JP3637524B2 - Underground continuous wall joint structure - Google Patents

Underground continuous wall joint structure Download PDF

Info

Publication number
JP3637524B2
JP3637524B2 JP02655098A JP2655098A JP3637524B2 JP 3637524 B2 JP3637524 B2 JP 3637524B2 JP 02655098 A JP02655098 A JP 02655098A JP 2655098 A JP2655098 A JP 2655098A JP 3637524 B2 JP3637524 B2 JP 3637524B2
Authority
JP
Japan
Prior art keywords
joint
underground continuous
concrete
continuous wall
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02655098A
Other languages
Japanese (ja)
Other versions
JPH11209968A (en
Inventor
正信 黒田
孝典 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP02655098A priority Critical patent/JP3637524B2/en
Publication of JPH11209968A publication Critical patent/JPH11209968A/en
Application granted granted Critical
Publication of JP3637524B2 publication Critical patent/JP3637524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は地中連続壁の継手構造に係り、特にエレメント間の継手部におけるせん断耐力や曲げじん性を向上させ、継手部での破壊が生じないようにした地中連続壁の継手構造に関する。
【0002】
【従来の技術】
一般に地中連続壁の先行エレメントと後行エレメント間の継手部には剛結継手が採用されている。この剛結継手の継手構造としては従来種々の構造が提案されている。図5は完成した状態での従来の地中連続壁50の継手部53の一例を上方から見た部分断面図である。同図に示したように通常の継手構造では先行エレメント51の鉄筋かご54の壁幅方向の端面には後行エレメント52との仕切りとなる接合鋼板55が取り付けられている。このため、先行エレメント51と後行エレメント52は継手部53でコンクリート壁体としての一体化が遮断されてしまう。そこで、継手部53において地中連続壁50に作用する曲げモーメント及び面内せん断力、面外せん断力を確実に伝達させるために、図5では接合鋼板55を貫通する水平継手筋56とシアコネクタ57とが使用されている。この水平継手筋56は先行エレメント51の鉄筋かご54の水平鉄筋58を接合鋼板55の端面から所定の重ね長を確保して突出させたもので、後に溝内に建て込まれる後行エレメント52の鉄筋かご59の水平鉄筋60とにより重ね継手61を構成する。なお、この重ね継手61の重ね部分では後行エレメント52の水平鉄筋60は折り曲げられ、先行エレメント51の水平継手筋56の内側に所定の離れで配筋される。
【0003】
【発明が解決しようとする課題】
このように地中連続壁のエレメント間の継手部の重ね継手では、鉄筋同士が一体に束ねられた重ね継手とならず、また離れた鉄筋も安定液内に存置されているため、鉄筋表面に粘土等が付着して付着力が十分得られない状態にある。このため、継手構造の設計では気中で打設されるコンクリート部材の重ね長より十分大きな重ね長(la)とすることが求められている。通常は鉄筋直径(φ)の40倍程度(la=40φ)の重ね長をとるように規定されている。しかしながら、大地震等が発生し、建物基礎等としての地中連続壁に過大な曲げモーメントやせん断力が作用すると、弱部である継手部にひび割れが発生し、ひび割れは荷重増加に伴い、図5に示したように水平鉄筋に沿って壁体内部で壁厚方向を貫通するように成長し、最終的に重ね継手からぜい性的な付着割裂破壊によって破壊してしまうおそれがある。
【0004】
また、重ね継手長が長くなることにより、地盤の掘削開放長が大きくなるため、溝壁が崩落する危険性が増加する。
【0005】
そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、せん断耐力、曲げじん性が十分確保できるようにし、また溝壁の安定を保持できるようにした地中連続壁の継手構造を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は地中連続壁が構築される溝内の先行エレメントの鉄筋かごから延出した水平継手筋と、該先行エレメントに隣接して溝内に建て込まれた後行エレメントの鉄筋かごから延出した水平鉄筋とにより内部に重ね継手が形成され、前記各鉄筋かごの端面に取り付けられた接合鋼板によって画成された継手空間内に繊維補強材を混入した超高強度コンクリートを打設するようにしたことを特徴とする。
【0007】
これにより、継手部の耐力は大幅に増加し、継手部での破壊を生じないようにすることができる。
【0008】
このとき前記継手空間を、前記2枚の対向した接合鋼板と、溝壁に沿って前記接合鋼板に取り付けられた側鋼板とで画成することが好ましい。
【0009】
【発明の実施の形態】
以下、本発明の地中連続壁の継手構造の一実施の形態について、添付図面を参照して説明する。
図1に示された地中連続壁1の継手構造10には先行エレメント11の接合鋼板12と、この接合鋼板12と所定の離れをとって対向する位置に接合鋼板を有する後行エレメント21が示されている。後行エレメント21の接合鋼板22は先行エレメント11と同様に鉄筋かご23の水平鉄筋24を貫通させた状態で鉄筋かご23に一体的に取り付けられている。この2枚の接合鋼板12、22間には水平継手筋13、水平鉄筋24による重ね継手35を構成する継手空間30が形成されている。この継手空間30内には超高強度繊維補強コンクリート31が打設される。
【0010】
この継手空間30内に打設されるコンクリートの圧縮強度は壁体本体に比べ十分に高い強度とし、fc’=800〜1000kg/cm2以上の超高強度コンクリートとすることが好ましい。超高強度コンクリートとしては高性能減水剤を使用したコンクリートとすることが好ましい。また、混和材を用いる手段としてシリカフュームを所定の配合比で添加したシリカフュームコンクリートとすることが好ましい。
【0011】
また、繊維補強コンクリート31のマトリクスとしての超高強度コンクリート中には繊維補強材としての短鋼繊維32が所定の混入率で混入されている。本実施の形態では、直径φf=0.4mm、長さLf=12mmのスチールファイバーが混入されている。本発明ではせん断耐力の向上、高強度コンクリートの圧縮強度とのバランスとを勘案して繊維混入率Vfを6%(容積%)に設定した。これにより、コンクリート引張強度を大きくし、コンクリートひび割れに起因する付着割裂破壊を防ぐことができる。混入する繊維補強材としてはこの他、炭素繊維、アラミド樹脂繊維、ビニロン樹脂繊維等を適宜選択することができる。
このように超高強度コンクリート31に短鋼繊維32を混入させることにより継手部でのじん性、ひび割れ分散性、せん断強度の向上を図ることができる。
【0012】
各エレメント11、21の壁体コンクリート14、27と継手空間30の超高強度コンクリート31の打設手順について、図2、図3を参照して説明する。
先行エレメント11の壁体コンクリート14は従来と同様にトレミーコンクリートとして打設される。次に、図2に示したように接合鋼板22が端部に設けられた後行エレメント21の鉄筋かご23を溝内に建て込む。その後、図3に示したように後行エレメント21の壁体コンクリート27をトレミーコンクリートとして打設する。このとき先行エレメント11及び後行エレメント21に使用するコンクリートの強度には同等のものが使用されている。さらに、先行エレメント11及び後行エレメント21の壁体コンクリート14、27が打設された後に継手空間30内に超高強度コンクリート31を打設する。
【0013】
この継手構造10ではコンクリート強度が高く、ひび割れ分散性が高いため、従来利用していた重ね継手よりも継手構造10の長さを短くでき、地盤の掘削開放長を短くすることができ、溝壁の安定性を向上させることが可能となる。この実施の形態では重ね長(la)として水平鉄筋の直径(φ)の約10倍(la=10φ)を見込むことができ、継手構造10の全長Ljとしては水平鉄筋直径(φ)の約20倍(20φ)まで短くすることが可能である。
【0014】
図4は継手構造10のコンクリートを打設する前の継手空間30の構造を示したものである。超高強度コンクリートを打設する際は継手空間30に突出している水平継手筋(図示せず)に付着しているスライムを継手清掃機(図示せず)で除去するとともに、必要に応じて安定液を清水と置換してコンクリート打設を行う。この場合、溝壁の安定を確保するために側鋼板36、37を設けてもよい。また、継手空間30の支保材として深さ方向に所定の間隔をあけて鋼製ストラット38を配置してもよい。このように変形防止のために補剛された継手空間30内に繊維補強材32が混入された超高強度コンクリートを打設する。ストラット38は後行エレメントの水平鉄筋(図示せず)が挿入された際に干渉しない位置に配置しておくことはいうまでもない。
【図面の簡単な説明】
【図1】本発明による地中連続壁の継手構造の一実施の形態を示した部分断面図。
【図2】図1に示した継手構造の施工手順を示した部分断面図(その1)。
【図3】図1に示した継手構造の施工手順を示した部分断面図(その2)。
【図4】継手空間の構成例を示した部分平面図。
【図5】従来の地中連続壁の継手構造の一例を示した部分断面図。
【符号の説明】
1 地中連続壁
10 継手構造
11 先行エレメント
12,22 接合鋼板
13 水平継手筋
21 後行エレメント
24 水平鉄筋
30 継手空間
31 超高強度コンクリート
32 繊維補強材
36,37 側鋼板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joint structure of underground continuous walls, and more particularly to a joint structure of underground continuous walls that improves shear strength and bending toughness at joints between elements and prevents breakage at joints.
[0002]
[Prior art]
Generally, a rigid joint is employed at the joint between the leading element and the trailing element of the underground continuous wall. Conventionally, various structures have been proposed as the joint structure of the rigid joint. FIG. 5 is a partial sectional view of an example of the joint portion 53 of the conventional underground continuous wall 50 in a completed state as viewed from above. As shown in the figure, in a normal joint structure, a joining steel plate 55 serving as a partition from the succeeding element 52 is attached to the end face of the reinforcing bar 54 of the preceding element 51 in the wall width direction. For this reason, the preceding element 51 and the succeeding element 52 are blocked from being integrated as a concrete wall body at the joint portion 53. Therefore, in order to reliably transmit the bending moment, the in-plane shear force, and the out-of-plane shear force acting on the underground continuous wall 50 in the joint portion 53, in FIG. 57 is used. This horizontal joint bar 56 is obtained by projecting the horizontal bar 58 of the reinforcing bar 54 of the preceding element 51 from the end face of the joining steel plate 55 with a predetermined overlap length, and the rear element 52 to be built into the groove later. A lap joint 61 is constituted by the horizontal reinforcing bar 60 of the reinforcing bar 59. Note that, in the overlapping portion of the lap joint 61, the horizontal reinforcing bar 60 of the succeeding element 52 is bent and arranged at a predetermined distance inside the horizontal joint bar 56 of the preceding element 51.
[0003]
[Problems to be solved by the invention]
In this way, the lap joint of the joint part between the elements of the underground continuous wall is not a lap joint in which the reinforcing bars are bundled together, and the separated reinforcing bars are also placed in the stable liquid, It is in a state where clay or the like is adhered and sufficient adhesion cannot be obtained. For this reason, in the design of the joint structure, it is required that the overlap length (la) be sufficiently larger than the overlap length of the concrete member placed in the air. Normally, it is defined to have an overlap length of about 40 times (la = 40φ) the diameter of the reinforcing bar (φ). However, if a large earthquake or the like occurs and an excessive bending moment or shearing force acts on the underground continuous wall as a building foundation, cracks occur in the weak joints. As shown in FIG. 5, it grows so as to penetrate the wall thickness direction inside the wall body along the horizontal rebar, and there is a risk that it will eventually break from the lap joint due to brittle adhesion split fracture.
[0004]
In addition, since the length of the lap joint is increased, the excavation open length of the ground is increased, thereby increasing the risk of the groove wall collapsing.
[0005]
Therefore, the object of the present invention is to solve the problems of the prior art described above, ensure sufficient shear strength and bending toughness, and maintain the stability of the groove wall. To provide a structure.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention was built in a groove adjacent to the preceding element and a horizontal joint extending from the reinforcing bar of the preceding element in the groove in which the underground continuous wall is constructed. A lap joint is formed inside by a horizontal reinforcing bar extending from the reinforcing bar cage of the succeeding element, and a fiber reinforcing material is mixed in the joint space defined by the joining steel plate attached to the end surface of each reinforcing bar cage. It is characterized by placing high-strength concrete.
[0007]
Thereby, the yield strength of the joint portion is significantly increased, and it is possible to prevent the joint portion from being broken.
[0008]
At this time, it is preferable that the joint space is defined by the two opposed bonded steel plates and side steel plates attached to the bonded steel plates along the groove walls.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a joint structure for underground continuous walls according to the present invention will be described with reference to the accompanying drawings.
The joint structure 10 of the underground continuous wall 1 shown in FIG. 1 includes a joined steel plate 12 of a preceding element 11 and a trailing element 21 having a joined steel plate at a position facing the joined steel plate 12 with a predetermined distance. It is shown. The joining steel plate 22 of the trailing element 21 is integrally attached to the reinforcing bar 23 in a state where the horizontal reinforcing bar 24 of the reinforcing bar 23 is penetrated in the same manner as the leading element 11. A joint space 30 constituting a lap joint 35 formed by the horizontal joint bars 13 and the horizontal reinforcing bars 24 is formed between the two bonded steel plates 12 and 22. An ultrahigh strength fiber reinforced concrete 31 is placed in the joint space 30.
[0010]
The compressive strength of the concrete cast in the joint space 30 is preferably sufficiently higher than that of the wall body, and is preferably ultrahigh strength concrete with fc ′ = 800 to 1000 kg / cm 2 or more. It is preferable to use a high-performance water reducing agent as the ultra high strength concrete. Moreover, it is preferable to set it as the silica fume concrete which added the silica fume by the predetermined | prescribed compounding ratio as a means using an admixture.
[0011]
Moreover, in the ultra high strength concrete as a matrix of the fiber reinforced concrete 31, short steel fibers 32 as a fiber reinforcing material are mixed at a predetermined mixing rate. In the present embodiment, a steel fiber having a diameter φf = 0.4 mm and a length Lf = 12 mm is mixed. In the present invention, the fiber mixing rate Vf is set to 6% (volume%) in consideration of the balance between improvement in shear strength and compressive strength of high-strength concrete. Thereby, concrete tensile strength can be enlarged and the adhesion split fracture resulting from a concrete crack can be prevented. In addition, carbon fiber, aramid resin fiber, vinylon resin fiber, and the like can be appropriately selected as the fiber reinforcing material to be mixed.
Thus, by mixing the short steel fibers 32 into the ultra-high-strength concrete 31, it is possible to improve the toughness, crack dispersibility, and shear strength at the joint.
[0012]
The placement procedure of the wall concrete 14 and 27 of each element 11 and 21 and the ultra high strength concrete 31 of the joint space 30 will be described with reference to FIGS.
The wall concrete 14 of the preceding element 11 is cast as tremy concrete as in the prior art. Next, as shown in FIG. 2, the reinforcing steel basket 23 of the succeeding element 21 in which the bonded steel plate 22 is provided at the end is built in the groove. After that, as shown in FIG. 3, the wall concrete 27 of the trailing element 21 is placed as treme concrete. At this time, the same strength is used for the concrete used for the leading element 11 and the trailing element 21. Further, after the wall body concrete 14, 27 of the preceding element 11 and the succeeding element 21 is placed, the ultra high strength concrete 31 is placed in the joint space 30.
[0013]
Since this joint structure 10 has high concrete strength and high crack dispersibility, the length of the joint structure 10 can be made shorter than the conventional lap joint, and the excavation open length of the ground can be shortened. It becomes possible to improve stability. In this embodiment, the overlap length (la) can be expected to be about 10 times the diameter (φ) of the horizontal rebar (la = 10φ), and the total length Lj of the joint structure 10 is about 20 times the horizontal rebar diameter (φ). It is possible to shorten to double (20φ).
[0014]
FIG. 4 shows the structure of the joint space 30 before the concrete of the joint structure 10 is placed. When placing ultra-high-strength concrete, the slime adhering to the horizontal joint bars (not shown) protruding into the joint space 30 is removed by a joint cleaner (not shown) and stable as necessary. Replace the liquid with clean water and cast concrete. In this case, side steel plates 36 and 37 may be provided to ensure the stability of the groove wall. Further, the steel struts 38 may be arranged at predetermined intervals in the depth direction as support members for the joint space 30. In this way, ultra-high-strength concrete in which the fiber reinforcing material 32 is mixed is placed in the joint space 30 stiffened to prevent deformation. Needless to say, the strut 38 is disposed at a position where it does not interfere when a horizontal reinforcing bar (not shown) of the trailing element is inserted.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an embodiment of a joint structure for underground continuous walls according to the present invention.
FIG. 2 is a partial cross-sectional view showing a construction procedure of the joint structure shown in FIG. 1 (part 1).
FIG. 3 is a partial cross-sectional view (part 2) showing a construction procedure of the joint structure shown in FIG. 1;
FIG. 4 is a partial plan view showing a configuration example of a joint space.
FIG. 5 is a partial cross-sectional view showing an example of a joint structure of a conventional underground continuous wall.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Underground continuous wall 10 Joint structure 11 Leading element 12,22 Joining steel plate 13 Horizontal joint reinforcement 21 Subsequent element 24 Horizontal reinforcement 30 Joint space 31 Super high-strength concrete 32 Fiber reinforcement 36,37 Side steel plate

Claims (2)

地中連続壁が構築される溝内の先行エレメントの鉄筋かごから延出した水平継手筋と、該先行エレメントに隣接して溝内に建て込まれた後行エレメントの鉄筋かごから延出した水平鉄筋とにより内部に重ね継手が形成され、前記各鉄筋かごの端面に取り付けられた接合鋼板によって画成された継手空間内に繊維補強材を混入した超高強度コンクリートを打設するようにしたことを特徴とする地中連続壁の継手構造。Horizontal joint bars extending from the reinforcing bar cage of the preceding element in the groove where the underground continuous wall is constructed, and horizontal bars extending from the reinforcing bar cage of the succeeding element built in the groove adjacent to the preceding element A lap joint was formed inside with the reinforcing bars, and ultra-high-strength concrete mixed with fiber reinforcements was placed in the joint space defined by the bonded steel plates attached to the end faces of the reinforcing bars. An underground continuous wall joint structure characterized by 前記継手空間は前記2枚の対向した接合鋼板と、溝壁に沿って前記接合鋼板に取り付けられた側鋼板とで画成されたことを特徴とする請求項1記載の地中連続壁の継手構造。The joint wall of the underground continuous wall according to claim 1, wherein the joint space is defined by the two opposing joined steel plates and side steel plates attached to the joined steel plates along a groove wall. Construction.
JP02655098A 1998-01-22 1998-01-22 Underground continuous wall joint structure Expired - Fee Related JP3637524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02655098A JP3637524B2 (en) 1998-01-22 1998-01-22 Underground continuous wall joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02655098A JP3637524B2 (en) 1998-01-22 1998-01-22 Underground continuous wall joint structure

Publications (2)

Publication Number Publication Date
JPH11209968A JPH11209968A (en) 1999-08-03
JP3637524B2 true JP3637524B2 (en) 2005-04-13

Family

ID=12196639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02655098A Expired - Fee Related JP3637524B2 (en) 1998-01-22 1998-01-22 Underground continuous wall joint structure

Country Status (1)

Country Link
JP (1) JP3637524B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425773C (en) * 2006-06-12 2008-10-15 中铁隧道集团有限公司 Grille type connection method of rigid joint for underground continuous wall
JP4840297B2 (en) * 2007-08-31 2011-12-21 株式会社大林組 Construction method of underground structure, underground structure
JP2009114695A (en) * 2007-11-05 2009-05-28 Ohbayashi Corp Underground structure
KR101037774B1 (en) 2008-09-16 2011-05-27 박길석 Joint structure for diaphragm wall and method of constructing diaphragm wall using the same
CN102943486B (en) * 2012-10-30 2014-07-09 福州市第三建筑工程公司 Precast pressed-in underground continuous wall and construction method thereof

Also Published As

Publication number Publication date
JPH11209968A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
KR101071273B1 (en) Precast concrete column using steel material, Precast concrete beam using steel material and Precast reinforced concrete construction using the same
JP4390494B2 (en) Girder and floor slab joining structure and girder and floor slab joining method
JP3637524B2 (en) Underground continuous wall joint structure
KR20100043731A (en) Precast concrete column using steel material and precast reinforced concrete construction using the same
JP2003041708A (en) Member for structure
JP3952449B2 (en) Bridge superstructure
JPH05311747A (en) Pole-beam structure
JP2008144459A (en) Slab form and method of constructing composite floor slab
CN115012670B (en) Multi-layer anchoring connection method for fiber reinforced concrete beam column node
JP2698959B2 (en) Rigid joint of underground continuous wall
JP2558100B2 (en) Hybrid type fiber reinforced lightweight concrete structure
JPH10237860A (en) Mehtod for joining underground continuous wall
KR100541013B1 (en) Mid-air Block for Building and Block Wall Structure Using the Same
JP3663566B2 (en) Underground continuous wall joint structure
JP3627029B2 (en) Joint structure of RC structure
JP3041814B2 (en) Joining device for starting part
JP2014190102A (en) Hybrid beam
JPH1144047A (en) Reinforced structure of concrete construction by use of continuous fiber sheet
KR102407736B1 (en) Composite girdir reinforced by under flange of steel i-beam and construction method thereof
KR100660524B1 (en) Reinforcement structure of CFT column and beam setting flat bar in steel pipe
JPH07317211A (en) Steel pipe reinforced concrete pile
KR20090017083A (en) A reinforcing structure for improved transmission of joint and method for it
JP3521372B2 (en) Building frame reinforcement structure
JPH08158358A (en) Joining method for underground diaphragm wall
JP2001193222A (en) Opening reinforcing structure of reinforced concrete- constructed beam member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees