JP3635266B2 - Inspection method for joints between lead or lead alloy and steel - Google Patents

Inspection method for joints between lead or lead alloy and steel Download PDF

Info

Publication number
JP3635266B2
JP3635266B2 JP2002078857A JP2002078857A JP3635266B2 JP 3635266 B2 JP3635266 B2 JP 3635266B2 JP 2002078857 A JP2002078857 A JP 2002078857A JP 2002078857 A JP2002078857 A JP 2002078857A JP 3635266 B2 JP3635266 B2 JP 3635266B2
Authority
JP
Japan
Prior art keywords
lead
echo
steel
joint
reflected echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002078857A
Other languages
Japanese (ja)
Other versions
JP2003279548A (en
Inventor
雅広 誉田
文男 福森
二三男 大島
誠克 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Original Assignee
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2002078857A priority Critical patent/JP3635266B2/en
Publication of JP2003279548A publication Critical patent/JP2003279548A/en
Application granted granted Critical
Publication of JP3635266B2 publication Critical patent/JP3635266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホモゲン法やはんだ付け法により、鉄鋼やステンレス鋼などの鋼材と鉛又は鉛合金を接合させた場合などにおける、鉛又は鉛合金と鋼材の接合部について、その接合状態を検査する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
鉄鋼やステンレス鋼などの鋼材に耐食性、防音性、耐振性などの特性を付与する目的で、鋼材の表面に鉛又は鉛合金の接合層が形成される場合があり、その方法として、鉛又は鉛合金を鋼材に溶着させるホモゲン法がある。
【0003】
ところで、ホモゲン法により鉛又は鉛合金を鋼材に溶着する方法(工法)は、十分な経験と、高度の技術を要する工法であり、経験の浅い作業者が従事した場合などにおいては、鋼材に対する鉛又は鉛合金の接合強度が不十分になる場合があり、必ずしも信頼性が十分ではないという問題点がある。
【0004】
そこで、鉛又は鉛合金と鋼材の接合状態を検査することが必要になるが、鉛又は鉛合金と鋼材の接合状態を非破壊検査により調べることは、
(1)鉄鋼やステンレス鋼などの鋼材と鉛又は鉛合金という異質な材料の接合であって、接合状態が特殊であること、
(2)主たる材料として、鉛又は鉛合金が用いられており、X線撮影などの方法にもなじまないこと
などの理由から容易ではなく、接合状態の良否を確実に判定することは極めて困難であるのが実情である。
【0005】
このような状況のもとで、従来は、超音波を利用して、接合部の欠陥の有無を調べる検査方法が実施されている。
この従来の超音波を利用した鉛又は鉛合金と鋼材の接合状態の検査方法においては、通常、超音波を鋼材側から入射し、接合部(鉛又は鉛合金と鋼材の界面)からの第1回目の反射エコー(第1次波反射エコー)の大きさを理論計算するとともに、その結果に基づいて所定のしきい値を定め、実際に検出した第1次波反射エコーの大きさがしきい値を超える場合に接合部に欠陥があると判定するようにしている。
【0006】
しかし、ホモゲンの条件などにより、鋼材に接合された鉛及び鉛合金の組織が複雑に変化するため、上述のような第1次波反射エコーの大きさとしきい値の関係からでは、鉛及び鉛合金と鋼材の接合状態の良否を確実に判定することは困難であるのが実情である。
【0007】
本発明は、上記実情に鑑みてなされたものであり、鉛又は鉛合金と鋼材の接合状態を、超音波を用いた非破壊による方法で、確実に調べることが可能な鉛又は鉛合金と鋼材の接合部検査方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
発明者等は、上記目的を達成するため、鉛及び鉛合金と鋼材の接合部の超音波探傷について、種々の実験、検討を行い、以下のような知見を得た。
(1)接合部からの第1次波反射エコーは、鉛及び鉛合金の組織の複雑な変化に起因して、理論値との差(ずれ)が大きくなりやすく、例えば、接合部に欠陥が存在する場合に、第1次波反射エコーの検出値が理論値よりも小さい値となり、接合部に欠陥が存在しないと判定されたり、接合部に欠陥が存在しない場合に、第1次波反射エコーの検出値が理論値よりも大きくなり、接合部に欠陥が存在しないと判定することが困難になったり、場合によっては欠陥があると判定されたりする場合がある。
(2)一方、第3次波反射エコーは、鉛及び鉛合金の組織の変化による影響を受けにくく、接合部に欠陥が存在する場合において、第1次波反射エコーが理論値よりも小さくなるようなときにも、第3次波反射エコーは第1次波反射エコーに比例して小さくなることがなく、確実に検出され、また、接合部に欠陥が存在しない場合において、第1次波反射エコーが理論値よりも大きくなるようなときにも、第3次波反射エコーは第1次波反射エコーに比例して大きくなることがない。
そして、かかる知見に基づいてさらに実験、検討を行い本発明を完成した。
【0009】
すなわち、本発明(請求項1)の鉛又は鉛合金と鋼材の接合部検査方法は、
ホモゲン法又ははんだ付け法による鉛又は鉛合金と鋼材の接合部の接合状態を判定するための検査方法であって、
鉛又は鉛合金と鋼材の接合部に、鋼材側から超音波を入射して、前記接合部からの第1回目の反射エコー(第1次波反射エコー)と第3回目の反射エコー(第3次波反射エコー)の大きさを比較し、該第3次波反射エコーの相対的な大きさから当該接合部の良否を判定すること
を特徴としている。
【0010】
ホモゲン法又ははんだ付け法により接合された鉛又は鉛合金と鋼材の接合部に、鋼材側から超音波を入射して、接合部からの第3次波反射エコーの、第1次波反射エコーとの相対的な大きさを調べ、この第3次波反射エコーの相対的な大きさから、当該接合部の良否を判定することにより、鉛又は鉛合金と鋼材の接合状態の良否を精度よく判定することができる。なお、第3次波反射エコーとは、鋼材側から入射した超音波が、鉛又は鉛合金と鋼材の接合面(境界面)で第1回目の反射をした後、鋼材の表面で反射し、さらに接合面で第2回目の反射、鋼材の表面で反射を経た後の、接合面での第3回目の反射による反射エコーを意味する概念である。
【0011】
上述のように、
(1)接合部に欠陥が存在する場合において、第1次波反射エコーが理論値より小さくなるような場合にも、第3次波反射エコーは確実に検出され、また、
(2)接合部に欠陥が存在しない場合において、第1次波反射エコーが理論値よりも大きくなるようなときにも、第1次波反射エコーに比例して第3次波反射エコーが大きくなることがないため、
第3次波反射エコーの第1次波反射エコーとの相対的な大きさを調べることにより、鉛又は鉛合金と鋼材の接合欠陥の有無を精度よく判定することが可能になる。
したがって、本発明によれば、ホモゲン法又ははんだ付け法による鉛又は鉛合金と鋼材の接合部について、その接合状態の良否を高い精度で判定することが可能になる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を示して、その特徴とするところをさらに詳しく説明する。
【0013】
この実施形態では、図1に示すように、鋼板(鋼材)1に鉛合金をホモゲン法により溶着させて、鋼板1の表面に鉛層2を形成した。
この実施形態では、厚み30mmの鋼板1を用い、この鋼板1に厚み60mmの鉛層2を形成した後、鋼板1の、鉛層2の形成されていない方の表面粗さを調整した。なお、この実施形態では、鉛を用いているが、鉛と他の金属との合金(鉛合金)を用いることも可能である。
【0014】
そして、この鋼板1と鉛層2の接合構造体3について、図2に示すように、鋼板1側から、鋼板1と鉛層2の接合部(接合面)Aの所定の検査領域に、超音波を入射し、探触子4により第1次波反射エコー及び第3次波反射エコーの大きさを調べた。
なお、図2(a)は欠陥の存在しない接合部Aを検査している状態、図2(b)は欠陥5が存在する接合部Aを検査している状態を示す図である。
【0015】
図3は、探触子により反射エコーの大きさを調べたときの超音波伝播時間と反射エコーの大きさの関係を示す図である。
図3に示すように、第1回目の反射による第1次波反射エコー、第2回目の反射による第2次波反射エコー、第3回目の反射による第3次波反射エコーの順に、その大きさが減少していることがわかる。
【0016】
それから、鋼板1と鉛層2の接合部Aを露出させ、目視により接合状態を調べ、上述の反射エコーのデータを、接合状態が良好で欠陥のない接合部Aについての反射エコーと、接合状態が悪く欠陥5の存在する接合部Aについての反射エコーとに分類して、それぞれを対比した。
【0017】
表1に、鋼板1の表面が非常に良好な場合の、第1次波反射エコーの大きさ及び第3次波反射エコーの大きさと接合部の欠陥発生率を示す。
【0018】
【表1】

Figure 0003635266
【0019】
鋼板1の表面が非常に良好な場合には、有害な接合欠陥が存在しない場合にも、第1次波反射エコーの大きさが入射した超音波の65%以上となる場合が生じやすく、そのような場合には、第1次波反射エコーの大きさで接合欠陥の有無を判定しようとすると、接合欠陥が存在しないにもかかわらず、接合欠陥が存在すると判定されることになる場合が生じやすく、第1次波反射エコーの大きさのみからでは、接合欠陥の有無を精度よく判定することは困難であるが、第3次波反射エコーについてみると、その大きさが6%以下の場合には、接合欠陥の発生率は極めて小さくなっており、第3次波反射エコーの第1次波反射エコーに対する相対的な大きさを調べることにより、接合欠陥の有無を精度よく判定できることがわかる。
【0020】
また、表2に、鋼板1の表面が平滑ではなく粗悪な場合における、第1次波反射エコーの大きさ及び第3次波反射エコーの大きさと接合部の欠陥発生率を示す。
【0021】
【表2】
Figure 0003635266
【0022】
鋼板1の表面が平滑ではなく粗悪な場合には、有害な接合欠陥が存在する場合にも、第1次波反射エコーの大きさが入射した超音波の30%程度となりやすく、そのような場合には、第1次波反射エコーの大きさで接合欠陥の有無を判定しようとすると、接合欠陥が存在するにもかかわらず、接合欠陥が存在しないと判定されることになる場合が生じやすく、第1次波反射エコーの大きさのみからでは、接合欠陥の有無を精度よく判定することは困難であるが、第3次波反射エコーについてみると、その大きさが3%以上になると、欠陥発生率は大きくなっており、第3次波反射エコーの、第1次波反射エコーに対する相対的な大きさを調べることにより、接合欠陥の有無を精度よく判定できることがわかる。
【0023】
また、図4(a),(b),(c)は、接合状態が良好で、接合部に接合欠陥のない検査領域について得た反射エコーを示す。なお、図4(a)は理論値を示し、図4(b)は反射エコーの大きさが大きい方にずれた状態、図4(c)は反射エコーの大きさが小さい方にずれた状態を示している。
【0024】
また、図5(a),(b),(c)は、接合状態が悪く、接合部に接合欠陥が存在する検査領について得た反射エコーを示す。なお、図5(a)は理論値を示し、図5(b)は反射エコーの大きさが大きい方にずれた状態、図5(c)は反射エコーの大きさが小さい方にずれた状態を示している。
【0025】
図4及び図5より、第1次波反射エコーE1により欠陥の有無を判定するようにした場合、反射エコーの大きさが大きい方にずれたり、小さい方にずれたりすると、そのずれの方向により、接合部に欠陥が存在するにもかかわらず欠陥がないと判定したり、欠陥が存在しないにもかかわらず欠陥が存在すると判定したりする場合が生じ、判定の精度が低くなる。
【0026】
これに対し、第3次波反射エコーE3についてみると、接合状態が良好で接合部Aに欠陥が存在しない場合においては、反射エコーの大きさが大きい方にずれた場合(図4(b))、及び小さい方にずれた場合(図4(c))のいずれの場合にも、第3次波反射エコーE3の、大きい方及び小さい方へのずれ方はごくわずかであることがわかる。
また、接合状態が悪く接合部Aに欠陥5(図2(b))が存在する場合においては、反射エコーの大きさが大きい方にずれた場合(図5(b))、及び小さい方にずれた場合(図5(c))のいずれの場合にも、第3次波反射エコーE3の、大きい方及び小さい方へのずれ方はごくわずかであり、第3次波反射エコーE3が確実に検出されることがわかる。
したがって、第3次波反射エコーE3に着目し、第3次波反射エコーE3の第1次波反射エコーE1に対する相対的な大きさを調べることにより、接合部Aの欠陥5の有無を確実に検出できることが可能になる。
【0027】
なお、上記実施形態では、鉛を用いているが、鉛と他の金属(例えば、Sn、Sb、Agから選ばれる少なくとも1種)などとの合金を用いることも可能である。
【0028】
また、上記実施形態では、鋼材が鋼板である場合を例にとって説明したが、鋼材の種類に特別の制約はなく、ステンレス鋼その他の金属材に鉛又は鉛合金を接合させた場合の接合部の検査に広く本発明を適用することが可能である。
また、上記実施形態では、ホモゲン法により鋼材と鉛を接合した場合の接合部を検査する場合を例にとって説明したが、はんだ付け法により接合した場合の鉛又は鉛合金と鋼材の接合部についても本発明を好適に適用することが可能である。
【0029】
なお、本発明はさらにその他の点においても上記実施形態に限定されるものではなく、鋼材の形状、用いる超音波の周波数、接合部の検査領域の区画方法などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
【0030】
【発明の効果】
上述のように、本発明(請求項1)の接合部検査方法は、ホモゲン法又ははんだ付け法により接合された鉛又は鉛合金と鋼材の接合部に、鋼材側から超音波を入射して、接合部からの第3次波反射エコーの、第1次波反射エコーとの相対的な大きさを調べ、この第3次波反射エコーの相対的な大きさから、当該接合部の良否を判定するようにしているので、鉛又は鉛合金と鋼材の接合状態の良否を精度よく判定することができる。
【0031】
すなわち、接合部に欠陥が存在する場合において、第1次波反射エコーが理論値よりも小さくなるようなときにも、第3次波反射エコーは確実に検出され、また、接合部に欠陥が存在しない場合において、第1次波反射エコーが理論値よりも大きくなるようなときにも、第3次波反射エコーは第1次波反射エコーに比例して大きくなることはなく、第3次波反射エコーの第1次波反射エコーに対する相対的な大きさを調べることにより、鉛又は鉛合金と鋼材の欠陥の有無を効率よく、高い精度で判定することが可能になる。
【0032】
したがって、本発明によれば、ホモゲン法又ははんだ付け法による鉛又は鉛合金と鋼材の接合部について、その接合状態の良否を高い精度で判定することができる。
【図面の簡単な説明】
【図1】 鋼板に鉛合金をホモゲン法により溶着させて鋼板の表面に鉛合金層を形成した接合構造体を示す図である。
【図2】 接合構造体の接合部について、その接合状態を検査している状態を示す図であり、(a)は欠陥の存在しない接合部を検査している状態、(b)は欠陥が存在する接合部を検査している状態を示す図である。
【図3】 本発明の実施形態において、探触子により反射エコーの大きさを調べた場合の超音波伝播時間と反射エコーの大きさの関係を示す図である。
【図4】 (a),(b),(c)は、接合状態が良好で、接合部に接合欠陥のない検査領域について得た反射エコーを示す図であり、(a)は理論値、(b)は反射エコーの大きさが大きい方にずれた状態、(c)は反射エコーの大きさが小さい方にずれた状態を示している。
【図5】 (a),(b),(c)は、接合状態が悪く接合部に接合欠陥が存在する検査領について得た反射エコーを示す図であり、(a)は理論値、(b)は反射エコーの大きさが大きい方にずれた状態、(c)は反射エコーの大きさが小さい方にずれた状態を示している。
【符号の説明】
1 鋼板(鋼材)
2 鉛合金層
3 接合構造体
4 探触子
5 欠陥
A 接合面(接合部)
1 第1次波反射エコー
2 第2次波反射エコー
3 第3次波反射エコー[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for inspecting the joining state of a joint portion of lead or lead alloy and steel material in the case where steel material such as steel or stainless steel and lead or lead alloy are joined by a homogen method or a soldering method. About.
[0002]
[Prior art and problems to be solved by the invention]
For the purpose of imparting characteristics such as corrosion resistance, soundproofing, and vibration resistance to steel materials such as steel and stainless steel, a bonding layer of lead or lead alloy may be formed on the surface of the steel material. There is a homogen method in which an alloy is welded to steel.
[0003]
By the way, the method of welding lead or lead alloy to steel by the homogen method (construction method) is a method that requires sufficient experience and advanced technology. In the case where an inexperienced worker is engaged, lead for steel Alternatively, the bonding strength of the lead alloy may be insufficient, and there is a problem that the reliability is not necessarily sufficient.
[0004]
Therefore, it is necessary to inspect the joining state of lead or lead alloy and steel, but to investigate the joining state of lead or lead alloy and steel by nondestructive inspection,
(1) Joining of a heterogeneous material such as steel or stainless steel and lead or lead alloy, and the joining state is special.
(2) Lead or lead alloy is used as the main material, and it is not easy because it is not compatible with methods such as X-ray photography. It is extremely difficult to reliably determine the quality of the joint. There is a fact.
[0005]
Under such circumstances, conventionally, an inspection method for examining the presence / absence of a defect in a joint portion is performed using ultrasonic waves.
In this conventional method for inspecting the bonding state of lead or a lead alloy and a steel material using ultrasonic waves, the ultrasonic wave is usually incident from the steel material side, and the first from the joint (the interface between the lead or lead alloy and the steel material). The magnitude of the first reflected echo (first-order reflected echo) is theoretically calculated, and a predetermined threshold is determined based on the result. The magnitude of the first-order reflected echo actually detected is the threshold value. When exceeding, it is determined that there is a defect in the joint.
[0006]
However, since the structure of lead and lead alloy bonded to steel materials changes in a complex manner depending on the homogen conditions, etc., the relationship between the magnitude of the primary wave reflection echo and the threshold value as described above leads to lead and lead alloy. In fact, it is difficult to reliably determine the quality of the joining state of steel materials.
[0007]
The present invention has been made in view of the above circumstances, and it is possible to reliably check the bonding state between lead or a lead alloy and a steel material by a non-destructive method using ultrasonic waves. It is an object of the present invention to provide a method for inspecting a joint portion.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors have conducted various experiments and studies on ultrasonic flaw detection at a joint between lead and a lead alloy and a steel material, and obtained the following knowledge.
(1) The primary wave reflection echo from the joint is likely to have a large difference (shift) from the theoretical value due to complex changes in the structure of lead and lead alloy. If there is, the detected value of the primary wave reflected echo is smaller than the theoretical value, and it is determined that there is no defect in the joint, or if there is no defect in the joint, the primary wave reflection is detected. The detection value of the echo becomes larger than the theoretical value, and it may be difficult to determine that there is no defect in the joint, or in some cases, it may be determined that there is a defect.
(2) On the other hand, the third-order reflected echo is not easily affected by changes in the structure of lead and lead alloys, and the first-order reflected echo is smaller than the theoretical value when there is a defect in the joint. Even in such a case, the third-order wave reflection echo does not become smaller in proportion to the first-order wave reflection echo, and is reliably detected. Even when the reflected echo is larger than the theoretical value, the third-order reflected echo does not increase in proportion to the first-order reflected echo.
And based on this knowledge, further experiment and examination were carried out to complete the present invention.
[0009]
That is, the method for inspecting the joint between lead or a lead alloy and steel according to the present invention (Claim 1)
It is an inspection method for judging the joining state of the joint part of lead or a lead alloy and steel material by a homogen method or a soldering method ,
Ultrasonic waves are incident on the joint between lead or lead alloy and steel from the steel material side, and the first reflected echo (first wave reflected echo) and the third reflected echo (third) from the joint. The magnitude of the second-order reflected echo) is compared, and the quality of the joint is determined from the relative magnitude of the third-order reflected echo.
[0010]
The ultrasonic wave is incident on the joint portion of lead or lead alloy and steel material joined by the homogen method or the soldering method from the steel material side, and the primary wave reflection echo of the tertiary wave reflection echo from the joint portion and By checking the relative size of the third-order wave echo and determining the quality of the joint from the relative size of the third-order wave reflection echo, the quality of the joining state of the lead or lead alloy and the steel material is accurately determined. can do. In addition, with the third wave reflection echo, the ultrasonic wave incident from the steel material side is reflected on the surface of the steel material after the first reflection at the joint surface (boundary surface) of lead or lead alloy and the steel material, Furthermore, it is a concept that means a reflection echo by the third reflection at the joint surface after the second reflection at the joint surface and the reflection at the steel surface.
[0011]
As mentioned above,
(1) In the case where there is a defect in the junction, the third-order reflected echo is reliably detected even when the first-order reflected echo is smaller than the theoretical value.
(2) In the case where there is no defect in the junction, the third-order reflected echo is larger in proportion to the first-order reflected echo even when the first-order reflected echo is larger than the theoretical value. Because it never becomes
By examining the relative size of the tertiary wave reflection echo with the primary wave reflection echo, it is possible to accurately determine the presence or absence of a bonding defect between lead or a lead alloy and a steel material.
Therefore, according to the present invention , it is possible to determine the quality of the joining state of the joint portion of lead or a lead alloy and a steel material by a homogen method or a soldering method with high accuracy.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of the present invention will be shown and the features thereof will be described in more detail.
[0013]
In this embodiment, as shown in FIG. 1, a lead alloy is welded to a steel plate (steel material) 1 by a homogen method to form a lead layer 2 on the surface of the steel plate 1.
In this embodiment, a steel plate 1 having a thickness of 30 mm was used, and after forming a lead layer 2 having a thickness of 60 mm on the steel plate 1, the surface roughness of the steel plate 1 on which the lead layer 2 was not formed was adjusted. In this embodiment, lead is used, but an alloy (lead alloy) of lead and another metal can also be used.
[0014]
And about this joining structure 3 of the steel plate 1 and the lead layer 2, as shown in FIG. 2, from the steel plate 1 side to the predetermined inspection area | region of the junction part (joining surface) A of the steel plate 1 and the lead layer 2, it is super A sound wave was incident, and the magnitude of the primary wave reflection echo and the tertiary wave reflection echo was examined by the probe 4.
2A is a view showing a state in which the joint A having no defect is being inspected, and FIG. 2B is a view showing a state in which the joint A having the defect 5 is being inspected.
[0015]
FIG. 3 is a diagram showing the relationship between the ultrasonic wave propagation time and the size of the reflected echo when the size of the reflected echo is examined by the probe.
As shown in FIG. 3, the magnitude of the first-order reflected echo by the first reflection, the second-order reflected echo by the second-time reflection, and the third-order reflected echo by the third-time reflection in this order. It can be seen that there is a decrease.
[0016]
Then, the joining portion A between the steel plate 1 and the lead layer 2 is exposed, the joining state is examined visually, and the above-mentioned reflection echo data is obtained from the reflected echo and the joining state of the joining portion A having a good joining state and no defects. However, they were classified into reflection echoes for the joint A where the defect 5 was present, and these were compared.
[0017]
Table 1 shows the magnitude of the primary wave reflection echo, the magnitude of the tertiary wave reflection echo, and the defect occurrence rate of the joint when the surface of the steel sheet 1 is very good.
[0018]
[Table 1]
Figure 0003635266
[0019]
When the surface of the steel plate 1 is very good, even when there are no harmful bonding defects, it is likely that the magnitude of the primary wave reflection echo is 65% or more of the incident ultrasonic wave, In such a case, when trying to determine the presence or absence of a junction defect based on the size of the primary wave reflection echo, it may be determined that a junction defect exists even though the junction defect does not exist. It is easy, and it is difficult to accurately determine the presence or absence of a bonding defect only from the size of the first-order wave reflection echo. However, when the third-order wave reflection echo is viewed, its size is 6% or less. The incidence of junction defects is extremely small, and it can be seen that the presence or absence of junction defects can be accurately determined by examining the relative size of the third-order reflected echo to the first-order reflected echo. .
[0020]
Table 2 shows the magnitude of the primary wave reflection echo, the magnitude of the tertiary wave reflection echo, and the defect occurrence rate of the joint when the surface of the steel sheet 1 is not smooth but rough.
[0021]
[Table 2]
Figure 0003635266
[0022]
When the surface of the steel plate 1 is not smooth and is rough, even when harmful bonding defects exist, the magnitude of the primary wave reflection echo tends to be about 30% of the incident ultrasonic wave. In the case of trying to determine the presence or absence of a junction defect with the size of the primary wave reflection echo, it is likely to be determined that no junction defect exists despite the presence of the junction defect. It is difficult to accurately determine the presence or absence of a bonding defect only from the size of the primary wave reflection echo. However, when the size of the tertiary wave reflection echo is 3% or more, the defect The occurrence rate is large, and it can be seen that the presence / absence of a junction defect can be accurately determined by examining the relative size of the third-order reflected echo to the first-order reflected echo.
[0023]
4 (a), 4 (b), and 4 (c) show reflection echoes obtained for an inspection region in which the bonding state is good and the bonding portion has no bonding defect. 4A shows theoretical values, FIG. 4B shows a state in which the size of the reflected echo is shifted toward the larger side, and FIG. 4C shows a state in which the size of the reflected echo is shifted toward the smaller side. Is shown.
[0024]
FIGS. 5A, 5B, and 5C show reflection echoes obtained for an inspection area in which the bonding state is poor and a bonding defect exists in the bonding portion. 5A shows theoretical values, FIG. 5B shows a state in which the size of the reflected echo is shifted toward the larger side, and FIG. 5C shows a state in which the size of the reflected echo is shifted toward the smaller side. Is shown.
[0025]
4 and 5, when the presence or absence of a defect is determined by the primary wave reflection echo E 1 , if the size of the reflection echo shifts to the larger side or to the smaller side, the direction of the shift Therefore, there are cases where it is determined that there is no defect despite the presence of a defect in the joint, or that it is determined that there is a defect even though there is no defect, and the determination accuracy is lowered.
[0026]
On the other hand, regarding the third-order wave reflection echo E 3 , when the joining state is good and no defect exists in the joining portion A, the magnitude of the reflecting echo is shifted to the larger one (FIG. 4B). )) And when shifted to the smaller side (FIG. 4 (c)), the third-order wave reflection echo E 3 may be shifted slightly toward the larger or smaller side. Understand.
Further, in the case where the bonding state is poor and the defect 5 (FIG. 2 (b)) is present in the bonding portion A, the case where the size of the reflected echo is shifted to the larger one (FIG. 5 (b)), and the smaller one. In any case of deviation (FIG. 5 (c)), the third-order wave reflection echo E 3 is very slightly displaced toward the larger and smaller ones, and the third-order wave reflection echo E 3. It can be seen that is reliably detected.
Thus, focusing on the third order wave reflection echo E 3, by examining the relative size for the first primary wave reflected echo E 1 of the third order wave reflection echo E 3, the presence or absence of a defect 5 junction A Can be reliably detected.
[0027]
In the above embodiment, lead is used, but an alloy of lead and another metal (for example, at least one selected from Sn, Sb, and Ag) can be used.
[0028]
Moreover, in the said embodiment, although the case where steel materials were steel plates was demonstrated as an example, there is no special restriction | limiting in the kind of steel materials, and the joining part at the time of joining lead or a lead alloy to stainless steel and other metal materials is used. The present invention can be widely applied to inspection.
Moreover, in the said embodiment, although the case where the joint part at the time of joining steel materials and lead by a homogen method was demonstrated as an example, also about the joint part of lead or a lead alloy and steel materials at the time of joining by a soldering method, The present invention can be preferably applied.
[0029]
In addition, the present invention is not limited to the above-described embodiment in other points, and relates to the shape of the steel material, the frequency of the ultrasonic wave used, the method for partitioning the inspection area of the joint, and the like within the scope of the invention. It is possible to add applications and modifications.
[0030]
【The invention's effect】
As described above, in the joint inspection method of the present invention (Claim 1), ultrasonic waves are incident on the joint between lead or a lead alloy and a steel material joined by a homogen method or a soldering method from the steel material side, The relative magnitude of the third-order wave reflected echo from the junction and the first-order reflected echo is checked, and the quality of the joined portion is determined from the relative magnitude of the third-order reflected echo. Since it is made to do, the quality of the joining state of lead or a lead alloy and steel materials can be judged with sufficient accuracy.
[0031]
That is, when there is a defect at the junction, even when the first-order reflected echo is smaller than the theoretical value, the third-order reflected echo is reliably detected, and there is a defect at the junction. Even when the first-order reflected echo is larger than the theoretical value in the absence of the third-order reflected echo, the third-order reflected echo does not increase in proportion to the first-order reflected echo. By examining the relative size of the wave reflection echo to the primary wave reflection echo, it is possible to efficiently and accurately determine the presence or absence of defects in lead or lead alloy and steel.
[0032]
Therefore, according to this invention, the quality of the joining state can be determined with high accuracy for the joint portion of lead or lead alloy and steel material by the homogen method or the soldering method.
[Brief description of the drawings]
FIG. 1 is a view showing a bonded structure in which a lead alloy layer is formed on the surface of a steel plate by welding a lead alloy to the steel plate by a homogen method.
FIGS. 2A and 2B are diagrams illustrating a state in which a bonding state of a bonding structure is inspected, in which FIG. 2A illustrates a state in which a bonding portion where no defect exists is inspected, and FIG. It is a figure which shows the state which test | inspects the existing junction part.
FIG. 3 is a diagram showing the relationship between the ultrasonic propagation time and the size of a reflected echo when the size of the reflected echo is examined by a probe in the embodiment of the present invention.
4 (a), (b), and (c) are diagrams showing reflected echoes obtained for an inspection region in which the bonding state is good and there is no bonding defect in the bonding portion, and (a) is a theoretical value; (b) shows a state where the size of the reflected echo is shifted toward the larger side, and (c) shows a state where the size of the reflected echo is shifted toward the smaller side.
FIGS. 5A, 5B, and 5C are diagrams showing reflected echoes obtained for an inspection area in which a bonding state is poor and a bonding defect exists in a bonding portion, and FIG. 5A is a theoretical value; b) shows a state where the size of the reflected echo is shifted toward the larger side, and (c) shows a state where the size of the reflected echo is shifted toward the smaller side.
[Explanation of symbols]
1 Steel plate (steel)
2 Lead alloy layer 3 Joined structure 4 Probe 5 Defect A Joint surface (joint)
E 1 second primary wave reflected echo E 2 second order wave reflection echo E 3 the third order wave reflection echo

Claims (1)

ホモゲン法又ははんだ付け法による鉛又は鉛合金と鋼材の接合部の接合状態を判定するための検査方法であって、
鉛又は鉛合金と鋼材の接合部に、鋼材側から超音波を入射して、前記接合部からの第1回目の反射エコー(第1次波反射エコー)と第3回目の反射エコー(第3次波反射エコー)の大きさを比較し、該第3次波反射エコーの相対的な大きさから当該接合部の良否を判定すること
を特徴とする鉛又は鉛合金と鋼材の接合部検査方法。
It is an inspection method for judging the joining state of the joint part of lead or a lead alloy and steel material by a homogen method or a soldering method ,
Ultrasonic waves are incident on the joint between lead or lead alloy and steel from the steel material side, and the first reflected echo (first wave reflected echo) and the third reflected echo (third) from the joint. A method of inspecting the joint of lead or a lead alloy and a steel material, comparing the magnitude of the second-order reflected echo) and determining the quality of the joint from the relative magnitude of the third-order reflected echo .
JP2002078857A 2002-03-20 2002-03-20 Inspection method for joints between lead or lead alloy and steel Expired - Fee Related JP3635266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078857A JP3635266B2 (en) 2002-03-20 2002-03-20 Inspection method for joints between lead or lead alloy and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078857A JP3635266B2 (en) 2002-03-20 2002-03-20 Inspection method for joints between lead or lead alloy and steel

Publications (2)

Publication Number Publication Date
JP2003279548A JP2003279548A (en) 2003-10-02
JP3635266B2 true JP3635266B2 (en) 2005-04-06

Family

ID=29228583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078857A Expired - Fee Related JP3635266B2 (en) 2002-03-20 2002-03-20 Inspection method for joints between lead or lead alloy and steel

Country Status (1)

Country Link
JP (1) JP3635266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944610A (en) * 2012-11-30 2013-02-27 湖南省湘电锅炉压力容器检验中心有限公司 Method for detecting weld defect of stainless steel runner blade of water turbine

Also Published As

Publication number Publication date
JP2003279548A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
Titov et al. Pulse-echo NDT of adhesively bonded joints in automotive assemblies
JP4933534B2 (en) Inspection method and inspection apparatus for friction stir bonded article
JPH0253746B2 (en)
US10921291B2 (en) Method for inspecting a weld seam
JP6402993B2 (en) Judgment method of joint and manufacturing method of joint material
US20140318250A1 (en) Method for inspecting weld penetration depth
EP1271097A2 (en) Method for inspecting clad pipe
JP3635266B2 (en) Inspection method for joints between lead or lead alloy and steel
Lamarre et al. Complete inspection of friction stir welds in aluminum using ultrasonic and eddy current arrays
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
Caravaca et al. Correlation of phased array inspection and fatigue performance of FSW joints
Postma et al. Suitability of non destructive techniques for testing polyethylene pipe joints
Morgan Testing defects in automated ultrasonic testing and radiographic testing
JP3623486B2 (en) Inspection method of seismic isolation damper
Tohmyoh et al. Extraction of the outer edge of spot welds from the acoustic image with the aid of image processing
JPH06167479A (en) Butt welding joint to be nondestructively inspected
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JPS5946553A (en) Angle beam ultrasonic flaw inspection
JPH10221308A (en) Method and device of detecting ruptured part in metal and probe
JP4552126B2 (en) Ultrasonic flaw detection method
Klein et al. Laser ultrasonic inspection of adhesives used in auto body manufacture
Haines et al. Adaptive Ultrasonic Imaging of Electric Resistance Welded Pipeline Seams
Wassink et al. Approaches for developing solutions for specific NDT problems
Konovalov Reliability of ultrasonic inspection of welded joints with incomplete structural fusion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees