JP3635492B2 - ファイバーオプティク地震センサ - Google Patents

ファイバーオプティク地震センサ Download PDF

Info

Publication number
JP3635492B2
JP3635492B2 JP2001542159A JP2001542159A JP3635492B2 JP 3635492 B2 JP3635492 B2 JP 3635492B2 JP 2001542159 A JP2001542159 A JP 2001542159A JP 2001542159 A JP2001542159 A JP 2001542159A JP 3635492 B2 JP3635492 B2 JP 3635492B2
Authority
JP
Japan
Prior art keywords
fiber optic
central support
substrate
support plate
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001542159A
Other languages
English (en)
Other versions
JP2004500559A (ja
Inventor
エヌ. フエーシト,サミユエル
ビー. ホール,デイビツド
バゼルト,カール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Guidance and Electronics Co Inc
Original Assignee
Northrop Grumman Guidance and Electronics Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Guidance and Electronics Co Inc filed Critical Northrop Grumman Guidance and Electronics Co Inc
Publication of JP2004500559A publication Critical patent/JP2004500559A/ja
Application granted granted Critical
Publication of JP3635492B2 publication Critical patent/JP3635492B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/186Hydrophones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up

Description

【0001】
(背景技術)
本発明は一般に線加速度を感知する装置に係り、特に本発明は地震振動に応答する光学信号を提供する光学繊維干渉計を包含した地震センサに関する。
【0002】
加速度若しくは圧力に応答する弾性ディスクの撓みあるいは変形の測定は数多くの加速度および圧力センサを用いて可能になる。変形または変位の量は干渉計で、機械的に若しくは圧電的に、あるいは要素間の静電容量またはインダクタンスの変化によって決定し得る。一方これらの方式はいずれも感度が限定される、または原価が高い、あるいは最大偏向若しくは実際の環境感度に限度があるように欠陥を有する。作業条件による一部の誤差は、ノイズ源に関連する信号成分から所望の出力を区別し得ないようにする加速度に応答するような、限定された物理的曲げ容量のような、基本的なものである。他の作業条件エラーは温度若しくは圧力の変化で引起こされる物理的な寸法、弾性率、屈折率等の変化に起因する。
【0003】
干渉計による歪測定は顕著な精度と解像度を示す。光学繊維によって実施した場合、干渉計方式は低電力性、電磁的干渉への免疫性、遠隔感知と高データ率への適応性を伴う簡潔なセンサ装置を含む。光学繊維媒体を用いた加速度と圧力の干渉計による測定は、時分割多重送信を用いた単一の繊維における多数のセンサの遠隔測定信号の送信によって達成できる。光学繊維自体は単位長さ当りの感度は比較的低く、周囲圧力、加速による張力等によるエラーの影響を受けない。
【0004】
光学繊維のディスク搭載型螺旋コイルを用いた所定のプッシュプル効果を生じさせる多数の加速度測定装置が提供されている。1990年9月25日付けのホフラー他に交付された米国特許第4,959,539号に、音響振動で曲げが誘発されるように周部を支持したディスクを有する水中聴音器が開示される。この場合ディスクの各側に平坦な螺旋の光学繊維が固定される。ディスクの曲げは一面側の螺旋コイルの光学路長を短縮させるが、対向面側ではこれが延長される。一対のディスクを本体に取付け、測定すべき音響圧力差が各螺旋コイルを光学繊維干渉計の二つの脚としてプッシュプル動作用に接続され、ディスク両端に存在するように配設される。
【0005】
1994年6月7日付けのブラウン他に交付された米国特許第5,317,929号には上述の2枚ディスク構成に基づいた光学繊維加速度計が開示されている。中央に位置させた質量が対向する可撓性ディスクの間に挟持される。光学繊維の平坦な螺旋コイルが可撓性ディスクの表面に固定され、干渉計の各脚に具備されるように配設される。
【0006】
1999年3月16日付けで本発明の発明者の一人であるファーシュに交付された米国特許第5,883,308号にはそれ自体の平面に直交する加速度に応答して捩れを生じるリングを含むファイバーオプティク加速度計が開示されている。このリングは周部フランジによってケーシングの壁に取付けられる。ケーシングは二つの同心壁によりケーシング内部をディスク状中央区分と環状に取巻く区分とに分ける。リングは入力軸線に沿って直線的加速度に応答してリングに捩れを生じさせる慣性モーメントを生じるように配置される。平坦な螺旋状光学繊維のコイルがリングの上面と下面とに固定され、干渉計の両脚に含まれるように配置されて加速度判定のために処理される光学信号を発生させる。ケーシングの中央区分は中空で装置に中立的浮力を持たせ、水中音響検知の応用に適宜に使用し得る。
【0007】
(発明の概要)
本発明によるファイバーオプティク地震センサは望ましくはアルミニウムのような金属で形成した中央支持アセンブリを備える。支持板が中央支持アセンブリ内に保持される内方部と中央支持アセンブリを越えて延長する外方部とを有する。第一基板は支持板の外方部の第一面に載置される内端を有する。第一基板は内半径と外半径並びに内壁と外壁を有する中空筒体状に形成され、内半径は第一基板の内側に中央支持アセンブリを収容して中央支持アセンブリと第一基板の内壁とは離間するように配置される。第二基板は支持板の外方部の第二面上に載置される内端を有する。第二基板は内半径と外半径並びに内壁と外壁を持つ中空筒体状に形成される。内半径は第二基板の内側に中央支持アセンブリを収容して中央支持アセンブリと第二基板の内壁とが離間するように形成される。第一の螺旋巻光ファイバーコイルが第一基板の外端上に形成され、第二の螺旋巻光ファイバーコイルが第二基板の外端上に形成される。第一と第二の光ファイバーコイルははぼ平坦で、同心で離間している。干渉計が第一螺旋巻光ファイバーコイルを第一脚に、第二螺旋巻光ファイバーコイルを第二脚に含めて形成される。干渉計は光ファイバーコイルの面に直角の軸線に沿う加速度が支持板に歪みを生じさせ、この歪みが一方の光ファイバーコイルの長さを増大させる一方、他方の光ファイバーコイルの長さに相応する減少を生じさせるように構成される。
【0008】
中央支持アセンブリは望ましくはその第一端に空洞を有する第一中央支持部材と、第一中央支持部材の空洞内に受容されるように延びる突起を有する第二中央支持部材とでなる。支持板はこの突起を受容し通過させる通路を有し、支持板の内方部を第一、第二中央支持部材間に保持させる。
【0009】
本発明の目的とその構成並びに動作方法の完全な理解が以下の望ましい実施形態の説明を検討し、添付の図面を参照することにより得られよう。
【0010】
(発明を実施するための最良の形態)
図1および図2は本発明によるファイバーオプティク地震センサ10を示す。図1〜図3に示すように、ファイバーオプティク地震センサ10は基板14上に載置した第一螺旋巻光ファイバーコイル12を含む。第二螺旋巻光ファイバーコイル16が別の基板18上に載置される。これらの基板14並びに18は望ましくはポリカーボネイトのような材料で形成される。
【0011】
第一螺旋巻光ファイバーコイル12は望ましくは基板14の第一面22内に形成した環状凹部20内に載置される。従って凹部20はその両側縁でコイル12の内径と外径を規定し、基板14上にコイルを形成する補佐となる。コイル12は望ましくは適宜の接着剤で基板14に固定される。光ファイバーコイル16は同様に基板18の第一面26に形成した環状凹部24内に載置される。
【0012】
これらのコイル12および16は望ましくは約18mmの内径と、約22mmの外径を有する。コイル12および16は望ましくは各々約6.0m〜6.2mの長さを有するように好適の層数にされる。
【0013】
ファイバーオプティク地震センサ10は更に、第一中央支持部材30と第二中央支持部材32を包有する。これらの中央支持部材30および32は望ましくは各々円筒状に、アルミニウムのような金属で形成される。第一中央支持部材30の第一端34は筒状凹部36を有し、第二中央支持部材32は対応してその一端40から延びる筒状突起38を有する。図1および図2に示すように、凹部36と突起38は、第一、第二中央支持部材30および32がそれらの一端34および40を突き合せて軸線を整合させたときに突起38が凹部36内に密接に嵌入するように配設される。
【0014】
ファイバーオプティク地震センサ10は更に、望ましくは円形状の外周を有する支持板42を包有する。通路44がこの支持板42の中央に形成される。凹部36、突起38および通路44は円筒状にするのが利便であるが、他の形状も採用しうる。通路44は突起38の直径より僅かに大きく形成される。
【0015】
ファイバーオプティク地震センサ10の組立てに当っては、突起38を通路44から突き出させて支持板42を第二中央支持部材32上に配置する。第一中央支持部材30は次いで、突起38を凹部36内に延びるようにして第二中央支持部材32上に配置される。中央支持部材30およぼ32は支持板42の直径より小とした外径を有する。従って支持板42の一部39は中央支持部材30および32の内端34および40のそれぞれの間に締付け、固定される。支持板42の外方部41は中央支持部材30および32の長手軸線に沿う地震振動に応答して自由に振動する。
【0016】
基板14は望ましくは中央に円筒状通路46を持つような円筒状に形成される。基板18は望ましくは基板14と同一であり、中央に円筒状通路48を有する。これら基板14および18はそれぞれ外壁面3および45を有する。
【0017】
通路46および48は中央支持部材30および32の直径より大にした直径を持つ。基板14および18と支持板42はいずれも同一の直径にすることが望ましい。ファイバーオプティク地震センサ10の組立ては、両基板14および18を支持板42の対向面42Aおよび42Bのそれぞれと向い合う各端34および40のそれぞれと軸線に対し整合させて配列する工程を含む。この配列の際中央支持部材30は基板14の中央通路46に挿通される。中央支持部材32はその突起38の部分を通路46に延出させて中央通路48に挿通される。エポキシ樹脂のような適宜の接着剤を用いて基板14および18を支持板42に接着する。
【0018】
ある形状においては支持板42の外周縁49に質量47を付加することが望まれる。質量47は支持板42の外周縁と基板14および18のそれぞれの側面43および45に取付けるリングで良い。この付加質量47は代りに支持板42と一体に形成しても良い。付加質量はファイバーオプティク地震センサ10の換算係数を増加する。
【0019】
ファイバーオプティク地震センサ10は金属または合成材料で形成したハウジング70を具備する。ハウジング70はポリカーボネート製両端開口の中空筒体72と一対のポリカーボネート製ディスク74および76とにより形成することが利便性が高くなる。組立てた中央支持部材30および32と支持板42の長さは筒体72の高さと同一にする。第一中央支持部材30の一端78はディスク74の中央に接着する。筒体72の一端はディスク74に接着する。ディスク76は筒体72の他端に接着して、中央支持部材30および32の各端78および80はそれぞれ各ディスク74および76の内面に接触させる。組立てられた基板14および18と支持板42の長さは筒体72の高さ以下である。従って中央支持部材30および32はディスク74および74および76の間に固定保持されるが、基板14および18の第一端22および26のそれぞれとハウジング70のディスク74および76との間に空間を区画する。従って中央支持部材30および32の長手軸線に沿う地震振動は支持板42を歪め、光ファイバーコイル12および16の長さを変化させる。
【0020】
図4に略図的に示すように光ファイバーコイル12および16は干渉計50の二本の脚として具備される。図4は周知のマイケルソン干渉計の形式を示すが、本発明はマッハーツェンダー干渉計を用いて実施することも可能である。レーザ52は光信号を光ファイバー54に与え、光ファイバーは光信号を光結合器56に案内する。光結合器56は当業者において汎用の結合器構成のもので良い。結合器出力は光ファイバーコイル12および16の各々に供給される。
【0021】
ハウジング70はまた適宜の通路82を有し、ハウジング70の内外の要素間を光ファイバーが連通できるようにする。本発明の一部の実施形態では米国特許第5,883,308号の図1(a)に示すように光結合器56が開口内に設置すれば利便である。
【0022】
地震の振動は支持板42の変形を引き起こし、これが各光ファイバーコイル12および16の長さを変化させる。コイル12および16は支持板42の対向する両面上にあるため、支持板の縁の歪みは一方のコイルの長さを増加させ、他方のコイルの長さを減少させる。長さの変化はコイル12および16内を伝播する光信号に位相差を生じさせる。レフレクタ58および60が光ファイバーコイル12および16の端部に形成されており、光信号は結合器56に反射し戻されそこで組み合わされ、干渉パターンを生じさせる。光ファイバー62は干渉計出力を光検出器64に案内し、ここで干渉パターンが電気信号に変換される。電気信号は次いで処理されて、干渉計の二本の脚の間の位相差を生じた地震振動の大きさを決定する。
【0023】
ファイバーオプティク地震センサ10の各種要素の寸法は相当に変化させ得る。ここでは代表的な寸法例のみ触れ、ファイバーオプティク地震センサ10の構成について説明する。基板14および18は約26mmの直径と約5.4mmの高さを有する。凹部20および24は約4mmの巾と約0.85mmの深さとする。凹部20および24の外周縁は望ましくは基板14および18の外周縁43および45からそれぞれ約2mmの個所にある。基板14および18の各通路46および48は直径は約10.0mmである。中央支持部材30および32の直径は約8.0mmで、組合せ時の長さを約13.0mmにする。突起38は直径を約4.0mm、長さを約1.6mmにする。突起38の上端と凹部36の内底との間には約0.4mmの小空隙を設ける。支持板42は望ましくは黄銅で形成され、約26mmの外径と約0.2mmの厚さを有する。ディスク74および76は望ましくは約3.0mmの厚さを有する。筒体72は望ましくは約13.0mmの高さと、約32mmの直径並びに約2.0mmの壁厚を有する。
【0024】
上述に従って構成されるファイバーオプティク地震センサ10は3Hzから1000Hzの周波数範囲における地震振動を検出することが可能である。
【0025】
地震振動の感知方式は一またはそれ以上の本発明によるファイバーオプティク地震センサ10を包含する。センサは分離しても、あるいは一列に接続しても良い。図5に示すように列90が連続するファイバーオプティク地震センサ10A、10B等の間を接続するファイバーオプティク遠隔計測ケーブル91を包有して構成される。ファイバーオプティク結合器92A、92B等が各センサを遠隔計測ケーブルの間を接続する。必要であれば組継ぎ(図示せず)を用いて各センサ10A、10B等を遠隔計測ケーブルと結合器に接続する。
【0026】
上述した構成と方法は本発明の原理を示す。本発明はその精神と必須の特徴から離れることなく他の特定の形態においても実施し得る。記載した実施形態はあらゆる点で限定的ではなく、例示として理解すべきである。従って上述より添付の請求範囲が発明の範囲を定義する。請求の範囲の意味と均等の範囲内で想到し得る上記の実施形態の全ての変更は本発明の範囲内に含まれる。
【図面の簡単な説明】
【図1】 図1は本発明によるファイバーオプティク地震センサの横断図である。
【図2】 図2は図1のファイバーオプティク地震センサの一部を断面とする斜視図である。
【図3】 図3は図1および図2のファイバーオプティク地震センサに含まれる螺旋巻光ファイバーコイルの上面図である。
【図4】 図4は一対の螺旋巻光ファイバーコイルを含むように形成した干渉計の簡略なブロック図である。
【図5】 図5は連続する複数のファイバーオプティク地震センサ間をケーブル連結したファイバーオプティク地震センサ方式の簡略なブロック図である。

Claims (4)

  1. 一対の中央支持部材(30、32)と、
    中央支持部材(30、32)間に保持される内方部(39)および中央支持部材(30、32)を越えて延びる外方部(41)を有する支持板(42)と、
    支持板(42)の外方部(41)の第一面(42A)上に載置した内端(23)を有する第一基板(14)であり、内外半径および内外壁(46、43)を有し中空筒体状に形成され、内半径は第一基板(14)の内側において中央支持部材(30、32)を収容して中央支持部材(30、32)と第一基板(14)の内壁(46)とは互いに離間して配設され、
    支持板(42)の外方部(41)の第二面(42B)上に載置した内端(27)を有する第二基板(18)であり、内外半径および内外壁(48、45)を有し中空筒体状に形成され、内半径は第二基板(18)の内側において中央支持部材(30、32)を収容して中央支持部材(30、32)と第二基板(18)の内壁(48)とは互いに離間した配設され、
    第一基板(14)の外端(22)上に形成した第一の螺旋巻光ファイバーコイル(12)と、
    第二基板(18)の外端(26)上に形成した第二の螺旋巻光ファイバーコイル(16)であって、第一と第二の光ファイバーコイル(12、16)は平坦状に、同心で離間され、
    第一脚に第一の螺旋巻光ファイバーコイル(12)を含み、第二脚に第二の螺旋巻光ファイバーコイル(16)を含む干渉計(50)であり、各光ファイバーコイル(12、16)の面に直角の軸線に沿って加速度が支持板(42)内に偏向を生じ、この偏向が光ファイバーコイル(12、16)の一方の長さに増加を生じるに対し他方の光ファイバーコイルの長さに対し減少を生じるように構成された
    ファイバーオプティク地震センサ。
  2. 空洞(36)を形成した第一中央支持部材(30)を配設するハウジング(70)を備え、
    第二中央支持部材(32)はハウジング(70)に配設されると共に第一中央支持部材(30)の空洞(36)内に収容されるように延設された突起(38)を有し、支持板(42)は突起(38)を通過収容させる通路(44)を有し、支持板(42)の内方部(39)を第一と第二の中央支持部材(30、32)の間に保持するように配設した請求項1のファイバーオプティク地震センサ。
  3. 突起(38)と第一中央支持部材(30)との間に空隙(35)を設けた請求項2のファイバーオプティク地震センサ。
  4. 支持板(42)を外囲して設置した慣性リング(47)を備えた請求項1のファイバーオプティク地震センサ。
JP2001542159A 1999-10-29 2000-10-26 ファイバーオプティク地震センサ Expired - Fee Related JP3635492B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16270299P 1999-10-29 1999-10-29
US09/697,999 US6384919B1 (en) 1999-10-29 2000-10-25 Fiber optic seismic sensor
PCT/US2000/029629 WO2001040742A2 (en) 1999-10-29 2000-10-26 Fiber optic seismic sensor

Publications (2)

Publication Number Publication Date
JP2004500559A JP2004500559A (ja) 2004-01-08
JP3635492B2 true JP3635492B2 (ja) 2005-04-06

Family

ID=26858990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001542159A Expired - Fee Related JP3635492B2 (ja) 1999-10-29 2000-10-26 ファイバーオプティク地震センサ

Country Status (6)

Country Link
US (1) US6384919B1 (ja)
EP (1) EP1228349B1 (ja)
JP (1) JP3635492B2 (ja)
DE (1) DE60035118D1 (ja)
NO (1) NO329953B1 (ja)
WO (1) WO2001040742A2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628400B2 (en) * 2001-03-30 2003-09-30 Litton Systems, Inc. High sensitivity, high bandwidth accelerometer with fiber optic sensing
CA2353697A1 (en) * 2001-07-24 2003-01-24 Tactex Controls Inc. Touch sensitive membrane
US6650418B2 (en) * 2001-07-27 2003-11-18 Litton Systems, Inc. High performance fiber optic accelerometer
GB2384644A (en) * 2002-01-25 2003-07-30 Qinetiq Ltd High sensitivity fibre optic vibration sensing device
US6957574B2 (en) * 2003-05-19 2005-10-25 Weatherford/Lamb, Inc. Well integrity monitoring system
GB0401053D0 (en) * 2004-01-17 2004-02-18 Qinetiq Ltd Improvements in and relating to accelerometers
US7319514B2 (en) * 2004-12-23 2008-01-15 Baker Hughes Incorporated Optical inclination sensor
US7222534B2 (en) * 2005-03-31 2007-05-29 Pgs Americas, Inc. Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer
FR2888339B1 (fr) * 2005-07-07 2007-09-21 Sercel Sa Capteur sismique a fibre optique
US7551517B2 (en) * 2006-05-05 2009-06-23 Optoplan As Seabed seismic station packaging
US9207339B2 (en) * 2013-01-23 2015-12-08 Magi-Q Technologies, Inc. Optical seismic sensor systems and methods
JP6140743B2 (ja) * 2015-02-12 2017-05-31 株式会社フジクラ ファイバレーザ装置および増幅用コイルの製造方法
MX2017016618A (es) 2015-07-31 2018-05-15 Halliburton Energy Services Inc Dispositivo acustico para reducir los ruidos sismicos inducidos por ondas de cable.
CN108709680A (zh) * 2018-07-10 2018-10-26 湖北文索光电科技有限公司 分布式光纤环结构的浪压冲击力测量传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534222A (en) * 1983-08-08 1985-08-13 Mcdonnell Douglas Corporation Fiber-optic seismic sensor
US4932258A (en) 1988-06-29 1990-06-12 Sundstrand Data Control, Inc. Stress compensated transducer
US4959539A (en) 1989-03-20 1990-09-25 The United States Of America As Represented By The Secretary Of The Navy Flexural disk fiber optic hydrophone
US5317929A (en) * 1991-02-07 1994-06-07 Brown David A Fiber optic flexural disk accelerometer
US5287332A (en) 1992-06-24 1994-02-15 Unisys Corporation Acoustic particle acceleration sensor and array of such sensors
US5285424A (en) * 1992-12-28 1994-02-08 Litton Systems, Inc. Wide bandwidth fiber optic hydrophone
US5903349A (en) * 1997-04-21 1999-05-11 The United States Of America As Represented By The Secretary Of The Navy Fiber optic accelerometer sensor and a method of constructing same
US5883308A (en) 1997-06-09 1999-03-16 Litton Systems, Inc. Fiber optic twist ring accelerometer

Also Published As

Publication number Publication date
NO329953B1 (no) 2011-01-31
WO2001040742A3 (en) 2002-01-10
EP1228349A2 (en) 2002-08-07
EP1228349B1 (en) 2007-06-06
NO20022039L (no) 2002-04-29
WO2001040742A2 (en) 2001-06-07
US6384919B1 (en) 2002-05-07
JP2004500559A (ja) 2004-01-08
DE60035118D1 (de) 2007-07-19
NO20022039D0 (no) 2002-04-29

Similar Documents

Publication Publication Date Title
US9658123B2 (en) All-optical pressure sensor
JP3635492B2 (ja) ファイバーオプティク地震センサ
US5317929A (en) Fiber optic flexural disk accelerometer
JP4787367B2 (ja) 高感度加速度計
US4893930A (en) Multiple axis, fiber optic interferometric seismic sensor
US6160762A (en) Optical sensor
Jo et al. Miniature fiber acoustic sensors using a photonic-crystal membrane
US4959539A (en) Flexural disk fiber optic hydrophone
US7282697B2 (en) High sensitivity fibre optic vibration sensing device
CA2432727C (en) Fiber optic displacement sensor
JP6729908B2 (ja) 位相面変調センサと、製造方法
US20090323075A1 (en) Flexural disc fiber optic sensor
US5883308A (en) Fiber optic twist ring accelerometer
US6779402B2 (en) Method and apparatus for measuring acceleration using a fiber optic accelerometer
Brown et al. High-sensitivity, fiber-optic, flexural disk hydrophone with reduced acceleration response
Brown et al. Fiber optic flexural disk microphone
AU763237B2 (en) Fiber optic seismic sensor
EP1015854A1 (en) Hydrophone with compensation for statical pressure and method for pressure wave measurement
JP3237056B2 (ja) 振動板型光ファイバ加速度センサ
JP3237051B2 (ja) 高耐水圧円筒型光ファイバ音響センサ
Maguire et al. Acceleration Strain Transducer
MXPA00007196A (en) Fiber optic sensor system and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees