target temperature TOR1 of address 1 is 24.5 ° C., and the indoor calculation at address 2 is performed. The target temperature TOR2 is 25 ° C.
[0064]
Therefore, when the indoor detection temperature THS is 24 ° C., the indoor calculation target temperature TOri of all the air conditioners at addresses 0, 1 and 2 exceeds the indoor detection temperature THS, so that the OFF state is established and the all air conditioner Stopped.
[0065]
Further, when the detected room temperature THS becomes 24.5 ° C., as shown in Table 3, only the indoor calculation target temperature TOri of the air conditioner 1 at address 0 becomes equal to or lower than the detected room temperature THS. Since the indoor calculation target temperature TOri of the air conditioners 2 and 3 at addresses 1 and 2 is below the indoor detection temperature THS, the air conditioner 1 is turned off and only the air conditioner 1 at address 0 is operated.
[0066]
Similarly, the indoor calculation target temperature TOLi is calculated, the calculated result TOLi is compared with the indoor detection temperature THS, and the operations of the air conditioners 1, 2, and 3 are controlled based on the comparison result. Therefore, it becomes as described in FIG. 8, and when this is graphed, FIG. 9 is obtained.
[0067]
When the cooling mode is switched to the heating mode and the indoor detection temperature THS becomes equal to or higher than the calculation target temperature TOri of each air conditioner, the control device operates to turn off (stop) each air conditioner. That is, each air conditioner is controlled by the reverse operation of the cooling mode described above.
[0068]
As described above, the number of operating air conditioners is varied depending on the temperature difference between the calculated target temperature TOri calculated from the indoor detected temperature THS indoor target temperature TOR and the indoor detected temperature THS. In other words, it is possible to control the operating state of the air conditioner without providing a thermo for each air conditioner, and there is no malfunction due to variations in the thermostat. A machine control device is obtained.
[0069]
In addition, by making the temperature coefficient negative, the calculation target temperature TOri always becomes higher than the indoor target temperature TOR, so that the number of air conditioner operations during cooling is reduced, so energy-saving operation is performed during heating. An economical air conditioner control device can be obtained.
Further, since the number of operating air conditioners during heating increases, a control device for an air conditioner that cools quickly can be obtained.
[0070]
Also, if the temperature coefficient is negative for both cooling and heating, the order in which the cooling and heating operations start will be reversed, so the total operation of the cooling and heating times of each air conditioner Since the time is leveled, there is little trouble in the operation life time between the air conditioners, and an air conditioner control device with improved reliability can be obtained.
[0071]
Embodiment 5 FIG.
In the fifth embodiment, for example, as shown in FIG. 10, in the first to fourth embodiments, the control device sets the ADi of each air conditioner every predetermined operating time (for example, every year as shown in FIG. Rotating means (not shown) that changes every 10 hours or every air conditioner operation) is provided.
That is, the address of each air conditioner 1, 2 and 3 set by the rotation means exchanged with the address setting switches 1a, 2a and 3a described in the first to fourth embodiments or between each air conditioner 1, 2, and 3. Change the number every predetermined operating time.
[0072]
Next, this operation will be described.
First, when the rotation means is provided in the first or second embodiment, the air conditioners 1, 2, and 3 are cooled or heated, and the address numbers of the air conditioners 1, 2, and 3 are rotated after a predetermined operation time. Since the means rotates, based on the changed address number, the control device calculates the operation detection temperature THi of each of the air conditioners 1, 2, and 3 from the detection result of the detection temperature THS, and the calculation result THi and the indoor target The temperature TOR is compared, and the operation of each of the air conditioners 1, 2, 3 is controlled based on the comparison result.
[0073]
On the other hand, in the case where the rotation means is provided in the third or fourth embodiment, each air conditioner 1, 2, 3 is similarly cooled or heated and the address number of each air conditioner 1, 2, 3 after a predetermined operation time. Since the rotation means rotates, the control device calculates the indoor operation target temperature TOri of each of the air conditioners 1, 2, and 3 from the indoor target temperature TOR based on the changed address number, and the calculation result TOLi and the room detection The temperature THS is compared, and the operation of each of the air conditioners 1, 2, and 3 is controlled based on the comparison result.
[0074]
Therefore, by rotating the address number, the order of starting and stopping the air conditioners 1, 2, and 3 is rotated as shown in FIG. 10 after a predetermined operating time. Regardless of the difference between the heating period and the temperature difference between day and night, the operating life time of each air conditioner can be leveled. An air conditioner control device that is long and has improved reliability and is easy to use can be obtained.
[0075]
【The invention's effect】
As described above, the present invention has the following effects.
[0076]
In the control device for an air conditioner according to the present invention, the control device adds or subtracts each predetermined temperature calculated from the address number of each air conditioner and a preset temperature coefficient to the detected indoor temperature. Since the operation detection operation of each air conditioner is controlled by comparing the calculated detection temperature of each air conditioner with the target temperature in the room, it is only necessary to detect the room temperature, that is, with less thermostats than the number of air conditioners. Since the operation of each air conditioner can be controlled, it is possible to obtain an economical air conditioner control apparatus that quickly cools and heats the air in response to the indoor load with a small number of components.
[0077]
In addition, since the control device subtracts the predetermined temperature from the detected temperature in the room to obtain the calculated detected temperature during the cooling operation of each air conditioner, the number of operating air conditioners during cooling is small. An economical air conditioner control device that performs energy-saving cooling operation can be obtained.
[0078]
In addition, since the control device adds the predetermined temperature from the detected temperature in the room to obtain the calculated detected temperature during the heating operation of each air conditioner, the number of air conditioner operations during heating is reduced. An economical air conditioner control device that performs energy-saving heating operation can be obtained.
[0079]
Further, since the control device obtains the calculated detection temperature during the cooling / heating operation of each air conditioner by calculating only one of addition or subtraction of the predetermined temperature from the detected temperature in the room, The order of the start of operation during heating and heating is reversed, and the total operating time between the cooling operation time and heating operation time of each air conditioner is leveled, so troubles in the operating life time between each air conditioner There can be obtained a control device for an air conditioner with a small amount of reliability.
[0080]
In addition, the control device adds or subtracts each predetermined temperature calculated from the address number of each air conditioner and a preset temperature coefficient to the indoor target temperature, and the calculated target temperature of each air conditioner obtained by addition or subtraction. And the detected temperature in the room are controlled to control the operation of each air conditioner, so that only the indoor temperature is detected, that is, the operation of each air conditioner is controlled with less thermostats than the number of air conditioners. Since it becomes controllable, an economical control device for an air conditioner that quickly cools and heats the air in response to an indoor load can be obtained with a small number of components.
[0081]
Further, since the control device adds the predetermined temperature from the target temperature in the room to obtain the calculation target temperature at the time of the cooling operation of each air conditioner, the number of air conditioner operations at the time of cooling decreases. An economical air conditioner control device that performs energy-saving cooling operation can be obtained.
[0082]
In addition, since the control device subtracts the predetermined temperature from the indoor target temperature to obtain the calculation target temperature during the heating operation of each air conditioner, the number of air conditioner operations during heating is small, An economical air conditioner control device that performs energy-saving heating operation can be obtained.
[0083]
Further, the control device obtains the calculated target temperature at the time of cooling / heating operation of each air conditioner by calculating only one of addition or subtraction of the predetermined temperature from the target temperature in the room. The order of the start of operation during heating and heating is reversed, and the total operating time between the cooling operation time and heating operation time of each air conditioner is leveled, so troubles in the operating life time between each air conditioner There can be obtained a control device for an air conditioner with a small amount of reliability.
[0084]
Further, the rotation means sequentially rotates the address of each air conditioner set by the address setting means after a predetermined operation time of the predetermined air conditioner of each air conditioner. Since the order is rotated, the balance of operation time is improved, and leveling is achieved, more reliable, less trouble of operation life time, longer operation life time, improved reliability and easy-to-use air conditioner A control device is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram for controlling operations of a plurality of air conditioners according to Embodiment 1 of the present invention;
FIG. 2 is a representative operation table in the cooling operation according to Embodiment 1 of the present invention.
FIG. 3 is a representative operation graph during cooling operation according to Embodiment 1 of the present invention.
FIG. 4 is a representative operation graph during heating operation according to Embodiment 1 of the present invention.
FIG. 5 is a representative operation graph during cooling operation according to Embodiment 2 of the present invention.
FIG. 6 is a representative operation graph for heating operation according to Embodiment 2 of the present invention.
FIG. 7 is a representative operation graph during cooling operation in Embodiment 3 of the present invention.
FIG. 8 is a representative operation graph during cooling operation in Embodiment 4 of the present invention.
FIG. 9 is a representative operation graph during cooling operation in Embodiment 4 of the present invention.
FIG. 10 is a representative rotation diagram according to the fifth embodiment of the present invention.
FIG. 11 is a perspective view showing an air conditioner of a conventional invention.
FIG. 12 is an explanatory diagram showing an example of a thermostat operating temperature of a conventional invention.
FIG. 13 is an electric circuit diagram of a conventional invention.
[Explanation of symbols]
1, 2, 3 Air conditioner, 4 Remote controller, 4a Room temperature detection sensor, 4b Indoor temperature setting part, 10 Communication line.

Claims (9)

室内を空調する複数の空気調和機と、これら各空気調和機のアドレス番号を所定の番号から順次設定するアドレス設定手段と、このアドレス設定手段の設定結果に基づいて前記各空気調和機の運転動作を制御する制御装置と、を備え、前記制御装置が、前記各空気調和機のアドレス番号と予め設定された温度係数から演算した各所定温度を前記室内の検出温度に加算又は減算し、この加算又は減算した前記各空気調和機の演算検出温度と前記室内の目標温度とを比較して前記各空気調和機の運転動作を制御することを特徴とする空気調和機の制御装置。A plurality of air conditioners that air-condition the room, address setting means for sequentially setting the address numbers of these air conditioners from a predetermined number, and the operation of each air conditioner based on the setting result of the address setting means A control device for controlling the temperature, and the control device adds or subtracts each predetermined temperature calculated from the address number of each air conditioner and a preset temperature coefficient to the detected temperature in the room, and adds this Alternatively, the controller of the air conditioner controls the operation of each air conditioner by comparing the subtracted calculated temperature of each air conditioner with the indoor target temperature. 前記制御装置が、前記室内の検出温度から前記所定温度を減算して前記各空気調和機の冷房運転時の前記演算検出温度を求めることを特徴とするする請求項1に記載の空気調和機の制御装置。2. The air conditioner according to claim 1, wherein the control device subtracts the predetermined temperature from the detected temperature in the room to obtain the calculated detected temperature during a cooling operation of each air conditioner. Control device. 前記制御装置が、前記室内の検出温度から前記所定温度を加算して前記各空気調和機の暖房運転時の前記演算検出温度を求めることを特徴とする請求項1に記載の空気調和機の制御装置。2. The air conditioner control according to claim 1, wherein the control device adds the predetermined temperature from the detected temperature in the room to obtain the calculated detected temperature during heating operation of each air conditioner. apparatus. 前記制御装置が、前記室内の検出温度から前記所定温度を加算又は減算のいずれか一方のみの演算で前記各空気調和機の冷・暖房運転時の前記演算検出温度を求めることを特徴とする請求項1に記載の空気調和機の制御装置。The said control apparatus calculates | requires the said calculation detection temperature at the time of the cooling / heating operation of each said air conditioner only by the calculation of either one of addition or subtraction of the said predetermined temperature from the detection temperature in the said room. Item 2. The air conditioner control device according to Item 1. 室内を空調する複数の空気調和機と、これら各空気調和機のアドレス番号を所定の番号から順次設定するアドレス設定手段と、このアドレス設定手段の設定結果に基づいて前記各空気調和機の運転動作を制御する制御装置と、を備え、前記制御装置が、前記各空気調和機のアドレス番号と予め設定された温度係数から演算した各所定温度を前記室内の目標温度に加算又は減算し、この加算又は減算した前記各空気調和機の演算目標温度と前記室内の検出温度とを比較して前記各空気調和機の運転動作を制御することを特徴とする空気調和機の制御装置。A plurality of air conditioners that air-condition the room, address setting means for sequentially setting the address numbers of these air conditioners from a predetermined number, and the operation of each air conditioner based on the setting result of the address setting means A control device for controlling the temperature, and the control device adds or subtracts each predetermined temperature calculated from the address number of each air conditioner and a preset temperature coefficient to the target temperature in the room, and adds this Alternatively, the controller of the air conditioner controls the operation of each air conditioner by comparing the subtracted calculation target temperature of each air conditioner with the detected temperature in the room. 前記制御装置が、前記室内の目標温度から前記所定温度を加算して前記各空気調和機の冷房運転時の前記演算目標温度を求めることを特徴とする請求項5に記載の空気調和機の制御装置。6. The control of an air conditioner according to claim 5, wherein the control device obtains the calculated target temperature during cooling operation of each air conditioner by adding the predetermined temperature from the indoor target temperature. apparatus. 前記制御装置が、前記室内の目標温度から前記所定温度を減算して前記各空気調和機の暖房運転時の前記演算目標温度を求めることを特徴とする請求項5に記載の空気調和機の制御装置。The air conditioner control according to claim 5, wherein the control device subtracts the predetermined temperature from the indoor target temperature to obtain the calculated target temperature during heating operation of each air conditioner. apparatus. 前記制御装置が、前記室内の目標温度から前記所定温度を加算又は減算のいずれか一方のみの演算で前記各空気調和機の冷・暖房運転時の前記演算目標温度を求めることを特徴とする請求項5に記載の空気調和機の制御装置。The said control apparatus calculates | requires the said calculation target temperature at the time of the cooling / heating operation of each said air conditioner only by the calculation of either one of addition or subtraction of the said predetermined temperature from the said indoor target temperature. Item 6. The air conditioner control device according to Item 5. 前記制御装置にローテーション手段を設け、このローテーション手段が、前記アドレス設定手段が設定した各空気調和機のアドレスを所定空気調和機の一定運転時間後に順次ローテーションすることを特徴とする請求項1から9までのいずれかに記載の空気調和機の制御装置。 Rotation means provided in the control device, the rotation means, claim 1, characterized in that the sequential rotation after a certain operating time of the address setting means at the address of each air conditioner set constant air conditioner The control apparatus of the air conditioner in any one of 9.
JP2000047449A 2000-02-24 2000-02-24 Air conditioner control device Expired - Fee Related JP3637831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047449A JP3637831B2 (en) 2000-02-24 2000-02-24 Air conditioner control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047449A JP3637831B2 (en) 2000-02-24 2000-02-24 Air conditioner control device

Publications (2)

Publication Number Publication Date
JP2001241739A JP2001241739A (en) 2001-09-07
JP3637831B2 true JP3637831B2 (en) 2005-04-13

Family

ID=18569698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047449A Expired - Fee Related JP3637831B2 (en) 2000-02-24 2000-02-24 Air conditioner control device

Country Status (1)

Country Link
JP (1) JP3637831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190546A (en) * 2013-03-26 2014-10-06 Hitachi Appliances Inc Air conditioning system
US20170082309A1 (en) * 2014-06-17 2017-03-23 Mitsubishi Electric Corporation Air-conditioning system
CN112880137A (en) * 2021-01-21 2021-06-01 青岛海尔空调器有限总公司 Control method, system and device for air conditioner

Also Published As

Publication number Publication date
JP2001241739A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP4449149B2 (en) Air conditioner
JP2015001310A (en) Air conditioner
JPH0849908A (en) Dew-condensation preventive device of air conditioner and its control method
JP6493178B2 (en) Air conditioner
JPS6225738U (en)
JP2001304645A (en) Air-conditioning apparatus
KR910000263B1 (en) Room air conditioner
JP2000257939A (en) Air conditioner
JP2007263425A (en) Dehumidifying air conditioning system
JP2012017868A (en) Total heat exchange type ventilation apparatus
JPH1183113A (en) Air conditioner
JP3637831B2 (en) Air conditioner control device
JPH1183112A (en) Air conditioner
JP4027183B2 (en) Air conditioner
JP2001193985A (en) Air conditioner
JP2004176936A (en) Air-conditioner and its operation control method, and air-conditioning system
JP3785866B2 (en) Air conditioner
JP2001355890A (en) Air conditioner
JP5375282B2 (en) Ceiling fan
JPS5916185B2 (en) Air conditioner control device
JPH11287494A (en) Air conditioner
JP2000179919A (en) Air conditioner
WO2024116241A1 (en) Air-conditioning device, air-conditioning control device, air-conditioning system, and air-conditioning control method
JP2001235215A (en) Controller for air conditioner
JP2002061934A (en) Air cnoditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

R151 Written notification of patent or utility model registration

Ref document number: 3637831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees