JP3634937B2 - Biodegradable resin composition - Google Patents

Biodegradable resin composition Download PDF

Info

Publication number
JP3634937B2
JP3634937B2 JP07726897A JP7726897A JP3634937B2 JP 3634937 B2 JP3634937 B2 JP 3634937B2 JP 07726897 A JP07726897 A JP 07726897A JP 7726897 A JP7726897 A JP 7726897A JP 3634937 B2 JP3634937 B2 JP 3634937B2
Authority
JP
Japan
Prior art keywords
resin composition
weight
biodegradable resin
biodegradable
aliphatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07726897A
Other languages
Japanese (ja)
Other versions
JPH10273582A (en
Inventor
住典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Priority to JP07726897A priority Critical patent/JP3634937B2/en
Publication of JPH10273582A publication Critical patent/JPH10273582A/en
Application granted granted Critical
Publication of JP3634937B2 publication Critical patent/JP3634937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Description

【0001】
【産業上の利用分野】
本発明は、生分解性樹脂組成物に関し、更に詳しくは、コストが低減化され、生分解速度がより速く、しかも、生分解速度の制御が可能な生分解性樹脂組成物に関する。
【0002】
【従来の技術】
従来、熱可塑性樹脂、例えばポリオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂等からなるフィルム、シートあるいは発泡成形品は、その特性を活かして包装用資材、農業用資材、産業用資材等様々な用途に使用されている。しかしながら、これらの熱可塑性樹脂からなる成形物は化学的に安定であるため、ひとたび自然界に放置された場合、分解するには極めて長い年月を要するという問題があった。従って、それらの廃棄処分をめぐる問題は、近年一種の社会問題ともなっている。
【0003】
このような情勢に鑑み近年、種々の生分解性プラスチックが開発されている。たとえば、ポリオレフィンにコーンスターチ等の澱粉質を添加し微生物分解性を付与したもの、また、ポリ−ε−カプロラクトン(PCL)やPHB(ポリヒドロキシブチレート)/PHV(ポリヒドロキシバリレート)共重合体、ポリ乳酸等の脂肪族ポリエステル、変性澱粉と変性PVAから成る組成物、あるいはポリマー分子鎖にカルボニル基を導入した光分解性プラスチック等が報告されている。このうち、ポリ−ε−カプロラクトン(PCL)やPHB(ポリヒドロキシブチレート)/PHV(ポリヒドロキシバリレート)共重合体、ポリ乳酸等の脂肪族ポリエステルは完全生分解性であることが確認されており、近年注目を集めている。
【0004】
しかしながら、これらの生分解性プラスチックは一般的に高価で、しかも生分解速度の点でも、完全に分解するまでに1年以上の長時間を要するものが多いため、従来から多用されていた非生分解性プラスチックに代替するには至っていないのが現状である。
また、生分解性プラスチックの生分解速度は、成型時の加熱・冷却条件を変化させることで結晶構造を制御し、その速度を調節するという方法があるが、一般的には生分解性プラスチックの生分解速度はその分子構造によって一義的に決定されるものである。こうした中、より生分解速度が向上し、しかも簡便な手段で生分解速度の制御を行うことができる生分解性樹脂組成物が求められていた。
【0005】
【発明が解決しようとする課題】
本発明はこのような状況に鑑みなされたもので、従来の生分解性プラスチックに比べて低コストで、また生分解速度が速く、しかもその生分解速度の制御が簡便に行える生分解性樹脂組成物を提供することを目的とする。
【0006】
本発明者らは鋭意研究を重ねた。この結果、脂肪族ポリエステル樹脂、植物繊維、アルカリ土類金属酸化物を所定量含む組成物によって上記目的が達成されることを見出し本発明に達した。すなわち本発明によれば、
脂肪族ポリエステル樹脂99〜70重量部、植物繊維1〜30重量部を含み、さらにアルカリ土類金属酸化物が含まれてなることを特徴とする生分解性樹脂組成物が提供される。
【0007】
【発明の実施の形態】
本発明に用いられる、脂肪族ポリエステル樹脂は、ポリ乳酸;ポリヒドロキシアルカノエート;ポリ−ε−カプロラクトン等のラクトン樹脂;低分子量脂肪族ジカルボン酸と低分子量脂肪族ジオールから得られるポリエステル等の近年多く開発されているものが挙げられる。
【0008】
一方本発明に用いられる植物繊維は、増量効果によるコスト低下と、生分解速度向上の目的で使用される。脂肪族ポリエステル樹脂に植物繊維が配合されてなる生分解性樹脂組成物から得られる成型体(以下、成型体という)の生分解性は、脂肪族ポリエステル樹脂単独で製造されたものに比べて向上する。これは配合された植物繊維が天然の有機質素材であるため、これを好む微生物が脂肪族ポリエステル樹脂成分に先立ち、先ず植物繊維を分解して全体の形象を崩し、これが脂肪族ポリエステル樹脂成分に対する他の微生物の活動をも活発にする状況を作り出す結果と考えられる。
【0009】
更に、植物繊維は水に接触することによって膨潤する。このため植物繊維が配合された本発明の生分解性樹脂組成物から得られる成型体はコンポスト化環境において、上記した植物繊維の膨潤により無数のクラックを生じるようになり、これによって成型体の表面積の著しい増大がもたらされる。このことも本発明の生分解性樹脂組成物の生分解性が著しく向上する理由の一つと思われる。
このような植物繊維は特に制限なく、木材を粉砕したものが使用可能であるし、セルロース粉、パルプ粉、あるいは合板工場、ファイバーボード工場から大量に副生されるサンダー粉なども使用可能である。さらには、未利用のまま大量に廃棄される麦わら、稲わら、やしがら、もみがら、古紙、リンター、バガスなどの植物繊維、あるいは、その他のセルロースやリグニンを主成分とするリグノセルロース材料を粉砕したものなども使用可能である。これらの中でも、本発明者らが行った実験の結果から、やしがらを起源とする植物繊維を用いた場合に、生分解速度の向上が最も良好であったことから、やしがらがを起源とする植物繊維が最も好ましい植物繊維の一つであると言える。
【0010】
ここで言うやしがらを起源とする植物繊維とは、ココヤシの中果皮(やしがら)から得られるものであって、その製法はココヤシの中果皮(やしがら)の肉質を溶解、除去後、繊維のみを採取し、これから塩分やタンニンを除き、さらに乾燥させて含水率を10%にまで低下させた上、これをプレス機等による加圧により圧縮処理を行った後、ボールミル、ハンマーミル、ジェットミル等の粉砕機を用いて粉砕し、微細化する方法が一例として挙げられる。
【0011】
これらの植物繊維は、繊維長が200μ以下に粉砕されたものを用いることが好ましい。さらにこれら植物繊維は加工時の簡便性を向上させる目的で事前にコンパウンド化(マスターバッチ化)されていることが好ましい。その際ベースとなる樹脂は完全生分解性という観点から脂肪族ポリエステル樹脂、あるいは、変性デンプン系樹脂(例えば、チッソ株式会社製、商品名:ノボン)のような生分解性樹脂がより好ましいが、一部、非生分解部分の残存が許されるような用途にあっては、ポリオレフィン樹脂等の非生分解性樹脂であってもよい。
【0012】
植物繊維の配合量は上記脂肪族ポリエステル樹脂と植物繊維の合計量100重量部中、1〜30重量部となるように設定される。植物繊維の配合量が1重量部未満であると生分解速度の向上がほとんど見られないとともに、植物繊維による増量効果が僅かなものとなり好ましくない。逆に植物繊維の配合量が30重量部を超えると、組成物の流動性が不良となり成型加工性が不良となるばかりでなく、得られる成型体が脆くなり好ましくない。
【0013】
一方、アルカリ土類金属酸化物は生分解性樹脂組成物の成型加工性の向上と、生分解速度の向上を目的として用いられる。アルカリ土類金属酸化物は生分解性樹脂組成物を加熱下に成型加工する際、生分解性樹脂組成物中の植物繊維に含まれる水分との反応によって、下式に示すように自らアルカリ土類金属水酸化物に変化し、この時1分子の水を固定する。そして生成する水酸化物は分解温度が高く、生分解性樹脂組成物の成形温度範囲では分解することがない。
MO+H O → M(OH)
(M:アルカリ土類金属)
従って成型加工時において、アルカリ土類金属酸化物が配合されていない場合に見られるような植物繊維からの水分の放散に起因する発泡現象や目やに現象を回避することができる。
さらにアルカリ土類金属酸化物を配合することによって得られる利点は、成型体の生分解速度が向上することである。すなわち、アルカリ土類金属酸化物が水分を吸着して生成するアルカリ土類金属水酸化物が塩基性を示し、生分解性樹脂組成物に含まれる脂肪族ポリエステル樹脂中のエステル基の加水分解を促進する。この結果、生分解性樹脂組成物を加熱成型して得られる成形体は生分解速度が速められるのである。
アルカリ土類金属酸化物としてはBeO、MgO、CaO、SrO、BaOが挙げられ、これらが単独、あるいは、組み合わされて使用される。
アルカリ土類金属酸化物の配合量は、植物繊維によって生分解性樹脂組成物中に持ち込まれた水分量、および、成型体に必要とされる生分解速度に応じて適宜設定されるものである。すなわち、植物繊維によって生分解性樹脂組成物中に持ち込まれた水分量と化学量論的に等量となる量を基準として、成型加工温度が高い場合や必要とされる生分解速度が速い場合には多めに設定される。逆に成型加工温度が低い場合や必要とされる生分解速度が遅い場合には少なめに設定される。
【0014】
なお、一般的にアルカリ土類金属は原子番号が大きくなるにつれて水酸化物の塩基性が強くなる。従って、等モル数で使用する場合、原子番号の大きなアルカリ土類金属酸化物を使うほど、成形体の生分解速度が速くなる。この性質によってもまた成型体の生分解速度を制御できる。
アルカリ土類金属酸化物も、加工時の簡便性を向上させる目的で事前にコンパウンド化(マスターバッチ化)されていることが好ましい。その際ベースとなる樹脂は完全生分解性という観点から脂肪族ポリエステル樹脂、あるいは、変性デンプン系樹脂(例えば、チッソ株式会社製、商品名:ノボン)のような生分解性樹脂がより好ましいが、一部、非生分解部分の残存が許されるような用途にあっては、ポリオレフィン樹脂等の非生分解性樹脂であってもよい。
【0015】
尚、本発明では前記した脂肪族ポリエステル樹脂、植物繊維の他、更に必要に応じて通常公知の酸化防止剤、滑剤、防曇剤、着色剤、植物繊維以外の充填剤等の各種添加剤を適宜配合してもさしつかえない。
【0016】
以上述べた脂肪族ポリエステル樹脂、植物繊維、アルカリ土類金属酸化物、さらに必要に応じて配合される添加剤により本発明の生分解性樹脂組成物が形成される。該生分解性樹脂組成物は、目的とする成型体の形状により各種成型機により成型される。例えば目的とする成型体がフィルム、シートである場合にはインフレーション式、Tダイ式の押出成型機、あるいはカレンダー式成型機が、板状である場合にはプレス成型機等が、ボトル状である場合にはブロー成型機等が、通常の成型品である場合には射出成型機等が用いられる。
【0017】
【実施例】
以下、本発明を実施例により更に詳しく説明するが、本発明はこれらに限定されるものではない。なお本発明において用いた植物繊維、脂肪族ポリエステル樹脂、アルカリ土類金属酸化物は以下の通りである。
【0018】
〈植物繊維〉
・セルロース粉末
ダイセル化学工業(株)製、リグノセルS150tr
(繊維長:0〜150μm、大勢繊維長範囲:65〜95μm)
・やしがら粉末
ココヤシの中果皮(やしがら)の肉質を溶解、除去後、繊維のみを採取し、これから塩分およびタンニンを除去し、さらに強制乾燥により含水率を10%にまで低下させた上、これをプレス機による加圧により圧縮処理した後、ジェットミルで微細化したもの(繊維長:0〜300μm、大勢繊維長範囲:85〜240μm)。
【0019】
〈脂肪族ポリエステル樹脂〉
・昭和高分子株式会社製、商品名:ビオノーレ
【0020】
〈アルカリ土類金属酸化物〉
・酸化マグネシウム
・酸化カルシウム
・酸化バリウム
【0021】
[製造例1]
脂肪族ポリエステル樹脂50重量部、セルロース粉末50重量部とを加圧式ニーダーに仕込んで混練の後、ペレット化し、セルロース粉末マスターバッチを得た。なお、得られたマスターバッチにつき赤外線式水分測定器で含水率の測定を行ったところ2.6%であった。
【0022】
[製造例2]
脂肪族ポリエステル樹脂50重量部、ヤシガラ粉末50重量部とを加圧式ニーダーに仕込んで混練の後、ペレット化し、ヤシガラ粉末マスターバッチを得た。なお、得られたマスターバッチにつき赤外線式水分測定器で含水率の測定を行ったところ2.5%であった。
【0023】
[製造例3]
酸化マグネシウム50重量部と脂肪族ポリエステル樹脂50重量部を加圧式ニーダーに仕込んで混練の後、ペレット化し、酸化マグネシウムマスターバッチを得た。
【0024】
[製造例4]
酸化カルシウム50重量部と脂肪族ポリエステル樹脂50重量部を加圧式ニーダーに仕込んで混練の後、ペレット化し、酸化カルシウムマスターバッチを得た。
【0025】
[製造例5]
酸化バリウム50重量部と脂肪族ポリエステル樹脂50重量部を加圧式ニーダーに仕込んで混練の後、ペレット化し、酸化バリウムマスターバッチを得た。
【0026】
[実施例1〜8、比較例1〜4]
製造例1〜5で得られた各マスターバッチ、および脂肪族ポリエステル樹脂を用いて、植物繊維、脂肪族ポリエステル樹脂、アルカリ土類金属の構成比が表1の如くなるような組成物を調製した。
次いで、これらの組成物をTダイを備えたφ25押出機に供給し、加工温度150℃の条件で厚み200μmのシートを成型した。得られたシートの成型加工性を表2に示す。次いでそれぞれの実施例、比較例で得られたシートからサンプルを5枚ずつ切り出し、腐葉土に深さ約50mmで埋設した。そして2週間ごとに各実施例、比較例で得られたシートからサンプルを1枚ずつ採取しその状況を観察した。この結果を表2に併せて示す。
【0027】
【表1】

Figure 0003634937
【0028】
【表2】
Figure 0003634937
【0029】
表2より明らかなように、本発明の生分解性樹脂組成物は加熱成型時における気泡や、目やに等の発生がなく、良好な加工適性を有していることが明らかである。さらに、本発明の生分解性樹脂組成物が成型されてなる成型体は、植物繊維、および/または、アルカリ土類金属酸化物が配合されていない成型体に比べ生分解速度が向上していることが明らかである。
【0030】
【効果】
以上説明したように本発明によれば、従来の生分解性プラスチックに比べて低コストで、また生分解速度が速く、しかもその生分解速度の制御が簡便に行える生分解性樹脂組成物が提供される。このように本発明の生分解性樹脂組成物は生分解性プラスチックの実用的な用途展開を推進するものであり産業に利するところ大である。[0001]
[Industrial application fields]
The present invention relates to a biodegradable resin composition, and more particularly, to a biodegradable resin composition with reduced cost, faster biodegradation rate, and capable of controlling the biodegradation rate.
[0002]
[Prior art]
Conventionally, thermoplastic resins such as polyolefin resins, polyvinyl chloride resins, polystyrene resins, films, sheets, or foam molded products are used for packaging materials, agricultural materials, industrial materials, etc. It is used for various purposes. However, since the molded product made of these thermoplastic resins is chemically stable, there is a problem that it takes a very long time to decompose once left in nature. Therefore, these problems related to disposal have become a kind of social problem in recent years.
[0003]
In view of this situation, various biodegradable plastics have been developed in recent years. For example, a polyolefin obtained by adding starch such as corn starch to impart microbial degradability, poly-ε-caprolactone (PCL), PHB (polyhydroxybutyrate) / PHV (polyhydroxyvalerate) copolymer, There have been reported aliphatic polyesters such as polylactic acid, compositions comprising modified starch and modified PVA, or photodegradable plastics in which a carbonyl group is introduced into the polymer molecular chain. Of these, aliphatic polyesters such as poly-ε-caprolactone (PCL), PHB (polyhydroxybutyrate) / PHV (polyhydroxyvalylate) copolymer, and polylactic acid have been confirmed to be completely biodegradable. Has attracted attention in recent years.
[0004]
However, these biodegradable plastics are generally expensive, and in terms of biodegradation speed, many of them require a long time of one year or more until they are completely decomposed. At present, it has not been replaced by degradable plastic.
The biodegradation rate of biodegradable plastics can be controlled by changing the heating and cooling conditions during molding to control the crystal structure and adjust the rate. The biodegradation rate is uniquely determined by the molecular structure. Under such circumstances, there has been a demand for a biodegradable resin composition that can further improve the biodegradation rate and can control the biodegradation rate by simple means.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and is a biodegradable resin composition that is low in cost, has a high biodegradation rate, and can easily control the biodegradation rate as compared with conventional biodegradable plastics. The purpose is to provide goods.
[0006]
The inventors have made extensive studies. As a result, the inventors have found that the above object can be achieved by a composition containing a predetermined amount of an aliphatic polyester resin, a vegetable fiber, and an alkaline earth metal oxide. That is, according to the present invention,
There is provided a biodegradable resin composition comprising 99 to 70 parts by weight of an aliphatic polyester resin, 1 to 30 parts by weight of vegetable fibers, and further containing an alkaline earth metal oxide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The aliphatic polyester resins used in the present invention include polylactic acid; polyhydroxyalkanoates; lactone resins such as poly-ε-caprolactone; polyesters obtained from low molecular weight aliphatic dicarboxylic acids and low molecular weight aliphatic diols in recent years. Some are being developed.
[0008]
On the other hand, the plant fiber used for this invention is used for the purpose of the cost reduction by a weight increase effect, and the biodegradation rate improvement. The biodegradability of a molded body (hereinafter referred to as molded body) obtained from a biodegradable resin composition in which vegetable fiber is blended with an aliphatic polyester resin is improved compared to that produced with an aliphatic polyester resin alone. To do. This is because the blended plant fiber is a natural organic material, so microorganisms that prefer it first decompose the plant fiber to destroy the overall shape prior to the aliphatic polyester resin component. This is thought to be the result of creating a situation where the activity of other microorganisms is also active.
[0009]
In addition, plant fibers swell upon contact with water. For this reason, the molded body obtained from the biodegradable resin composition of the present invention in which the plant fiber is blended causes innumerable cracks due to the swelling of the above-mentioned plant fiber in the composting environment, and thereby the surface area of the molded body. A significant increase in. This also seems to be one of the reasons that the biodegradability of the biodegradable resin composition of the present invention is remarkably improved.
Such plant fibers are not particularly limited, and those obtained by pulverizing wood can be used. Cellulose powder, pulp powder, or sander powder produced as a by-product from a large amount of plywood and fiberboard factories can also be used. . In addition, plant fibers such as wheat straw, rice straw, coconut husk, waste paper, waste paper, linter, bagasse, and other lignocellulose materials mainly composed of cellulose and lignin are discarded unused. A pulverized one can also be used. Among these, from the results of experiments conducted by the present inventors, when using plant fibers originating from palm trees, the improvement in the biodegradation rate was the best, It can be said that the plant fiber as the origin is one of the most preferred plant fibers.
[0010]
The plant fiber originated from palm trees here is obtained from coconut mesocarp, and its manufacturing method dissolves and removes the flesh of coconut mesocarp. Then, after collecting only the fiber, removing salt and tannin from this, and further drying to reduce the moisture content to 10%, this was subjected to compression treatment by pressurizing with a press machine, etc., and then ball mill, hammer An example is a method of pulverizing and refining using a pulverizer such as a mill or a jet mill.
[0011]
It is preferable to use those plant fibers whose fiber length is pulverized to 200 μm or less. Furthermore, these plant fibers are preferably compounded (master batch) in advance for the purpose of improving convenience during processing. In this case, the base resin is preferably a biodegradable resin such as an aliphatic polyester resin or a modified starch-based resin (for example, product name: Novon, manufactured by Chisso Corporation) from the viewpoint of complete biodegradability. In some applications where non-biodegradable portions are allowed to remain, non-biodegradable resins such as polyolefin resins may be used.
[0012]
The blending amount of the plant fiber is set to 1 to 30 parts by weight in 100 parts by weight of the total amount of the aliphatic polyester resin and the plant fiber. When the blending amount of the plant fiber is less than 1 part by weight, the biodegradation rate is hardly improved, and the effect of increasing the plant fiber becomes small, which is not preferable. On the contrary, when the blending amount of the plant fiber exceeds 30 parts by weight, not only the fluidity of the composition becomes poor and the molding processability becomes poor, but also the resulting molded product becomes brittle.
[0013]
On the other hand, alkaline earth metal oxides are used for the purpose of improving the molding processability of the biodegradable resin composition and the biodegradation rate. When alkaline earth metal oxides are molded into a biodegradable resin composition under heating, the alkaline earth metal oxides themselves react with the water contained in the plant fibers in the biodegradable resin composition as shown in the following formula. It changes to a similar metal hydroxide and fixes one molecule of water at this time. The generated hydroxide has a high decomposition temperature and does not decompose within the molding temperature range of the biodegradable resin composition.
MO + H 2 O → M (OH) 2
(M: alkaline earth metal)
Therefore, at the time of molding processing, it is possible to avoid the phenomenon of foaming and eyes due to the diffusion of moisture from the plant fibers as seen when no alkaline earth metal oxide is blended.
Furthermore, an advantage obtained by blending an alkaline earth metal oxide is that the biodegradation rate of the molded body is improved. That is, the alkaline earth metal hydroxide produced by the adsorption of moisture by the alkaline earth metal oxide is basic, and the ester group in the aliphatic polyester resin contained in the biodegradable resin composition is hydrolyzed. Facilitate. As a result, the biodegradation rate of the molded body obtained by heat-molding the biodegradable resin composition is increased.
Examples of the alkaline earth metal oxide include BeO, MgO, CaO, SrO, and BaO, and these are used alone or in combination.
The blending amount of the alkaline earth metal oxide is appropriately set according to the amount of water brought into the biodegradable resin composition by the plant fiber and the biodegradation rate required for the molded body. . That is, when the molding processing temperature is high or the required biodegradation rate is fast, based on the amount stoichiometrically equivalent to the amount of water brought into the biodegradable resin composition by the plant fiber Is set too much. Conversely, when the molding process temperature is low or the required biodegradation rate is low, it is set to a small value.
[0014]
In general, the alkaline earth metal has a stronger hydroxide basicity as the atomic number increases. Accordingly, when using an equimolar number, the biodegradation rate of the molded body increases as the alkaline earth metal oxide having a larger atomic number is used. This property can also control the biodegradation rate of the molded body.
The alkaline earth metal oxide is preferably compounded (master batch) in advance for the purpose of improving the convenience during processing. In this case, the base resin is preferably a biodegradable resin such as an aliphatic polyester resin or a modified starch-based resin (for example, product name: Novon, manufactured by Chisso Corporation) from the viewpoint of complete biodegradability. In some applications where non-biodegradable portions are allowed to remain, non-biodegradable resins such as polyolefin resins may be used.
[0015]
In the present invention, in addition to the above-described aliphatic polyester resin and plant fibers, various additives such as generally known antioxidants, lubricants, antifogging agents, colorants, and fillers other than plant fibers are added as necessary. It can be blended appropriately.
[0016]
The biodegradable resin composition of the present invention is formed by the above-described aliphatic polyester resin, plant fiber, alkaline earth metal oxide, and additives added as necessary. The biodegradable resin composition is molded by various molding machines according to the shape of the target molded body. For example, if the target molded body is a film or sheet, an inflation type, T-die type extrusion molding machine, or a calendar type molding machine is in the form of a plate. In this case, a blow molding machine or the like is used, and in the case of a normal molded product, an injection molding machine or the like is used.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these. The plant fibers, aliphatic polyester resins, and alkaline earth metal oxides used in the present invention are as follows.
[0018]
<Plant fiber>
Cellulose powder manufactured by Daicel Chemical Industries, Lignocell S150tr
(Fiber length: 0 to 150 μm, mass fiber length range: 65 to 95 μm)
・ After dissolving and removing the flesh of coconut palm powdered coconut palm, only the fibers were collected, from which salt and tannin were removed, and the water content was reduced to 10% by forced drying. Furthermore, after compressing this by pressurization with a press machine, it refined | miniaturized with the jet mill (fiber length: 0-300 micrometers, many fiber length ranges: 85-240 micrometers).
[0019]
<Aliphatic polyester resin>
-Showa Polymer Co., Ltd., trade name: Bionore [0020]
<Alkaline earth metal oxide>
Magnesium oxide, calcium oxide, barium oxide [0021]
[Production Example 1]
50 parts by weight of aliphatic polyester resin and 50 parts by weight of cellulose powder were charged into a pressure kneader and kneaded, and then pelletized to obtain a cellulose powder master batch. The water content of the obtained master batch was measured with an infrared moisture meter and found to be 2.6%.
[0022]
[Production Example 2]
50 parts by weight of aliphatic polyester resin and 50 parts by weight of coconut shell powder were charged into a pressure kneader and kneaded and then pelletized to obtain a coconut shell powder master batch. The water content of the obtained master batch was measured with an infrared moisture meter and found to be 2.5%.
[0023]
[Production Example 3]
Magnesium oxide 50 parts by weight and aliphatic polyester resin 50 parts by weight were charged into a pressure kneader and kneaded, and then pelletized to obtain a magnesium oxide master batch.
[0024]
[Production Example 4]
50 parts by weight of calcium oxide and 50 parts by weight of aliphatic polyester resin were charged into a pressure kneader and kneaded, and then pelletized to obtain a calcium oxide master batch.
[0025]
[Production Example 5]
50 parts by weight of barium oxide and 50 parts by weight of aliphatic polyester resin were charged into a pressure kneader and kneaded, and then pelletized to obtain a barium oxide master batch.
[0026]
[Examples 1-8, Comparative Examples 1-4]
Using each of the master batches obtained in Production Examples 1 to 5 and the aliphatic polyester resin, a composition in which the composition ratio of the plant fiber, the aliphatic polyester resin, and the alkaline earth metal was as shown in Table 1 was prepared. .
Subsequently, these compositions were supplied to a φ25 extruder equipped with a T die, and a sheet having a thickness of 200 μm was molded under a processing temperature of 150 ° C. Table 2 shows the molding processability of the obtained sheet. Next, five samples were cut out from the sheets obtained in each of Examples and Comparative Examples, and embedded in mulch at a depth of about 50 mm. Then, every two weeks, one sample was collected from the sheets obtained in each example and comparative example, and the situation was observed. The results are also shown in Table 2.
[0027]
[Table 1]
Figure 0003634937
[0028]
[Table 2]
Figure 0003634937
[0029]
As is clear from Table 2, it is clear that the biodegradable resin composition of the present invention is free of bubbles, eyes and the like during heat molding and has good processability. Furthermore, the molded body formed by molding the biodegradable resin composition of the present invention has an improved biodegradation rate compared to a molded body in which plant fibers and / or alkaline earth metal oxides are not blended. It is clear.
[0030]
【effect】
As described above, according to the present invention, there is provided a biodegradable resin composition that is less expensive than conventional biodegradable plastics, has a high biodegradation rate, and can easily control the biodegradation rate. Is done. Thus, the biodegradable resin composition of the present invention promotes practical application development of biodegradable plastics and is very useful for industry.

Claims (1)

脂肪族ポリエステル樹脂99〜70重量部、植物繊維1〜30重量部を含み、さらにアルカリ土類金属酸化物が、脂肪族ポリエステル樹脂と植物繊維の合計量100重量部に対し0.5〜5重量部含まれてなることを特徴とする生分解性樹脂組成物。It contains 99 to 70 parts by weight of aliphatic polyester resin and 1 to 30 parts by weight of vegetable fiber, and the alkaline earth metal oxide is 0.5 to 5 % by weight with respect to 100 parts by weight of the total amount of aliphatic polyester resin and plant fiber. A biodegradable resin composition comprising a part.
JP07726897A 1997-03-28 1997-03-28 Biodegradable resin composition Expired - Fee Related JP3634937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07726897A JP3634937B2 (en) 1997-03-28 1997-03-28 Biodegradable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07726897A JP3634937B2 (en) 1997-03-28 1997-03-28 Biodegradable resin composition

Publications (2)

Publication Number Publication Date
JPH10273582A JPH10273582A (en) 1998-10-13
JP3634937B2 true JP3634937B2 (en) 2005-03-30

Family

ID=13629110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07726897A Expired - Fee Related JP3634937B2 (en) 1997-03-28 1997-03-28 Biodegradable resin composition

Country Status (1)

Country Link
JP (1) JP3634937B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ880500A0 (en) * 2000-07-14 2000-08-10 Bio-Deg. Mouldings Pty. Ltd. Biodegradable composition and products prepared therefrom
JP4608118B2 (en) * 2001-03-08 2011-01-05 ユニチカ株式会社 Drain material and its decomposition promotion method
JP4132955B2 (en) * 2002-05-10 2008-08-13 東洋インキ製造株式会社 Microbial disintegrating resin composition and molded article
JP3911590B2 (en) * 2002-05-13 2007-05-09 株式会社昭和丸筒 Method for producing resin molded product containing natural fiber such as waste paper and composition for producing the molded product
JP2005105245A (en) 2003-01-10 2005-04-21 Nec Corp Kenaf fiber-reinforced resin composition
US7682548B2 (en) 2003-07-30 2010-03-23 Mitsubishi Plastics, Inc. Injection molded article, production method thereof and pellets used for injection molded article
ATE485341T1 (en) * 2003-12-02 2010-11-15 Kaneka Corp POLY(3-HYDROXYALKANOATE) COMPOSITION AND MOLDED BODY THEREOF
JP4534806B2 (en) * 2005-03-10 2010-09-01 三菱化学株式会社 Aliphatic polyester composition and method for producing the same
JP5006555B2 (en) * 2006-02-22 2012-08-22 パナソニック株式会社 Method for producing plant fiber-containing resin composition
EP2095970A1 (en) 2008-02-29 2009-09-02 Fujifilm Corporation Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for production of relief printing plate
JP5916842B2 (en) * 2012-03-16 2016-05-11 王子ホールディングス株式会社 Method for producing vegetable fiber-containing resin composition and method for producing pulverized product
EP3031847A1 (en) * 2014-12-11 2016-06-15 Solvay Acetow GmbH Polymer composition comprising basic additive, process and articles comprising said polymer composition
JP6675700B1 (en) * 2019-10-31 2020-04-01 株式会社Tbm Resin composition and method for producing resin molded article

Also Published As

Publication number Publication date
JPH10273582A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
RU2480495C2 (en) Novel biodegradable polymer composition suitable for producing biodegradable plastic, and method of preparing said composition
JP5829393B2 (en) Biodegradable resin composition
JP3634937B2 (en) Biodegradable resin composition
EP0897943B1 (en) Composite resin composition
JP5286505B2 (en) Biodegradable resin composition
WO2007095709A1 (en) Environmentally degradable polymeric composition and process for obtaining an environmentally degradable polymeric composition
JPH08510782A (en) Cellulose ester blend
KR20160081998A (en) Algae-blended compositions for thermoplastic articles
KR20000053078A (en) Biodegradable polymeric compositions comprising starch and a thermoplastic polymer
KR101062012B1 (en) Biodegradable, photodegradable bio film containing rice husk and rice bran, and manufacturing method thereof
JP5568003B2 (en) Biodegradable resin composition
JP2004143438A (en) Composite biodegradable molded product
EP3795623A1 (en) Composition
JP2002114896A (en) Lignin-based resin composition
JP3933315B2 (en) Composite resin composition
KR20030020565A (en) Biodegradable plastic composition, plastic container using the same, and the method for preparing thereof
JPH0539412A (en) Degradable resin composition
KR102054720B1 (en) Composition for manufacturing of biodegradable container using grain and carboxymethylcellulose
JP5633291B2 (en) Biodegradable resin composition
JP2000006142A (en) Composite material composed of paper and biodegradable resin, and its manufacture
KR20050058439A (en) Biodegradable resin composition
JP2004168895A (en) Biodegradable resin composition with improved biodegradability, and molded product
JP7158790B1 (en) Biodegradable composite composition
JPH09137069A (en) Biodegradable composition
KR20030012482A (en) The method of manufacture for bio-decomposition plastic container containing corn starch and natural high molecule compound and thereof bio-decomposition plastic container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees