JP3636856B2 - Elastic body wear test method - Google Patents

Elastic body wear test method Download PDF

Info

Publication number
JP3636856B2
JP3636856B2 JP05126397A JP5126397A JP3636856B2 JP 3636856 B2 JP3636856 B2 JP 3636856B2 JP 05126397 A JP05126397 A JP 05126397A JP 5126397 A JP5126397 A JP 5126397A JP 3636856 B2 JP3636856 B2 JP 3636856B2
Authority
JP
Japan
Prior art keywords
test
test piece
grindstone
elastic body
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05126397A
Other languages
Japanese (ja)
Other versions
JPH10253517A (en
Inventor
茂喜 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP05126397A priority Critical patent/JP3636856B2/en
Publication of JPH10253517A publication Critical patent/JPH10253517A/en
Application granted granted Critical
Publication of JP3636856B2 publication Critical patent/JP3636856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、弾性体、たとえば加硫ゴムの摩耗試験に用いて好適な摩耗試験方法に関し、とくには、回転砥石と、それの周面に押圧される弾性体試験片との間のスリップ率の設定精度を高めることによって試験精度を有利に向上させるものである。
【0002】
【従来の技術】
加硫ゴムの摩耗試験に従来から広く一般に使用されている試験としてランボーン摩耗試験があり、この試験は、JIS K 6264に規定されている。
円板状の加硫ゴムを試験片としてこのランボーン摩耗試験を行う場合には、円板状の研磨砥石の周面に、試験片取付部に取付けた試験片の周面を、所定の押圧力をもって押付けるとともに、研磨砥石と試験片とのそれぞれを、所定のスリップ率の下で、異なった周速で回転させて、試験片の周面に摩耗を発生させ、その試験片の、摩耗前後の質量を測定することで摩耗量を検出している。
【0003】
【発明が解決しようとする課題】
ところで、このようなランボーン摩耗試験の実施に当っては、次式で示されるスリップ率を
スリップ率=(d−D)÷d×100 (%)
d:試験片周速
D:砥石周速
正確に設定することが、試験精度の向上のために必要であり、これがためには、試験片の直径を正確に測定することが必須となるところ、従来のこの摩耗試験では、試験片の直径として理論値、すなわち、試験片を型加硫によって製造する場合にはモールド寸法を、また切断によって製造する場合には、切断刃の寸法を用て試験片の周長、ひいては、周速を算出していたことから、試験片に加硫戻りが生じたり、切断刃の切れ味が悪くなったりしたとき等には、試験片の理論直径と、試験片の実際の静的直径との間に無視することのできない変動が生じ、しかも、摩耗試験に当って、試験片を、摩耗試験装置の試験片取付部で厚み方向に挟持することによる、試験片の半径方向の弾性変形および、試験に際して、試験片周面を砥石周面に所定の力で押付けることによる試験片の弾性変形が不可避であって、これらのこともまた試験片の理論直径と、試験時の実際の直径との間の直径変動の原因となっているため、理論直径に基づいて設定した試験片周速と、試験中のそれの実際の周速との間に大きな隔たりが生じることがしばしばあり、それ故に、摩耗試験の実施に際して所期した通りのスリップ率を実現し得ないことが多く、このことが、とくには、1〜5%程度の小さなスリップ率を設定して摩耗試験を行う場合の、スリップ率の設定精度、ひいては、摩耗試験精度に大きな影響を及ぼすという問題があった。
【0004】
この発明は、従来技術の抱えるこのような問題点を有利に解決するものであり、実際の試験条件を付与した状態の下での試験片の半径を試験片毎に測定し、この測定結果に基づいてスリップ率の設定を行うことで、スリップ率の大小にかかわらず、それの設定精度を大きく高め、試験精度を効果的に向上させることができる弾性体の摩耗試験方法および装置を提供するものである。
【0005】
【課題を解決するための手段】
この発明の、弾性体の摩耗試験方法は、回転砥石の周面にホルダーで保持した円板状の弾性体試験片の周面を押圧するとともに、回転砥石および弾性体試験片のそれぞれを、相互に平行な回転軸線の周りで、異なる周速で回転駆動して弾性体試験片を摩耗させる摩耗試験の開始に先だち、ホルダーで保持して回転自在とした弾性体試験片を、試験時と同等の力で回転砥石に押圧するとともに、その回転砥石を試験時と同等の周速で回転させ、これによって、弾性体試験片を、それの、砥石に対する摩擦力によって回転させたときの、弾性体試験片の回転軸線と、砥石周面との間の間隔、すなわち、試験片の周方向の全体にわたって平均化した間隔を基準間隔と比較し、それらの両間隔の差に基づいて弾性体試験片の試験時の半径、すなわち動的半径を求め、この結果から、弾性体試験片の、試験時の周速を算出するものである。
【0006】
なおここで、試験片の回転軸線と、砥石周面との間の基準間隔は、温度等による寸法変化を受け難い、たとえば金属材料からなる、高精度の基準寸法を有する基準試料を前記ホルダーに保持して、砥石周面に、試験時と同等の力で押圧したときの間隔を意味する。
【0007】
このような試験方法では、弾性体試験片に、試験条件と同一の条件を付与したときの、試験片回転軸線と、砥石周面との間の間隔を基準間隔と比較することで、試験片の、基準試料に対する寸法差を正確に測定することができ、この結果として、その試験片の、実際の試験時の動的半径を、高い精度で求めることができるので、その動的半径に基づいてスリップ率を設定することにより、スリップ率の設定精度を十分に高め、摩耗試験精度を大きく向上させることできる。
【0008】
この発明の実施に用いることができる弾性体の摩耗試験装置は、回転砥石を装着する砥石駆動軸を設け、また、この砥石駆動軸と平行に延在し、砥石周面と対向する位置に円板状の弾性体試験片を保持するホルダーを有するとともに、中間部にクラッチを有する試験片駆動軸を設け、そして、その試験片駆動軸を取付けられて、固定ベースに対し、試験片駆動軸が砥石駆動軸に接近および離隔する方向に変位可能な可動ベースを設け、さらに、この可動ベースの、固定ベースに対する変位方向および量を検出する変位センサを設けたものである。
【0009】
なおここで、変位センサとしては、好ましくは非接触式の静電容量形センサ、渦電流式センサ、空気マイクロメータ、磁気式センサ、光学センサ等の各種センサを用いることができる。
そしてこの可動ベース7を、たとえば、固定ベース8上に敷設したガイドレール9の作用下で、試験片駆動軸3の軸線と直交する方向に進退変位可能ならしめることにより、砥石駆動軸2との平行状態を維持したまま、それに接近し、また離隔変位することができる。
ーヘッド11を固定ベース8にそれぞれ取付ける。
【0010】
このような試験装置では、ホルダーに保持した前記基準試料を、砥石の周面に、試験時と同等の力で押圧して、このときの、試験片回転軸線と砥石周面との間隔を基準間隔とする変位センサの予めのキャリブレーションを行っておき、実際の摩耗試験の開始に先だって、弾性体試験片をホルダーにて保持するとともに、クラッチの解除下にてその試験片の自由な回転を許容し、また、その弾性体試験片の周面を砥石周面に、試験時の押圧力と同等の力で押圧するとともに、砥石を、試験時の周速にて回転させて、弾性体試験片を砥石周速と等しい速度で回転させ、このときの、弾性体試験片の回転軸線と砥石周面との間隔を、変位センサをもって前記基準間隔と比較して、前記間隔の、基準間隔に対するずれ方向およびずれ量を検出することで、弾性体試験片の動的半径を高い精度で求め、さらに、その動的半径に基づいて弾性体試験片の周速、ひいては、スリップ率を設定することで、その設定精度を十分に高めることができる。
従って、その後における摩耗試験の開始に際しては、上記動的半径に基づいて算出した所要の周速で試験片を回転駆動することにより、摩耗試験精度をもまた大きく向上させることができる。
【0011】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に示すところに基づいて説明する。
図1は、この発明に係る方法の実施に用いることができる装置をその要部について示す平面図であり、図中1は、既知の直径を有する回転砥石を、2は、この回転砥石1を一端部に取付けた砥石駆動軸をそれぞれ示し、この砥石駆動軸は、その他端を、図示しないサーボモータその他の回転駆動手段に連結される。
【0012】
ここでは、試験片駆動軸3を砥石駆動軸2と平行に延在させて配設し、この試験片駆動軸3の一方の端部に、円板状の弾性体試験片4を保持するホルダー5を設け、その他端を、上記回転駆動手段は別個の、図示しないサーボモータその回転駆動手段に連結するとともに、その中間部にクラッチ6を設ける。
【0013】
ここで、ホルダー5は、駆動軸側に設けた受けパッド5aと、たとえば、試験片駆動軸3の直下位置に配置したシリンダによって、受けパッド5aに対して進退変位されるクランプパッド5bからなり、これらの両パッド5a, 5bは、それらの間に配置した弾性体試験片4をそれの厚み方向から所要の力で挟持して、その試験片周面を、砥石1の周面に対向させて位置させる。従ってここでは、試験片駆動軸3の回転作動に基づき、試験片4が、両パッド5a, 5bとともに、その駆動軸3と等速で回転する。
【0014】
またここで、前記クラッチ6は、試験片駆動軸3、より直接的にはホルダー5の、回動駆動手段に対する断接を司るべく機能し、そのクラッチ6を解除することで、ホルダー5および試験片4の自由な回転を許容する。
【0015】
ところで、このような試験片駆動軸3は、それを可動ベース7上に取付け、そしてこの可動ベース7を、たとえば、固定ベース8上に敷設したガイドレール9の作用下で、試験片駆動軸3の軸線と直交する方向に進退変位可能ならしめることにより、砥石駆動軸2との平行状態を維持したまま、それに接近し、また離隔変位することができる。
【0016】
さらにここでは、可動ベース7の、固定ベース8に対する相対変位方向および量を検出するため、遮光板10とセンサーヘッド11とからなるレーザ変位計を変位センサー12として用い、その遮光板10を可動ベース7に、またセンサーヘッド11を固定ベース8にそれぞれ取付ける。
【0017】
この変位センサ12は、可動ベース7に取付けた遮光板10の、センサーヘッド11への進入量に応じて、センサーヘッド11の発光部11a から照射されたレーザの、受光部11b への入射光量が変動することに基づいて、固定ベース8に対する可動ベース7の、基準位置からの変位量および変位方向を検出する。
【0018】
なおここで、可動ベース7の基準位置とは、ホルダー5に保持した、半径寸法が既知の基準試料を、可動ベース7の変位下で砥石1の周面に所定の力で押圧して変位センサ12のキャリブレーションを行ったとき、いいかえれば、基準試料の中心軸線と砥石周面との間隔を、その基準試料の半径寸法と等しい基準間隔としたときの、その可動ベース7の、固定ベース8に対する相対位置を意味する。
【0019】
以上のように構成してなる装置を用いて、弾性体試験片の摩耗試験を行う場合には、その試験の開始に先だって、ホルダー5にその弾性試験片4を保持するとともに、試験片駆動軸3のクラッチ6を解除して、その試験片駆動軸3、直接的には可動ベース7を、図示しない進退駆動手段の作用下で、砥石駆動軸側へ進出変位させ、これにより、弾性体試験片4の周面を、砥石1の周面に摩耗試験時と同等の力で押圧し、併せて、その砥石1を、試験時の周速と等しい速度で回転させて、弾性体試験片4を、砥石1に対する摩擦力によってそれに連れ回りさせる。
【0020】
そして、このような連れ回り回転中における試験片4の回転軸線と、砥石周面との間隔を、可動ベース7の、前記基準位置に対する変位量および変位方向のそれぞれの、変位センサ12による測定および、その測定値の、基準位置寸法に対する加減算によって求め、このときの算出値を弾性体試験片4の動的半径とする。
【0021】
なおこの場合において、試験片回転軸線と砥石周面との間隔が、弾性体試験片4の成形誤差その他に起因して、その試験片4と砥石1との周方向接触位置によって若干変化することも考えられるが、その変化の影響は、試験片4の回転中に前記間隔を複数回にわたって測定して、それらの測定値を平均化することで、十分に低減させることができる。
【0022】
従ってその後は、上述のようにして求めた試験片4の動的半径から、その試験片4の、試験時における周長を求め、この周長に基づいて所要のスリップ率を設定することで、スリップ率を、それの大小にかかわらず、高い精度で設定することができる。
【0023】
ところで、このスリップ率の設定は、摩耗試験に当って、試験片駆動軸3のクラッチ6を接続状態とするとともに、その駆動軸3を、回転駆動手段をもって、試験片4の周長に応じた回転速度で回転させて、砥石周速と、試験片周速との間に、所期した通りの周速差をもたらすことによって実現することができ、実際の摩耗試験は、このような周速差で回転する砥石1と試験片4とを、可動ベース7の進出変位下にて所定の力で押圧することによって、または、それらの両者の押圧後に、砥石1および試験片4のそれぞれを所定の周速で回転させることによって開始することができる。
【0024】
かくして、この発明によれば、弾性体試験片4の、試験条件下での半径、すなわち動的半径を、高い精度をもって測定することができ、これにより、試験条件下での周長を十分正確に求めることができるので、スリップ率の設定精度を、理論直径を用いる従来技術に比してはるかに高めることができ、この結果として、摩耗試験の試験精度を効果的に向上させることができる。
【0025】
【発明の効果】
以上に述べたところから明らかなように、この発明の方法によれば、スリップ率の設定精度を高めて、摩耗試験精度を大きく向上させることができ、また、この発明の実施装置によれば、弾性体試験片の動的半径を、簡単かつ容易に、しかも正確に測定することができる。
【図面の簡単な説明】
【図1】 この発明に係る方法の実施に用いることができる装置をその要部について示す平面図である。
【符号の説明】
1 砥石
2 砥石駆動軸
3 試験片駆動軸
4 弾性体試験片
5 ホルダー
5a 受けパッド
5b クランプパッド
6 クラッチ
7 可動ベース
8 固定ベース
9 ガイドレール
10 遮光板
11 センサーヘッド
11a 発光部
11b 受光部
12 変位センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wear test method suitable for use in a wear test of an elastic body, for example, vulcanized rubber, and in particular, the slip ratio between a rotating grindstone and an elastic body test piece pressed against the peripheral surface thereof. The test accuracy is advantageously improved by increasing the setting accuracy.
[0002]
[Prior art]
As a test that has been widely used in the past for the abrasion test of vulcanized rubber, there is a Lambourne abrasion test, and this test is defined in JIS K 6264.
When performing this Lambourn abrasion test using a disk-shaped vulcanized rubber as a test piece, the peripheral surface of the test piece attached to the test piece mounting part is placed on the peripheral surface of the disk-shaped polishing wheel with a predetermined pressing force. And rotating the grinding wheel and the test piece at different peripheral speeds under a predetermined slip ratio to cause wear on the peripheral surface of the test piece. The amount of wear is detected by measuring the mass of.
[0003]
[Problems to be solved by the invention]
By the way, in carrying out such a Lambourn abrasion test, the slip ratio represented by the following equation is calculated as follows: slip ratio = (d−D) ÷ d × 100 (%)
d: Test piece circumferential speed D: Grinding wheel circumferential speed must be set accurately in order to improve test accuracy. For this purpose, it is essential to accurately measure the diameter of the test piece. In this conventional wear test, the test piece diameter is tested using the theoretical value, that is, the mold size when the test piece is manufactured by mold vulcanization, and the size of the cutting blade when the test piece is manufactured by cutting. Since the circumference of the piece, and hence the peripheral speed, was calculated, when the vulcanization return occurred in the test piece or when the cutting edge of the cutting edge deteriorated, the theoretical diameter of the test piece and the test piece A test piece by which a non-negligible fluctuation occurs between the actual static diameter of the test piece and the test piece is sandwiched in the thickness direction by the test piece mounting portion of the wear test device in the wear test. In the radial elastic deformation and the test, The elastic deformation of the specimen by pressing the specimen peripheral surface against the grinding stone peripheral surface with a predetermined force is inevitable, and these are also between the theoretical diameter of the specimen and the actual diameter at the time of the test. Due to the variation in diameter, there is often a large gap between the specimen peripheral speed set based on the theoretical diameter and its actual peripheral speed during the test, hence the wear test. In many cases, it is not possible to realize the slip ratio as expected in the implementation of this, and this is particularly the setting of the slip ratio when performing a wear test with a small slip ratio of about 1 to 5%. There is a problem that it has a great influence on the accuracy and, in turn, the wear test accuracy.
[0004]
The present invention advantageously solves such problems of the prior art, and measures the radius of the test piece for each test piece under the condition in which the actual test conditions are applied. An elastic body wear test method and apparatus capable of greatly increasing the setting accuracy of the slip rate regardless of the magnitude of the slip rate and effectively improving the test accuracy by setting the slip rate based on It is.
[0005]
[Means for Solving the Problems]
According to the wear test method for an elastic body of the present invention, the peripheral surface of a disk-shaped elastic body test piece held by a holder is pressed against the peripheral surface of the rotating grindstone, and the rotating grindstone and the elastic body test piece are Before the start of the wear test in which the elastic test piece is worn by rotating at different peripheral speeds around the rotation axis parallel to the elastic test piece, the elastic test piece held by the holder and rotated freely is the same as during the test. When the elastic grindstone is rotated by the frictional force against the grindstone, the elastic grindstone is rotated at the same peripheral speed as during the test. An interval between the rotation axis of the test piece and the circumferential surface of the grindstone, that is, an interval averaged over the entire circumferential direction of the test piece is compared with a reference interval, and an elastic body test piece is based on a difference between the two intervals. Radius of the test Seeking a radius, from the result, and calculates the elastic body test piece, the peripheral speed at the time of testing.
[0006]
Here, the reference interval between the rotation axis of the test piece and the circumferential surface of the grindstone is less susceptible to dimensional changes due to temperature or the like. For example, a reference sample made of a metal material and having a highly accurate reference dimension is used as the holder. It means an interval when held and pressed against the grindstone circumferential surface with the same force as in the test.
[0007]
In such a test method, when the same condition as the test condition is given to the elastic body test piece, the distance between the test piece rotation axis and the circumferential surface of the grindstone is compared with the reference interval, thereby the test piece. Therefore, it is possible to accurately measure the dimensional difference with respect to the reference sample, and as a result, the dynamic radius at the time of actual test of the test piece can be obtained with high accuracy. By setting the slip ratio, it is possible to sufficiently improve the setting accuracy of the slip ratio and greatly improve the wear test accuracy.
[0008]
An elastic wear test apparatus that can be used in the practice of the present invention is provided with a grindstone drive shaft on which a rotating grindstone is mounted, and extends in parallel with the grindstone drive shaft and at a position facing the grindstone circumferential surface. A test piece drive shaft having a holder for holding a plate-like elastic test piece and having a clutch in the middle is provided, and the test piece drive shaft is attached to the fixed base so that the test piece drive shaft is attached to the fixed base. A movable base that can be displaced in a direction approaching and separating from the grindstone drive shaft is provided, and a displacement sensor that detects the displacement direction and amount of the movable base relative to the fixed base is further provided.
[0009]
Note Here, the displacement sensor can be preferably used capacitance type sensor of non-contact type, eddy current sensors, air micrometer, magnetic sensors, various sensors such as an optical sensor.
For example, the movable base 7 can be moved forward and backward in the direction orthogonal to the axis of the test piece drive shaft 3 under the action of the guide rail 9 laid on the fixed base 8. While maintaining the parallel state, it can approach and displace it.
-Mount the heads 11 on the fixed base 8 respectively.
[0010]
In such a test apparatus, the reference sample held in the holder is pressed against the circumferential surface of the grindstone with the same force as during the test, and the distance between the test piece rotation axis and the grindstone circumferential surface at this time is used as a reference. Prior to the start of the actual wear test, hold the elastic body specimen in the holder and allow the specimen to rotate freely with the clutch released. The elastic body test is performed by pressing the peripheral surface of the elastic body test piece against the peripheral surface of the grindstone with a force equivalent to the pressing force during the test, and rotating the grindstone at the peripheral speed during the test. The piece is rotated at a speed equal to the circumferential speed of the grindstone. At this time, the distance between the rotation axis of the elastic body test piece and the grindstone circumferential surface is compared with the reference distance using a displacement sensor, and the distance relative to the reference distance is measured. Detecting the direction and amount of displacement The dynamic radius of the elastic body test piece is determined with high accuracy, and the setting speed is sufficiently increased by setting the peripheral speed of the elastic body test piece, and thus the slip ratio, based on the dynamic radius. Can do.
Therefore, when starting the wear test thereafter, the wear test accuracy can be greatly improved by rotating the test piece at the required peripheral speed calculated based on the dynamic radius.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the drawings.
FIG. 1 is a plan view showing an essential part of an apparatus that can be used for carrying out the method according to the present invention. In the figure, 1 is a rotating grindstone having a known diameter, and 2 is a rotating grindstone 1. A grindstone drive shaft attached to one end is shown, and the other end of the grindstone drive shaft is connected to a servo motor or other rotational drive means (not shown).
[0012]
Here, a test piece drive shaft 3 is disposed so as to extend in parallel with the grindstone drive shaft 2, and a holder for holding a disc-shaped elastic body test piece 4 at one end of the test piece drive shaft 3. 5 is provided, and the other end is connected to a rotation driving means (not shown) which is separate from the rotation driving means, and a clutch 6 is provided at an intermediate portion thereof.
[0013]
Here, the holder 5 includes a receiving pad 5a provided on the drive shaft side and a clamp pad 5b that is displaced forward and backward with respect to the receiving pad 5a by, for example, a cylinder disposed immediately below the test piece drive shaft 3. These pads 5a and 5b hold the elastic test piece 4 disposed between them with a required force from the thickness direction of the pad 5a and 5b so that the peripheral surface of the test piece faces the peripheral surface of the grindstone 1. Position. Therefore, here, based on the rotation operation of the test piece drive shaft 3, the test piece 4 rotates with the pads 5a and 5b at the same speed as the drive shaft 3.
[0014]
Here, the clutch 6 functions to control connection / disconnection of the test piece drive shaft 3, more directly the holder 5, to the rotational drive means. By releasing the clutch 6, the holder 5 and the test Allow the piece 4 to rotate freely.
[0015]
By the way, such a test piece drive shaft 3 is mounted on the movable base 7 and the test piece drive shaft 3 is operated under the action of a guide rail 9 laid on the fixed base 8, for example. By making it possible to move forward and backward in a direction perpendicular to the axis of the wheel, it is possible to approach and displace it while maintaining a parallel state with the grindstone drive shaft 2.
[0016]
Further, here, in order to detect the relative displacement direction and amount of the movable base 7 with respect to the fixed base 8, a laser displacement meter including a light shielding plate 10 and a sensor head 11 is used as the displacement sensor 12, and the light shielding plate 10 is used as the movable base. 7 and the sensor head 11 are attached to the fixed base 8, respectively.
[0017]
The displacement sensor 12 has a light incident on the light receiving portion 11b of the laser emitted from the light emitting portion 11a of the sensor head 11 in accordance with the amount of the light shielding plate 10 attached to the movable base 7 entering the sensor head 11. Based on the fluctuation, the displacement amount and the displacement direction of the movable base 7 with respect to the fixed base 8 from the reference position are detected.
[0018]
Here, the reference position of the movable base 7 refers to a displacement sensor in which a reference sample having a known radial dimension held by the holder 5 is pressed against the circumferential surface of the grindstone 1 with a predetermined force under the displacement of the movable base 7. In other words, when the calibration of 12 is performed, in other words, the fixed base 8 of the movable base 7 when the distance between the center axis of the reference sample and the circumferential surface of the grindstone is the reference distance equal to the radial dimension of the reference sample. Means relative position to.
[0019]
When a wear test of an elastic body test piece is performed using the apparatus configured as described above, the elastic test piece 4 is held in the holder 5 and the test piece drive shaft is set prior to the start of the test. 3, the test piece drive shaft 3, or directly the movable base 7, is advanced and displaced toward the grindstone drive shaft side under the action of an advancing / retreating drive means (not shown). The peripheral surface of the piece 4 is pressed against the peripheral surface of the grindstone 1 with a force equivalent to that during the wear test, and the grindstone 1 is rotated at a speed equal to the peripheral speed during the test, thereby elastic test piece 4 Is rotated by the frictional force on the grindstone 1.
[0020]
Then, the distance between the rotation axis of the test piece 4 and the circumferential surface of the grindstone during such rotation is measured by the displacement sensor 12 for each of the displacement amount and the displacement direction of the movable base 7 with respect to the reference position. Then, the measured value is obtained by addition / subtraction with respect to the reference position dimension, and the calculated value at this time is set as the dynamic radius of the elastic body test piece 4.
[0021]
In this case, the distance between the rotation axis of the test piece and the circumferential surface of the grindstone is slightly changed depending on the contact position in the circumferential direction between the test piece 4 and the grindstone 1 due to a molding error of the elastic test piece 4 and the like. However, the influence of the change can be sufficiently reduced by measuring the interval a plurality of times during the rotation of the test piece 4 and averaging the measured values.
[0022]
Therefore, after that, from the dynamic radius of the test piece 4 obtained as described above, the circumference of the test piece 4 at the time of the test is obtained, and by setting the required slip ratio based on this circumference, The slip rate can be set with high accuracy regardless of the size.
[0023]
By the way, this slip ratio is set according to the circumference of the test piece 4 with the rotational drive means while the clutch 6 of the test piece drive shaft 3 is in the connected state in the wear test. It can be achieved by rotating at the rotational speed to bring the desired circumferential speed difference between the grinding wheel circumferential speed and the specimen circumferential speed. Each of the grindstone 1 and the test piece 4 is predetermined by pressing the grindstone 1 and the test piece 4 rotating by the difference with a predetermined force under the advancing displacement of the movable base 7 or after pressing both of them. It can be started by rotating at a peripheral speed.
[0024]
Thus, according to the present invention, the radius of the elastic specimen 4 under the test condition, that is, the dynamic radius can be measured with high accuracy, and thereby the circumference under the test condition can be sufficiently accurately measured. Therefore, the setting accuracy of the slip ratio can be greatly increased as compared with the conventional technique using the theoretical diameter, and as a result, the test accuracy of the wear test can be effectively improved.
[0025]
【The invention's effect】
As is apparent from the above description, according to the method of the present invention, the setting accuracy of the slip ratio can be increased and the wear test accuracy can be greatly improved, and according to the implementation apparatus of the present invention, The dynamic radius of the elastic specimen can be measured simply, easily and accurately.
[Brief description of the drawings]
FIG. 1 is a plan view showing an essential part of an apparatus that can be used for carrying out a method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Grindstone 2 Grindstone drive shaft 3 Test piece drive shaft 4 Elastic body test piece 5 Holder
5a Receiving pad
5b Clamp pad 6 Clutch 7 Movable base 8 Fixed base 9 Guide rail
10 Shading plate
11 Sensor head
11a Light emitter
11b Receiver
12 Displacement sensor

Claims (1)

回転砥石の周面に、ホルダーで保持した円板状の弾性体試験片の周面を押圧するとともに、回転砥石および弾性体試験片のそれぞれを、相互に平行な回転軸線の周りで、異なる周速で回転駆動して弾性体試験片を摩耗させる摩耗試験方法であって、
試験の開始に先だち、前記ホルダーで保持し、回転自在とした弾性体試験片を、試験時と同等の力で回転砥石に押圧するとともに、その回転砥石を試験時と同等の周速で回転させ、このときの、弾性体試験片の回転軸線と、砥石周面との間の間隔を基準間隔と比較し、それらの両間隔の差に基づいて弾性体試験片の試験時の半径を求め、この結果から、弾性体試験片の、試験時の周速を算出することを特徴とす弾性体の摩耗試験方法。
The peripheral surface of the disk-shaped elastic body test piece held by the holder is pressed against the peripheral surface of the rotating grindstone, and each of the rotating grindstone and the elastic body test piece is moved around the rotation axis parallel to each other. A wear test method in which an elastic specimen is worn by rotating at high speed,
Prior to the start of the test, the elastic test specimen held by the holder and made rotatable is pressed against the rotating grindstone with the same force as during the test, and the rotating grindstone is rotated at the same peripheral speed as during the test. In this case, the interval between the rotation axis of the elastic specimen and the peripheral surface of the grindstone is compared with the reference interval, and the radius of the elastic specimen is tested based on the difference between the two intervals. this result of the elastic body test piece, abrasion test method of the elastic body you and calculates the peripheral speed at the time of testing.
JP05126397A 1997-03-06 1997-03-06 Elastic body wear test method Expired - Fee Related JP3636856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05126397A JP3636856B2 (en) 1997-03-06 1997-03-06 Elastic body wear test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05126397A JP3636856B2 (en) 1997-03-06 1997-03-06 Elastic body wear test method

Publications (2)

Publication Number Publication Date
JPH10253517A JPH10253517A (en) 1998-09-25
JP3636856B2 true JP3636856B2 (en) 2005-04-06

Family

ID=12882070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05126397A Expired - Fee Related JP3636856B2 (en) 1997-03-06 1997-03-06 Elastic body wear test method

Country Status (1)

Country Link
JP (1) JP3636856B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187330B (en) * 2018-08-09 2020-11-17 西安理工大学 Method for measuring friction coefficient under variable working condition
CN109632550B (en) * 2018-12-24 2022-01-14 长安大学 Abrasion performance contrast test device and test method

Also Published As

Publication number Publication date
JPH10253517A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP6845893B2 (en) Machine tool unit with runout error check function and clamp state test method
JP2006317380A (en) Electric resistance measuring system for tire and its method
JP5035991B2 (en) Rubber testing machine
JP5534587B2 (en) Rubber testing machine
JP3636856B2 (en) Elastic body wear test method
JP4717471B2 (en) Wear test method and wear test apparatus
AU2003243148B2 (en) Improvements in tire uniformity testing
JPH11326169A (en) Method for measuring degree of rubber wear
JP2964654B2 (en) Wear evaluation test method
JP2001062718A (en) Double head grinding device and grinding wheel position correcting method
JPH02102433A (en) Pin disk type wear testing instrument
JPH0584649A (en) Method and device of circular grinding of cylindrical work
JP5297844B2 (en) Disc-shaped rubber test piece for rubber testing machine and rubber testing machine using the same
JP3636855B2 (en) Elastic body wear test method
KR20010082406A (en) Auto mesuring system for DTV of brake disk/drum in car
JPH0763503A (en) Run-out measuring device for tooth space of gear
KR200248436Y1 (en) Auto mesuring system for DTV of brake/drum in car
JPH0628679Y2 (en) Abrasion tester with brush
JPS6260223B2 (en)
JP2595040B2 (en) Friction and wear testing machine
JP2007279062A (en) Abrasion test device
JP5210928B2 (en) Method for determining the time to replace a simulated road surface of a rubber testing machine
JP5534586B2 (en) Rubber testing machine and rubber testing method
JPH06167439A (en) Friction testing machine for rubber sample
KR20070042696A (en) A apparatus for measuring friction energy of contact area between tire bead and wheel flange

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees