JP3635496B2 - Alkylation desulfurization method of gasoline fraction - Google Patents

Alkylation desulfurization method of gasoline fraction Download PDF

Info

Publication number
JP3635496B2
JP3635496B2 JP53295097A JP53295097A JP3635496B2 JP 3635496 B2 JP3635496 B2 JP 3635496B2 JP 53295097 A JP53295097 A JP 53295097A JP 53295097 A JP53295097 A JP 53295097A JP 3635496 B2 JP3635496 B2 JP 3635496B2
Authority
JP
Japan
Prior art keywords
sulfur
naphtha
boiling range
range
alkylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP53295097A
Other languages
Japanese (ja)
Other versions
JP2001500535A (en
Inventor
コリンズ、ニック・アレン
トレウェラ、ジェフリー・シー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Priority claimed from PCT/US1996/015689 external-priority patent/WO1998014535A1/en
Publication of JP2001500535A publication Critical patent/JP2001500535A/en
Application granted granted Critical
Publication of JP3635496B2 publication Critical patent/JP3635496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は炭化水素流の品質向上法に関する。更に詳しくは、本発明はオレフィン類及び著量割合の硫黄不純物を含有するガソリン沸点範囲の石油留分の品質向上法に関するものである。
減圧軽油のような重質石油留分または常圧蒸留残油のような残油さえも接触分解により、より軽質で一層価値ある生成物、特にガソリンに転化できる。従来、この接触分解生成物は回収され、得られた生成物は種々の留分、例えば軽質ガス類、軽質及び重質ガソリンからなるナフサ、燃焼油およびデイーゼル油のような留出油留分、潤滑基油留分、及びより重質の留分に分留される。
通常、石油及び石油製品中には溶解した遊離硫黄または硫化水素として、又は有機化合物、例えばチオフェン類、スルホン酸類、メルカプタン類、アルキルサルフェート類及び硫化アルキル類のような種々の形態としての硫黄分が見出される。石油留分が接触分解されたもので硫黄分を含む場合には、この接触分解生成物は普通硫黄不純物を含むから、接触分解生成物の関連する仕様に応ずるために通常水素化処理により硫黄不純物を除去しなければならない。この種の水素化処理は接触分解の前でも或いは後でも行うことができる。ガソリン貯留物に存在する大部分の硫黄は接触分解法例えばFCC(流動接触分解法)および熱分解法例えばコーキング法の両者の分解法から得られたナフサ流が原因であるから、分解ナフサの硫黄含量を低減させることはナフサの液状輸送上の硫黄に関する仕様及び硫黄放出基準に合致させるために重要である。
石油及びその製品から硫黄除去の難易は硫黄含有化合物の種類により左右される。硫化水素及びメルカプタン類は除去が比較的容易であるが、チオフェン類のような芳香族硫黄化合物は前者に比して除去が困難である。硫黄不純物は、米国特許第3,957,625号[オーキン(Orkin)]に記載のように、ガソリンの重質留分中に濃縮される傾向があり、この米国特許では接触分解して得られたガソリンの重質留分を水素化脱硫処理により脱硫して主として軽質な留分に存在するオレフィンによるオクタン価寄与作用を留保させる方法を提唱している。慣用の工業的操作の1つの型では重質ガソリン留分をこのようにして処理している。別の方法として、適当な触媒の選択、例えばより普通なアルミナの替わりに酸化マグネシウム担体を使用することによりオレフィンの飽和反応の選択率に比して水素化脱硫への選択率高めるように変化できる。
接触分解装置から得られた後更に精製操作のような更なる処理を施してない接触分解ナフサ留分はオレフィン質成分類が含有されるために比較的高いオクタン価をもつ。分解ナフサ留分は又優れた量的(体積基準で)収率により得られる。従って、分解ガソリン留分はガソリン貯留物形成用の優れた寄与成分である。分解ガソリン留分は大量の生成物に高配合オクタン価を達成するために寄与する。場合によつては、この留分は製油所貯留油中のガソリンの半分に達するまでの多量部分をなす。従って、分解ガソリン留分はガソリン貯留物中の最も望ましい成分である。
若干の製油所または石油化学プラントで製造されるガソリン沸点範囲で沸騰する他の不飽和留分には高温分解ガソリンがある。このガソリンは、エチレン及びプロピレンのような軽質不飽和化合物を製造するための石油留分の分解操作の際の副生物としてしばしば製造される。この高温ガソリンは非常に高いオクタン価をもつことができるが、水素化処理なしでは極めて不安定である。この理由は高温ガソリンはガソリン沸点範囲内で沸騰する所望のオレフィン類の外にかなりの割合のジオレフィン類を含有し、これが貯蔵または放置中にガムを形成し易いからである。
ナフサの分解はガソリンの収量を増大させるために非常に有用な方法である。しかし、この分解操作はまた硫黄含有物質にも影響をも受け、硫黄含有物質の分子量をガソリン沸点範囲留分の平均分子量より大きい分子量範囲からガソリン留分の分子量範囲内の分子量範囲へと低下させる。このガソリン沸騰範囲の硫黄化合物の硫黄の多くは芳香族化合物中に含まれるから、水素化処理により除かなければならない。しかし、ガソリン沸点範囲内で沸騰する硫黄含有分解留分、例えばFCC、高温分解およびコーカーからのナフサの水素化処理はオレフィン含量を減少させ、その結果、オクタン価を低下させる。更にまた、脱硫度が増大するにつれて常態で液体のガソリン沸騰範囲の生成物のオクタン価が低下する。水素化処理操作の条件に依存して若干の水素が水素化分解または芳香核の飽和並びにオレフィン不飽和結合の飽和に消費される。
硫黄を除去し同時に望ましいオレフィン類はこれらを維持する種々の方法が提唱された。例えば、米国特許第4,049,542号[ギブソン(Gibson)]明細書は接触分解軽質ナフサのようなオレフィン含有炭化水素装入原料を脱硫するために銅触媒を使用する方法を開示している。
接触分解ガソリンを処理する他の方法も過去において提唱された。例えば、米国特許第3,759,821号[ブレナン(Brennan)]明細書は接触分解ガソリンを重質留分と軽質留分との分留し、得られた重質留分をZSM−5触媒上で処理し、その後で処理した留分を前記軽質留分中に再び混合することにより前記接触分解ガソリンの品質向上方法を開示している。分解ガソリンを分留した後で処理する他の方法は米国特許第4,062,762号[ハワード(Howard)]明細書に記載され、この方法ではナフサを3種の留分に分留し、それら3種の各留分をそれぞれ異なる操作で脱硫し、その後でそれら留分を再併合することによつてナフサを脱硫する方法を開示している。
これらのいずれにおいても、生起するメカニズムに関係なく、水素化処理による硫黄除去の結果として生じるオクタン価の低下は、より高いオクタン価をもつガソリン燃料を製造するという増大しつつある要求と、現今の生態学的配慮からよりきれいに燃焼し、より環境汚染性の低い燃料、特に炭化水素の放出に悪影響を与える触媒による転化装置の被毒を回避するための低硫黄燃料に対する要求との間の拮抗関係を生じる。この本来的に存在する要求の拮抗関係は低硫黄原油を求める現在の供給事情においてはなお一層注目される。
本発明の目的はナフサ流中の硫黄含量、特に、ナフサ中のチオフェン類及びチオフェン化合物に起因する硫黄含量を低減させ、同時にナフサ生成物の体積量損失及びオクタン価の低減を最小にする方法を提供するものである。
分解ナフサ中に存在する硫黄成分は、ナフサをまず酸触媒上に通してナフサ中に元々存在するオレフィン類およびジオレフィン類をアルキル化剤として利用してナフサ中のチオフェン性化合物をアルキル化することにより、転化除去される。このようなアルキル化反応はアルキル化チオフェン類を生じることにより硫黄成分をナフサの重質留分中に集めるから、水素化脱硫しなければならないナフサの量が著しく減少する。更にまた、分解ナフサ中のオレフィン類の大部分はナフサの軽質留分に濃縮されて残り、このナフサ軽質留分は続いて水素化処理されることはないから、硫黄が富化された重質ナフサだけが水素化処理されるために軽質留分を水素化処理すればそれに伴うオクタン価の低下と水素の消費という不利益は最小限に止まる。同様な結果は、低オレフィン含量の直留ナフサを用いても、この直留ナフサにオレフィン富化流を併給することにより本発明方法により達成できる。
更に詳しくは、本発明はオレフィン性硫黄化合物に富むガソリン沸騰範囲のオレフィン質炭化水素からなる硫黄含有装入原料流の品質向上方法を提供するものである。本発明方法はアルキル化区域中でアルキル化条件下で前記装入原料流をアルキル化用酸性触媒粒子と接触させることによりアルキル化チオフェン性硫黄化合物を含む炭化水素からなる流出流を生成させ、この流出流を分留することにより軽質ナフサ部分とアルキル化チオフェン性硫黄化合物に富む高沸点の重質ナフサ部分とに分けることにより前記流出流からアルキル化チオフェン性硫黄化合物を分離することにより実施できる。前記軽質ナフサ部分を回収すればチオフェン性硫黄化合物の量が減少したガソリン沸騰範囲の炭化水素が回収される。適宜、重質ナフサ部分は慣用の水素化処理または他の脱硫処理を使用して脱硫してもよい。
本発明方法はナフサ装入原料流の硫黄含量を低下させるという意図する利益を達成するが、またこれに付随する利益も達成される。すなわち、本発明方法はナフサ中の芳香族性窒素化合物の量も低下させ、またジオレフィン類の量も低下させることが期待される。
図は本発明方法の1実施態様の概略図である。
装入原料
本発明方法への装入原料は硫黄含有石油留分、通常、ガソリン沸騰範囲で沸騰するオレフィン性硫黄含有石油留分である。このタイプの装入原料には代表的には約C6〜165℃の沸騰範囲のオレフィン性軽質ナフサ、代表的には約C5〜215℃の沸騰範囲のフルレンジナフサ(軽質+重質ナフサ)、約127℃〜210℃の範囲で沸騰する重質ナフサ留分、または約165℃〜260℃で、もしくは少なくとも約165℃〜260℃の範囲内、好適には約165℃〜210℃で沸騰する重質ガソリン留分が含まれる。好適な装入原料は軽質ナフサまたはフルレンジナフサである。
本発明方法への装入原料は好ましくは石油留分中に元々存在するオレフィン類がアルキル化反応を行うのに利用される、ガソリン沸騰範囲で沸騰する硫黄含有オレフィン性石油留分であるが、本発明方法に対するアルキル化剤を供給すなわち補給するためにオレフィン装入流を付加的に供給、すなわち併給することが可能である。本発明方法のこの随意的変形は、軽質オレフィンを多量に供給できるとか、硫黄分の多いガソリン沸騰範囲の装入原料流が本来的に含むオレフィン類の量が充分に豊富でないとかの製油所の現況に依存して選択される。
本発明方法は接触分解工程から得られた全ガソリン留分を用いて、またはその一部を用いて実施することができる。硫黄分は高沸点留分中に濃縮される傾向があるから、特に装置容量が制限される場合には、この高沸点留分を分離し、低沸点留分は処理しないで前記高沸点留分を本発明方法の工程で処理することが好ましい。この処理留分と非処理留分とのカツトポイントは存在する硫黄化合物により変えることができるが、通常は約38℃〜約150℃(約100゜F〜300゜F)、さらに普通には約93℃〜約150℃(約200゜F〜約300゜F)の範囲のカツトポイントが適当である。選定される正確なカツトポイントはガソリン製品に対する硫黄の仕様並びに存在する硫黄化合物の種類に依存する:すなわち、低カツトポイントは通常低硫黄含量仕様の場合に必要である。約65℃(約150゜F)未満で沸騰する成分中に存在する硫黄は大部分がメルカプタンの形態のものであるから、この種の硫黄はメロツクス(Merox)法のような抽出型操作により除去できる。高沸点成分、例えば約82℃(約180゜F)以上で沸騰する成分留分中に存在するチオフェン性化合物の除去は本発明方法の処理により実施される。
これらの接触分解留分の硫黄含量は接触分解装置への装入原料の硫黄含量並びに接触分解法へ装入原料として使用する選定された留分の沸騰範囲に依存する。例えば軽質留分は高沸点留分より硫黄含量が低い傾向がある。実際問題として、硫黄含量は50ppmw以上で、通常100ppmw以上であり、大抵の場合において約500ppmw以上である。約193℃(約380゜F)以上の95%留出点をもつ留分の場合、硫黄含量は約1000ppmw以上で、4000ppmwまたは5000ppmwのような高含量、またはそれ以上でさえある。接触分解装置への装入原料中の窒素化合物の多くは最後にはコークスとなるから、分解ナフサの窒素含量は、装入原料中の硫黄含量と同じような特性値ではなく、約20ppmwより多量でないのが好ましいが、95%留出点が約193℃(約380゜F)を越えるある種の高沸点装入原料には通常約50ppmwまでの高窒素含量のものもある。しかし、窒素含量は通常250ppmw以下または300ppmw以下である。本発明方法の前処理工程である分解工程の結果、本発明方法への装入原料は少なくとも3重量%、そしてさらに普通には10〜20重量%、例えば15〜20重量%のオレフィン含量をもつオレフィン性のものである。
触媒
本発明方法ではブロンステツド酸部位またはルイス酸部位を含む多数の不均質酸触媒が有用である。代表的なルイス酸にはAlCl3、FeCl3、SbCl3、BF3、ZnCl2、TiCl4及びP2O5から誘導されたルイス酸があるが、AlCl3/シリカ、AlCl2/シリカ、BF3/シリカ、Co/Mo/アルミナ、Mo/アルミナ、MoS2が本発明方法に対し特に有用である。代表的なブロンステツド酸にはHF、H2SO4、メタロシリケート、シリカ/アルミナ、スルホン酸樹脂などがある。助触媒の併給または触媒の還元性再生または酸化性再生のような触媒活性の維持または再生に対する周知の方法もまた使用し得る。
有用な触媒には結晶性アルミノシリケートゼオライト、特にシリカ:アルミナ比が少なくとも12で且つ制御指数が約1〜12の中位の気孔寸法をもつ結晶性アルミノシリケートゼオライトがある。これらのゼオライトの代表例はZSM−5、ZSM−11、ZSM−22、ZSM−23、ZSM−35、MCM−22、MCM−36、MCM−49、MCM−49及びZSM−48である。より大きい気孔寸法のゼオライト、すなわち制御指数が約2以下のゼオライトも本発明方法において触媒として使用できる。これらのゼオライトの代表例はベータ、TEAモルデナイト、ファウジャサイト、USY及びZSM−12である。
制御指数を決定する方法は米国特許第4,016,218号明細書に詳細に記載されているから、この決定方法の詳細については上記特許明細書を参照されたい。
本発明で使用するのに好適な触媒の1つのグループはMCM−22、MCM−36、MCM−49及びMCM−56を含むMCM−22に付属する触媒である。MCM−22は米国特許第4,954,325号明細書に、MCM−36は米国特許第5,250,277号明細書に、MCM−36(bound)は米国特許第5,292,698号明細書に、MCM−49は米国特許第5,236,575号明細書に、及びMCM−56は米国特許第5,362,697号明細書にそれぞれ記載されている。
処理方法
本発明方法はナフサ装入原料流中の硫黄量を低減し、同時に得られる生成物の体積量およびオクタン価の損失を最小となす。分解ナフサ中に存在するかまたは直留ナフサに供給されるオレフィン類は硫黄成分をより高分子量の化合物に転化してナフサの高沸点留出留分中に硫黄成分を移行濃縮させる。生成物を分留すると、ナフサ中の硫黄のこの再分配により比較的硫黄分のない軽質ナフサと硫黄分富化重質ナフサとが得られ、この硫黄分富化重質ナフサは慣用の水素化処理により脱硫できる。ナフサの重質留分中への硫黄の移行(再分配)により水素化処理しなければならないナフサ量を減少させるから、これは分解ナフサの場合には水素の消費量を減少させ、またオクタン価保持ナフサ留分の量をより多量にする。
本発明により実施される硫黄成分の転化法はアルキル化酸触媒との接触による芳香族複素環硫黄化合物すなわちチオフェン及び関連チオフェン化合物のアルキル化法の1種である。好適には、本発明方法は分解ナフサ装入原料流について38℃〜371℃(100゜F〜700゜F)の温度、大気圧または自生圧〜7000kPa(71.4kg/cm2)の圧力下で実施される。好適な温度は149〜204℃(300〜400゜F)である。
本発明方法のアルキル化工程を実施するには種々の反応器形状を使用でき、これらの反応器には降流式液相固定床法、昇流式固定床滴下相反応法、沸騰状流動床法または移動流動床法がある。固定床配列が操作を単純にするので好ましい。
本発明で提唱する概念の好適な実施態様を概略図に示す。分解ナフサ1と場合により前分留器(スプリツター)2で予め分留した軽質留分3を酸触媒含有濃縮反応器すなわちアルキル化反応器4に装入し、ここで分解ナフサ中の硫黄成分がナフサ沸騰範囲のオレフィン類によりアルキル化されてより重質の硫黄化合物に転化される。反応器流出流5を蒸留塔6で蒸留して低硫黄分軽質ナフサ7と硫黄富化重質ナフサ8とを得る。この硫黄富化重質ナフサ8は留出油貯槽に送るか、または前分留器2からの重質ナフサ9と合併し反応器(脱硫器)10中で慣用の水素化処理方法を使用して水素化脱硫してもよい。低硫黄分軽質ナフサ7は、適宜エーテル化原料11としてエーテル化器13中でエーテル化するか、または全体の脱硫目標の達成度に依存して、適宜硫黄転化反応器(アルキル化器)4にリサイクル(12)する。ナフサスプリッター(前分留器)はまたT90留出目標をかなえるのにも有用である。
本発明の新規性と利点とを説明するために一連の実験を行つた。これらの実験を下記の実施例1に記載する。
実施例1
分解ナフサ中の硫黄化合物の選択的濃縮をゼオライト触媒ZSM−5、MCM−22及びUSY上でバツチ式実験により観察した。装入原料はFCC軽質ナフサ(C5〜100℃の留分、硫黄含量230ppmw)とFCCフルレンジナフサ(C5以上、硫黄含量0.14重量%)とからなるものであつた。これらバツチ式実験は触媒1g当たりそれぞれ軽質ナフサは10g、フルレンジナフサは11.6gずつの割合の装入量で自生圧下で177℃(350゜F)で3時間ずつ行つた。FCC軽質ナフサについての結果を表1に、またFCCフルレンジナフサについての結果を表2に掲げる。

Figure 0003635496
Figure 0003635496
表1に示すように、3種の触媒はいずれもFCC軽質ナフサ装入原料中に存在する硫黄化合物をメチルチオフェン類より高い温度[113〜116℃(235〜240゜F)]及びC7オレフィン類[80〜106℃(177〜223゜F)]より高い温度で沸騰する硫黄化合物に転化するのに極めて有効である。この硫黄転化反応はまた炭化水素組成の項で詳細に記載するようにオレフィン類をC7+生成物へかなり転化することを伴うものである。
3種の触媒はいずれも表2に示すようにフルレンジFCCナフサ中に存在する硫黄化合物を転化するのに有効である。The present invention relates to a method for improving the quality of a hydrocarbon stream. More particularly, the present invention relates to a method for improving the quality of petroleum fractions in the gasoline boiling range containing olefins and a significant proportion of sulfur impurities.
Even heavy petroleum fractions such as vacuum gas oil or even residue such as atmospheric distillation residue can be converted to lighter and more valuable products, especially gasoline, by catalytic cracking. Conventionally, this catalytic cracking product is recovered and the resulting product is obtained in various fractions, for example distillate fractions such as light gas, naphtha consisting of light and heavy gasoline, combustion oil and diesel oil, It is fractionated into a lubricating base oil fraction and a heavier fraction.
Usually, petroleum and petroleum products contain sulfur as dissolved free sulfur or hydrogen sulfide, or in various forms such as organic compounds such as thiophenes, sulfonic acids, mercaptans, alkyl sulfates and alkyl sulfides. Found. If the petroleum fraction is catalytically cracked and contains sulfur, this catalytic cracking product usually contains sulfur impurities, so that the sulfur impurities are usually treated by hydrotreating to meet the relevant specifications of the catalytic cracking products. Must be removed. This type of hydrotreatment can be carried out before or after catalytic cracking. Most sulfur present in gasoline reservoirs is due to naphtha streams obtained from both catalytic cracking processes such as FCC (fluid catalytic cracking process) and pyrolysis processes such as coking process, so cracked naphtha sulfur Reducing the content is important to meet specifications and sulfur emission standards for sulfur on naphtha liquid transport.
The difficulty of removing sulfur from petroleum and its products depends on the type of sulfur-containing compound. Hydrogen sulfide and mercaptans are relatively easy to remove, but aromatic sulfur compounds such as thiophenes are more difficult to remove than the former. Sulfur impurities tend to concentrate in heavy gasoline fractions, as described in US Pat. No. 3,957,625 [Orkin], in which the weight of gasoline obtained by catalytic cracking is reduced. A method has been proposed in which the mass fraction is desulfurized by hydrodesulfurization treatment to retain the octane number-contributing action of olefins present mainly in the light fraction. One type of conventional industrial operation treats heavy gasoline fractions in this way. Alternatively, the selection of a suitable catalyst can be varied to increase the selectivity to hydrodesulfurization relative to the selectivity of the olefin saturation reaction, for example by using a magnesium oxide support instead of the more common alumina. .
The catalytic cracking naphtha fraction obtained from the catalytic cracking apparatus and not subjected to further treatment such as refining operation has a relatively high octane number because of containing olefinic components. Cracked naphtha fractions are also obtained with excellent quantitative (volume basis) yields. Thus, the cracked gasoline fraction is an excellent contributing component for gasoline reservoir formation. The cracked gasoline fraction contributes to achieving a high blended octane number in large quantities of product. In some cases, this fraction makes up a large portion up to half of the gasoline in the refinery storage. Thus, the cracked gasoline fraction is the most desirable component in the gasoline reservoir.
Other unsaturated fractions boiling in the gasoline boiling range produced at some refineries or petrochemical plants include pyrolysis gasoline. This gasoline is often produced as a by-product in the cracking operation of petroleum fractions to produce light unsaturated compounds such as ethylene and propylene. This high temperature gasoline can have a very high octane number, but is extremely unstable without hydrotreating. This is because high temperature gasoline contains a significant proportion of diolefins in addition to the desired olefins boiling within the gasoline boiling range, which tend to form gums during storage or storage.
Naphtha cracking is a very useful method to increase gasoline yield. However, this cracking operation is also affected by the sulfur-containing material, reducing the molecular weight of the sulfur-containing material from a molecular weight range greater than the average molecular weight of the gasoline boiling range fraction to a molecular weight range within the molecular weight range of the gasoline fraction. . Much of the sulfur in the gasoline boiling range sulfur compounds is contained in aromatic compounds and must be removed by hydroprocessing. However, hydroprocessing of sulfur-containing cracking fractions boiling within the gasoline boiling range, such as FCC, high-temperature cracking and naphtha from cokers, reduces the olefin content and, consequently, the octane number. Furthermore, as the degree of desulfurization increases, the octane number of the product in the normal liquid gasoline boiling range decreases. Depending on the conditions of the hydrotreating operation, some hydrogen is consumed for hydrocracking or aromatic nucleus saturation as well as olefinic unsaturated bond saturation.
Various methods have been proposed to remove sulfur and at the same time maintain desirable olefins. For example, U.S. Pat. No. 4,049,542 (Gibson) discloses a method of using a copper catalyst to desulfurize olefin-containing hydrocarbon feedstocks such as catalytically cracked light naphtha.
Other methods for treating catalytic cracking gasoline have also been proposed in the past. For example, U.S. Pat. No. 3,759,821 [Brennan] discloses catalytic cracking gasoline fractionated into a heavy fraction and a light fraction, and the resulting heavy fraction is treated over a ZSM-5 catalyst. The method for improving the quality of the catalytic cracking gasoline is disclosed by remixing the fraction treated thereafter into the light fraction. Another method of treating cracked gasoline after fractionation is described in US Pat. No. 4,062,762 [Howard], in which naphtha is fractionated into three fractions, It discloses a method of desulfurizing naphtha by desulfurizing each fraction in a different operation and then remerging the fractions.
In any of these, regardless of the mechanism that occurs, the decrease in octane resulting from sulfur removal by hydroprocessing is an increasing demand for the production of gasoline fuels with higher octane numbers and the current ecology. Creates a competitive relationship between the demand for low-sulfur fuels to avoid the poisoning of converters with less environmentally polluting fuels, especially catalysts that adversely affect hydrocarbon emissions, with better cleanliness . This inherently competitive relationship of demand is even more noticeable in the current supply situation for low sulfur crude oil.
The object of the present invention is to provide a method for reducing the sulfur content in naphtha streams, in particular the sulfur content due to thiophenes and thiophene compounds in naphtha, while at the same time minimizing the volume loss and octane reduction of naphtha products. To do.
Sulfur components present in cracked naphtha can be obtained by alkylating thiophenic compounds in naphtha by first passing the naphtha over an acid catalyst and using the olefins and diolefins originally present in the naphtha as alkylating agents. Is converted and removed. Such an alkylation reaction collects sulfur components in the heavy fraction of naphtha by producing alkylated thiophenes, thus significantly reducing the amount of naphtha that must be hydrodesulfurized. Furthermore, most of the olefins in the cracked naphtha remain concentrated in the naphtha light fraction, which is not subsequently hydrotreated, so that the heavy sulfur-enriched naphtha fraction is not hydrotreated. Since only the naphtha is hydrotreated, hydrotreating the light fraction will minimize the associated disadvantages of decreasing octane number and hydrogen consumption. Similar results can be achieved with the process of the present invention using a straight naphtha having a low olefin content by co-feeding the straight naphtha with an olefin-enriched stream.
More particularly, the present invention provides a method for improving the quality of a sulfur-containing feedstock stream consisting of olefinic hydrocarbons in the gasoline boiling range rich in olefinic sulfur compounds. The process of the present invention produces an effluent stream comprising a hydrocarbon containing an alkylated thiophene sulfur compound by contacting the charge stream with alkylating acidic catalyst particles under alkylation conditions in an alkylation zone, This can be accomplished by separating the alkylated thiophene sulfur compound from the effluent by fractionating the effluent stream into light naphtha moieties and high boiling heavy naphtha moieties rich in alkylated thiophene sulfur compounds. When the light naphtha portion is recovered, hydrocarbons in the gasoline boiling range in which the amount of the thiophene sulfur compound is reduced are recovered. Optionally, the heavy naphtha portion may be desulfurized using conventional hydroprocessing or other desulfurization processes.
While the process of the present invention achieves the intended benefit of reducing the sulfur content of the naphtha charge, the attendant benefits are also achieved. That is, the method of the present invention is expected to reduce the amount of aromatic nitrogen compounds in naphtha and the amount of diolefins.
The figure is a schematic of one embodiment of the method of the present invention.
Charged raw material The charged raw material to the method of the present invention is a sulfur-containing petroleum fraction, usually an olefinic sulfur-containing petroleum fraction boiling in the gasoline boiling range. This type of charging material is typically an olefinic light naphtha with a boiling range of about C 6 to 165 ° C, typically a full range naphtha with a boiling range of about C 5 to 215 ° C (light + heavy naphtha). A heavy naphtha fraction boiling in the range of about 127 ° C to 210 ° C, or boiling at about 165 ° C to 260 ° C, or at least within the range of about 165 ° C to 260 ° C, preferably about 165 ° C to 210 ° C Contains heavy gasoline fractions. The preferred charge is light naphtha or full range naphtha.
The feedstock to the process of the present invention is preferably a sulfur-containing olefinic petroleum fraction boiling in the gasoline boiling range, where the olefins originally present in the petroleum fraction are utilized to carry out the alkylation reaction, It is possible to additionally feed, i.e. co-feed, the olefin charge to feed or replenish the alkylating agent for the process of the invention. This optional variant of the process of the present invention is the refinery's ability to supply a large amount of light olefins or that the amount of olefins inherently contained in the feed stream in the gasoline boiling range with a high sulfur content is not sufficient. It is selected depending on the current situation.
The process according to the invention can be carried out with the whole gasoline fraction obtained from the catalytic cracking process or with part of it. Since the sulfur content tends to be concentrated in the high boiling fraction, particularly when the capacity of the apparatus is limited, the high boiling fraction is separated without separating the high boiling fraction and treating the low boiling fraction. Is preferably treated in the process of the present invention. The cut point of the treated and untreated fractions can vary depending on the sulfur compounds present, but is usually about 38 ° C to about 150 ° C (about 100 ° F to 300 ° F), more usually about A cutting point in the range of 93 ° C to about 150 ° C (about 200 ° F to about 300 ° F) is suitable. The exact cut point chosen will depend on the sulfur specification for the gasoline product as well as the type of sulfur compound present: a low cut point is usually required for low sulfur content specifications. Since sulfur present in components boiling below about 65 ° C (about 150 ° F) is mostly in the form of mercaptans, this type of sulfur is removed by extraction-type operations such as the Merox process. it can. Removal of high-boiling components, such as thiophenic compounds present in component fractions boiling above about 82 ° C. (about 180 ° F.) is carried out by the process of the present invention.
The sulfur content of these catalytic cracking fractions depends on the sulfur content of the raw material charged to the catalytic cracker and the boiling range of the selected fraction used as the raw material for the catalytic cracking process. For example, light fractions tend to have a lower sulfur content than high boiling fractions. As a practical matter, the sulfur content is 50 ppmw or more, usually 100 ppmw or more, and in most cases about 500 ppmw or more. For fractions with a 95% distillation point above about 193 ° C. (about 380 ° F.), the sulfur content is about 1000 ppmw or higher, as high as 4000 ppmw or 5000 ppmw, or even higher. Since most of the nitrogen compounds in the raw material charged to the catalytic cracker will eventually become coke, the nitrogen content of cracked naphtha is not a characteristic value similar to the sulfur content in the raw material, but is greater than about 20 ppmw. Although not preferred, certain high boiling feedstocks with 95% distillation points above about 193 ° C. (about 380 ° F.) may have high nitrogen contents, usually up to about 50 ppmw. However, the nitrogen content is usually 250 ppmw or less or 300 ppmw or less. As a result of the cracking step, which is a pretreatment step of the process of the present invention, the feedstock to the process of the present invention has an olefin content of at least 3% by weight, and more usually 10-20% by weight, for example 15-20% by weight. It is olefinic.
Catalysts A number of heterogeneous acid catalysts containing bronstead acid sites or Lewis acid sites are useful in the process of the present invention. Typical Lewis acids include Lewis acids derived from AlCl 3 , FeCl 3 , SbCl 3 , BF 3 , ZnCl 2 , TiCl 4 and P 2 O 5 , but AlCl 3 / silica, AlCl 2 / silica, BF 3 / Silica, Co / Mo / alumina, Mo / alumina, MoS 2 are particularly useful for the process of the present invention. Representative bronstead acids include HF, H 2 SO 4 , metallosilicates, silica / alumina, sulfonic acid resins and the like. Well known methods for maintaining or regenerating catalytic activity, such as co-feeding of catalysts or reductive or oxidative regeneration of the catalyst, may also be used.
Useful catalysts include crystalline aluminosilicate zeolites, particularly crystalline aluminosilicate zeolites having a silica: alumina ratio of at least 12 and a control pore size of about 1 to 12 medium pore sizes. Representative examples of these zeolites are ZSM-5, ZSM-11, ZSM-22, ZSM-23, ZSM-35, MCM-22, MCM-36, MCM-49, MCM-49 and ZSM-48. Larger pore size zeolites, ie zeolites with a control index of about 2 or less, can also be used as catalysts in the process of the present invention. Representative examples of these zeolites are beta, TEA mordenite, faujasite, USY and ZSM-12.
Since the method for determining the control index is described in detail in US Pat. No. 4,016,218, reference is made to the above patent specification for details of this determination method.
One group of catalysts suitable for use in the present invention are catalysts associated with MCM-22, including MCM-22, MCM-36, MCM-49 and MCM-56. MCM-22 in US Pat. No. 4,954,325, MCM-36 in US Pat. No. 5,250,277, MCM-36 (bound) in US Pat. No. 5,292,698, and MCM-49 in US Pat. No. 5,236,575 And MCM-56 are described in US Pat. No. 5,362,697, respectively.
Treatment Method The method of the present invention reduces the amount of sulfur in the naphtha charge and simultaneously minimizes the volume loss and octane loss of the resulting product. Olefins present in cracked naphtha or fed to straight-run naphtha convert the sulfur component to higher molecular weight compounds and transfer and concentrate the sulfur component into the naphtha high boiling distillate fraction. When the product is fractionated, this redistribution of sulfur in the naphtha yields light naphtha that is relatively sulfur-free and sulfur-rich heavy naphtha, which is enriched with conventional hydrogenation. Can be desulfurized by treatment. This reduces the amount of naphtha that must be hydrotreated by the transfer (redistribution) of sulfur into the naphtha heavy fraction, which reduces hydrogen consumption and the octane retention in the case of cracked naphtha. Increase the amount of naphtha fraction.
The sulfur component conversion process carried out in accordance with the present invention is one of the alkylation processes of aromatic heterocyclic sulfur compounds, ie thiophene and related thiophene compounds, by contact with an alkylating acid catalyst. Preferably, the process of the present invention is carried out at a temperature of 38 ° C. to 371 ° C. (100 ° F. to 700 ° F.), atmospheric pressure or autogenous pressure up to 7000 kPa (71.4 kg / cm 2 ) for a cracked naphtha charge. To be implemented. The preferred temperature is 149-204 ° C (300-400 ° F).
Various reactor geometries can be used to carry out the alkylation step of the process of the present invention, and these reactors include a downflow liquid phase fixed bed method, an upflow fixed bed drop phase reaction method, a boiling fluidized bed. Or moving fluid bed method. A fixed bed arrangement is preferred because it simplifies operation.
A preferred embodiment of the concept proposed in the present invention is shown schematically. A cracked naphtha 1 and optionally a light fraction 3 previously fractionated by a pre-fractionator (splitter) 2 are charged into an acid catalyst-containing concentration reactor, ie, an alkylation reactor 4, where the sulfur component in the cracked naphtha is removed. Alkylated with olefins in the naphtha boiling range and converted to heavier sulfur compounds. Reactor effluent 5 is distilled in distillation column 6 to obtain low sulfur light naphtha 7 and sulfur enriched heavy naphtha 8. This sulfur-enriched heavy naphtha 8 is sent to a distillate oil storage tank or merged with the heavy naphtha 9 from the pre-fractionator 2 to use a conventional hydrotreating method in a reactor (desulfurizer) 10. It may be hydrodesulfurized. The low sulfur content light naphtha 7 is appropriately etherified as an etherification raw material 11 in an etherification device 13 or appropriately converted into a sulfur conversion reactor (alkylation device) 4 depending on the achievement degree of the overall desulfurization target. Recycle (12). Naphtha splitters (pre-distillers) are also useful in meeting T 90 distillate targets.
A series of experiments were conducted to illustrate the novelty and advantages of the present invention. These experiments are described in Example 1 below.
Example 1
Selective enrichment of sulfur compounds in cracked naphtha was observed by batch experiments on zeolite catalysts ZSM-5, MCM-22 and USY. The feedstock (fraction C 5 to 100 ° C., sulfur content 230Ppmw) FCC light naphtha and FCC full range naphtha (C 5 or higher, a sulfur content of 0.14% by weight) was filed those consisting a. These batch-type experiments were conducted for 3 hours at 177 ° C (350 ° F) under autogenous pressure with a charge of 10g for light naphtha and 11.6g for full-range naphtha per gram of catalyst. The results for FCC light naphtha are listed in Table 1, and the results for FCC full-range naphtha are listed in Table 2.
Figure 0003635496
Figure 0003635496
As shown in Table 1, all of the three types of catalysts converted sulfur compounds present in the FCC light naphtha charge to temperatures higher than methylthiophenes [113 to 116 ° C (235 to 240 ° F)] and C 7 olefins. It is extremely effective in converting to sulfur compounds boiling at higher temperatures than the class [80-106 ° C (177-223 ° F)]. This sulfur conversion reaction also involves significant conversion of olefins to C 7 + products as described in detail in the hydrocarbon composition section.
All three catalysts are effective in converting sulfur compounds present in full range FCC naphtha as shown in Table 2.

Claims (10)

オレフィン類及びチオフェン性硫黄化合物に富むガソリン沸騰範囲のオレフィン性炭化水素からなる硫黄含有分解ナフサ装入原料流の品質向上方法において、該方法が
C5〜215℃の沸騰範囲の前記装入原料流をアルキル化区域中で粒状酸性アルキル化触媒と接触させて装入原料流中のオレフィンによりチオフェン性硫黄化合物をアルキル化してアルキル化チオフェン性硫黄化合物とオレフィン性ガソリン沸騰範囲の炭化水素とを含む流出流を生成させ、
得られた流出流を分留してオレフィン性ガソリン沸騰範囲の炭化水素からアルキル化チオフェン性硫黄化合物を分離し、
チオフェン性硫黄化合物の量が減少した炭化水素からなる生成物流を回収することからなる、硫黄含有分解ナフサ装入原料流の品質向上方法。
In a method for improving the quality of a sulfur-containing cracked naphtha charge feed comprising olefinic hydrocarbons in the gasoline boiling range rich in olefins and thiophene sulfur compounds, the method comprises:
C 5 to 215 wherein the charging feed stream to the alkylation of thiophenic sulfur compounds by olefins The feedstock stream is contacted with the particulate acidic alkylation catalyst at alkylation zone during the alkylation thiophenic sulfur boiling range ℃ Producing an effluent stream comprising a compound and hydrocarbons in the olefinic gasoline boiling range;
Fractionating the resulting effluent to separate alkylated thiophene sulfur compounds from hydrocarbons in the olefinic gasoline boiling range;
A method for improving the quality of a sulfur-containing cracked naphtha charge feed stream comprising recovering a product stream comprising hydrocarbons with reduced amounts of thiophene sulfur compounds.
少なくとも90重量%のチオフェン性硫黄化合物がアルキル化チオフェン性硫黄化合物に転化される請求項1記載の方法。The process of claim 1 wherein at least 90% by weight of the thiophene sulfur compound is converted to an alkylated thiophene sulfur compound. 触媒がアルミノシリケートゼオライトを含有する請求項2記載の方法。The process of claim 2 wherein the catalyst comprises an aluminosilicate zeolite. ゼオライトがZSM−5、MCM−22、MCM−56、ゼオライトベータ、USYまたはファウジャサイトである請求項3記載の方法。4. A process according to claim 3, wherein the zeolite is ZSM-5, MCM-22, MCM-56, zeolite beta, USY or faujasite. 装入原料がC5〜215℃の範囲内の沸騰範囲をもつフルレンジナフサ留分からなる請求項1〜4のいずれか1項記載の方法。The method of any of claims 1-4 consisting of full range naphtha fraction The feedstock has a boiling range within the range of C 5 to 215 ° C.. 装入原料流がC6〜165℃の範囲内の沸騰範囲をもつ軽質ナフサ留分からなる請求項1〜4のいずれか1項記載の方法。Any one method of claims 1 to 4, charging feed stream consisting of C 6 to 165 light naphtha fraction having a boiling range within the range of ° C.. 装入原料流が165℃〜260℃の範囲内の沸騰範囲をもつ重質ナフサ留分からなる請求項1記載の方法。A process according to claim 1 wherein the feed stream comprises a heavy naphtha fraction having a boiling range in the range of 165 ° C to 260 ° C. 装入原料流が少なくとも178℃の95%留出点をもつナフサ留分からなる請求項1〜7のいずれか1項記載の方法。The method of any one of claims 1 to 7 comprising a naphtha fraction having a 95% distillation point of even 1 78 ° C. and less charging feed stream. アルキル化を150℃〜370℃の温度及び大気圧〜7000kPaの圧力で行う請求項1〜8のいずれか1項記載の方法。Any one method of claims 1 to 8, the alkylation at a pressure of temperature and atmospheric pressure ~7000K Pa of 0.99 ° C. to 370 ° C.. ガソリン沸騰範囲炭化水素流と共にオレフィン装入原料を併給する請求項1〜9のいずれか1項記載の方法。10. A process as claimed in any one of the preceding claims in which the olefin charge is co-fed with a gasoline boiling range hydrocarbon stream.
JP53295097A 1996-09-30 1996-09-30 Alkylation desulfurization method of gasoline fraction Expired - Lifetime JP3635496B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1996/015689 WO1998014535A1 (en) 1996-09-30 1996-09-30 Alkylation process for desulfurization of gasoline

Publications (2)

Publication Number Publication Date
JP2001500535A JP2001500535A (en) 2001-01-16
JP3635496B2 true JP3635496B2 (en) 2005-04-06

Family

ID=22255887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53295097A Expired - Lifetime JP3635496B2 (en) 1996-09-30 1996-09-30 Alkylation desulfurization method of gasoline fraction

Country Status (4)

Country Link
EP (1) EP0931123A1 (en)
JP (1) JP3635496B2 (en)
KR (1) KR19990028199A (en)
AU (1) AU750118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150467B2 (en) 2013-07-23 2015-10-06 Uop Llc Processes and apparatuses for preparing aromatic compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948528A (en) * 1930-12-13 1934-02-27 Atlantic Refining Co Purification of hydrocarbon oils
US3642927A (en) * 1968-02-07 1972-02-15 Ashland Oil Inc Process for desulfurization of aromatics

Also Published As

Publication number Publication date
JP2001500535A (en) 2001-01-16
KR19990028199A (en) 1999-04-15
AU7250196A (en) 1998-04-24
EP0931123A1 (en) 1999-07-28
AU750118B2 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
US5599441A (en) Alkylation process for desulfurization of gasoline
JPH08502533A (en) How to improve gasoline quality
US7947166B2 (en) Method for desulfurizing hydrocarbon fractions from steam cracking effluents
JP4417105B2 (en) Multistage process for sulfur removal from transportation fuel blending components
RU2186831C2 (en) Hydrodesulfurization method and method for improving quality of hydrocarbon stock
AU2002310232A1 (en) Multiple stage process for removal of sulfur from components for blending of transportation fuels
JP2004537613A5 (en)
JP4366583B2 (en) Integrated process for desulfurization of effluents from hydrocarbon cracking or steam cracking processes
WO1998014535A1 (en) Alkylation process for desulfurization of gasoline
AU2002303921B2 (en) Multistage process for removal of sulfur from components for blending of transportation fuels
US6599417B2 (en) Sulfur removal process
WO2003035800A2 (en) Sulfur removal process
US6602405B2 (en) Sulfur removal process
AU2002303921A1 (en) Multistage process for removal of sulfur from components for blending of transportation fuels
JP2004536951A5 (en)
JP3635496B2 (en) Alkylation desulfurization method of gasoline fraction
WO2005019387A1 (en) The production of low sulfur naphtha streams via sweetening and fractionation combined with thiophene alkylation
AU2002349893B2 (en) Sulfur removal process
MXPA97008762A (en) Alkylation process for desulfurization of gasoline
AU2002349893A1 (en) Sulfur removal process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040706

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term