JP3634550B2 - Aberration measurement method for projection lens - Google Patents

Aberration measurement method for projection lens Download PDF

Info

Publication number
JP3634550B2
JP3634550B2 JP08504297A JP8504297A JP3634550B2 JP 3634550 B2 JP3634550 B2 JP 3634550B2 JP 08504297 A JP08504297 A JP 08504297A JP 8504297 A JP8504297 A JP 8504297A JP 3634550 B2 JP3634550 B2 JP 3634550B2
Authority
JP
Japan
Prior art keywords
projection lens
aberration
image
pattern
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08504297A
Other languages
Japanese (ja)
Other versions
JPH10284368A (en
Inventor
宏 福田
ムライ フォン ブノー ルドルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP08504297A priority Critical patent/JP3634550B2/en
Publication of JPH10284368A publication Critical patent/JPH10284368A/en
Application granted granted Critical
Publication of JP3634550B2 publication Critical patent/JP3634550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は投影レンズの収差測定方法に関し、詳しくは半導体集積回路、特に回路パターン形成に用いられる投影露光装置など各種光学装置の評価や調整および各種マスクパターンの補正に有用な投影レンズの収差測定方法に関する。
【0002】
【従来の技術】
周知のように、半導体集積回路の高性能化および高集積化は、半導体集積回路を構成する各種回路パターンを微細化することによって達成され、このような微細な回路パターンは光リソグラフィを用いて形成されてきた。光リソグラフィは、原画マスク(レチクル)が有する所定のパターンを、半導体基板上に形成された感光材料からなるレジスト膜に投影レンズによって投影することによって、上記パターンをレジスト膜に転写してレジストパターンを形成し、このレジストパターンから上記回路パターンを形成する技術である。光リソグラフィに用いられる光学系の解像度を向上して微細化を達成するため、露光波長を短くするとともに、投影レンズの開口数が大きくされてきた。また、集積回路の大規模化にともなうチップ面積の増大に対応するため、投影レンズの露光領域も拡大されてきた。
【0003】
一方、光学の一分野として位相回復という手法が知られている。一般に、光(あるいは電子線)の特性のうち、直接的に測定することのできる特性は強度であるが、位相回復とは、例えば像面と瞳面における2つの像の強度分布から、像の複素振幅分布そのものを求める方法の総称であり、電子顕微鏡や大きな収差が存在する天体望遠鏡等における解像度向上を目的として検討されてきた。さらに、位相回復法のアルゴリズムの一つとして、像面とデフォーカス面の像強度分布から複素振幅分布を求める方法も知られている。位相回復法については、例えば、イメージ・プロセッシング・アンド・コンピュータ−エイデッド・デザイン・イン・エレクトロン・オプティックス(アカデミックプレス社、ロンドン・アンド・ニューヨーク、1973年)第66頁〜81頁(Image Processing and Computer-aided Design in Electron Optics, Academic Press, London and New York, 1973, pp.66-81)などに記載されている。
【0004】
【発明が解決しようとする課題】
しかし、上記のように投影レンズの開口数の増大および露光領域の拡大が進むにともなって、投影レンズの設計および製造は困難さを増している。
【0005】
また、半導体集積回路の高性能化および高集積化に対処するため、回路パターンは投影レンズの解像限界ぎりぎりの寸法で設計されるようになってきた。この場合、投影レンズの収差によって、マスクパターンの投影像が大きな影響を受けるため、最終的な回路パターン(レジストパターン)の形状や寸法が設計値からはずれたり、露光領域内で大きく変動するなどの問題を生じている。これらの問題を解決するためには、レンズ製造工程において投影レンズの収差をできるだけ抑えることが必須であり、そのためには投影レンズの収差を正確に測定できることが先決である。
【0006】
光リソグラフィに使用される投影レンズは、10〜20枚程度のレンズ要素を組み合わせた複合レンズであり、個々のレンズの相対的位置関係を変えることによって収差特性を調整することができる。しかし、収差を調整するためには、投影レンズの収差を正確に測定しなければならないが、収差を直接測定するのは一般に難かしい。そのため、従来は特定の収差が存在したときのレジストパターンの形状や光学像のシミュレーション結果と、実際のレジストパターンの形状や投影像モニターによる光学像測定結果を比較するなどの方法によって、経験的に収差を推定してきた。
【0007】
しかし、この方法は、収差の傾向を間接的に予想できるに過ぎないばかりでなく、多大の時間と労力を要するなどの問題があった。また、波面収差は、原理的には干渉計を用いて測定できるが、直径、長さおよび重量がいずれも極めて大きい投影レンズの波面収差をこの方法によって測定するには、巨大かつ高価な干渉計が必要であり、実用は困難である。
【0008】
本発明の目的は、上記従来の方法よりはるかに簡便に、投影レンズの波面収差分布そのものを直接測定することができる、投影レンズの収差測定方法を提供することである。
【0009】
【課題を解決するための手段】
上記目的は、所定のパターンを有するマスクを光で照明し、マスクを透過した光を、収差を測定しようとする投影レンズによって結像面近傍に結像させ、結像面近傍の、光軸に垂直な複数の面における、マスクパターンの投影像の光強度分布をそれぞれ測定し、得られた上記複数の面における投影像の光強度分布から上記位相回復の手法を用いて結像面付近もしくは投影レンズの瞳付近の複素振幅分布を求め、さらにこの光学像複素振幅分布から上記投影レンズの波面収差を求めることによって達成される。
【0010】
結像面付近の光軸に垂直な複数の異なる平面内でそれぞれ光学像を測定し、得られた複数の光学像の分布から、結像面の複素振幅分布を求めるには、位相回復の手法を応用して次のようにすればよい。簡単のため、マスクパターンを1次元パターンとし、瞳通過後の回折像の複素振幅分布をA(X)、像面回折像複素振幅分布をa(x)とすると、両者は互いにフーリエ変換Fの関係にあり、式(1)で表わされる。
a(x)=F(A(X)) ………(1)
ただし、x、Xはそれぞれ像面上および瞳面上の規格化座標である。
【0011】
次に、瞳面において、回折像複素振幅分布にデフォーカス波面収差分布を掛ける操作を、デフォーカス収差オペレータDと定義すると、デフォーカス面複素振幅分布ad(x)は式(2)で表わされる。

Figure 0003634550
ただし、Finvは逆フーリエ変換である。
【0012】
次に、本発明の基本となる位相回復アルゴリズムを図1を参照して説明する。まず、像面位相分布をf0(x)とし(ステップ11)、像面上における光強度分布I(x)を測定して像面振幅絶対値分布am(x)=sqrt(I(x))を求める(ステップ12)と、像面複素振幅分布a0(x)は、a0(x)=am×exp(I・f0(x))と表すことができる(ステップ13)。
【0013】
a=a0(x)を上記式(2)に代入してデフォーカス面における複素振幅分布ad0(x)を求めると、下記式(3)が得られる。
Figure 0003634550
ただし、ad0’(x)はad0(x)の振幅絶対値、g0(x)は位相、iは虚数単位である(ステップ14)。
【0014】
次に、デフォーカス面における実際の強度分布の測定値Id(x)から振幅絶対値分布adm(x)を求め(ステップ15)、式(3)の振幅絶対値ad0'(x)を、デフォーカス面における実際の強度分布測定Id(x)より求めた振幅絶対値分布adm(x)=sqrt(Id(x))に置き換えると、式(4)が得られる(ステップ16)。
ad0(x)=adm(x)×exp(ig0(x)) ………(4)
この式(4)を、デフォーカス面の複素振幅分布と仮定し、上記式(2)より像面複素振幅分布を逆計算したものをa1(x)すると、a1(x)は下記式(5)で表わされる。
a1(x)=F(Dinv(Finv(adm(x)×exp(ig0(x))))) =a1'(x)×exp(if1(x)) ………(5)
ただし、a1'(x)はa1(x)の振幅絶対値、f1(x)は位相であり、 Dinv D の逆オペレータである(ステップ17)。次に式(5)の振幅絶対値a1'(x)を像面における振幅絶対値の測定値am(x)に置き換え(ステップ13)、上記式(2)を用いて再度デフォーカス面の複素振幅分布を計算したものをad1(x)とすると、ad1(x)は下記式(6)で表わされる(ステップ14)。
ad1(x)=F(D(Finv(a1(x))))=ad1'×exp(ig1(x)) ………(6)
このように、i番目のデフォーカス面複素振幅分布を、i番目の像面複素振幅分布ai(x)より求めたデフォーカス面の位相分布(gi(x)=atan(Im(adi(x))/Re(adi(x))))およびデフォーカス面での振幅絶対値の測定値admを持つものとし(すなわちadi(x)=adm(x)×exp(igi(x)))、i+1番目の像面複素振幅分布を、上で求めたi番目のデフォーカス面複素振幅分布adi(x)より求めた像面の位相分布(fi+1(x)=atan(Im(ai+1(x))/Re(ai+1(x))))と像面での振幅絶対値の測定値amを持つもの(すなわちai+1(x)=am×exp(ifi+1(x)))とする。この過程を繰り返すことにより、複素振幅分布の変化が十分に小さくなったとすると、得られた位相分布、従って複素振幅分布は測定結果を満足するものと見做すことができる。計算の収束条件としては、繰り返し法による数値計算で一般的に用いられている適当な条件を利用することができる。
【0015】
収束したときの像面複素振幅分布を逆フーリエ変換することにより、瞳回折像の複素振幅分布A(X)が求まる。一方、瞳回折像の複素振幅分布A(X)は、瞳関数P(X)とマスクパターンのフーリエ変換T(X)の積として表わされるので、求めた瞳回折像の複素振幅分布をマスクパターンのフーリエ変換で割ることにより、瞳関数が下記式(7)から求められる。
P(X)=A(X)/T(X) ………(7)
この瞳関数(複素数)の位相部が波面収差に他ならない。
【0016】
なお、上記説明では初期位相分布は一様であると仮定したが、位相シフトマスクなどを用いた場合には、当然予測される位相分布を、像面上初期位相分布として仮定することが望ましい。また上記説明では、像面とデフォーカス面の間で計算を繰り返したが、一方の面が像面であることは不可欠ではなく、2つ以上の任意のデフォーカス面の間で繰り返し計算を行っても、空間像および瞳回折像の複素振幅分布、さらに投影レンズの収差を求めることができる。
【0017】
また、この目的で用いられるマスクパターンとしては、瞳面全面の情報を得るために瞳面全面にスペクトルを有し、かつ瞳面内で0とならないパターンが望ましい。従って、例えば、遮光部中に孤立した微小開口パターン(孔パターン)などであってもよい。しかし、これらの像は、像面においてパターン中心の強い明部と周囲の弱い回折パターンの間のダイナミックレンジ(強度差)が極めて大きいので、両者に対して十分な情報を得ることが難しい。そのため、この場合は、像面からややデフォーカスした位置で像をサンプリングすることが好ましい。ただし、孤立した孔パターンの場合は、デフォーカスすると強度が極端に弱くなるため、十分な露光積算を行うとともにノイズなどに気をつける等、像取り込み時に注意が必要である。また、ジーメンスターのような、中心から放射状に広がる回折格子パターンも好ましいパターンの一つである。
【0018】
なお、上記説明は、すべてのマスクが完全に正しく(設計通りに)作られていることを前提としている。実際にマスクの精度が問題となる場合には、マスクの精度をあらかじめ別の手段で測定し、得られた測定データを用いて実際の測定結果を補正することが望ましい。
【0019】
上記複数の面は結像面とこの結像面の上下のデフォーカス面からなることが好ましい。結像面は含まず、デフォーカス面のみであってもよいが、この場合は、最も結像面に近いデフォーカス面の位置は結像面から0.5λ/NA(ただし、λは用いた光の波長、NAは投影レンズの開口数を、それぞれ表す)とすることが好ましい。マスクパターンの投影像の光強度分布がそれぞれ測定される上記面の数は、多いほど測定精度が向上するが、数が多くなると操作が煩雑になる、通常は、上記面の数を3(結像面および結像面上下のデフォーカス面各1)とすれば実用上充分な結果が得られる。隣接する上記平面の間隔はλ/NA〜10λ/NA(ただし、λは上記光の波長、NAは上記投影レンズの開口数を、それぞれ表わす)とすれば好ましい結果が得られる。
【0020】
上記パターンの投影像は拡大レンズによって拡大された後、光センサに入射させて光強度を測定することができ、この光センサとしてはCCDセンサが実用上便利である。この場合、上記パターンの投影像の光強度分布は、上記拡大レンズと上記CCDセンサからなる投影像モニタを上記光軸上の互いに異なる位置に移動させて、それぞれ測定される。
【0021】
上記拡大レンズの上記CCDセンサ側の結像面にピンホールを設け、上記パターンの投影像を、上記ピンホールを介して上記CCDセンサに入射させることによって、解像度をさらに向上させることができる。
【0022】
また、上記本発明の投影レンズの収差測定方法によって測定された上記波面収差の値を用いることにより、上記投影レンズの収差を調整することができる。
【0023】
さらに、上記本発明の投影レンズの収差測定方法によって測定された上記波面収差の値を用いて、上記マスクパターンの形状を補正することができる。
【0024】
なお、上記投影レンズは、一部に反射鏡を含む光学系またはすべて反射鏡からなる反射光学系であってもよい。
【0025】
【発明の実施の形態】
本発明によれば、所定のパターンを有するマスクを透過した光を、収差を測定すべき投影レンズによって結像面近傍に結像し、結像面近傍の光軸に垂直な複数の面における、マスクパターンの投影像の光強度分布をそれぞれ測定し、得られた上記複数の面における投影像の光強度分布から上記位相回復の手法を用いて結像面付近もしくは投影レンズの瞳付近の複素振幅分布を求め、さらにこれらの情報から上記投影レンズの収差が計算される。
【0026】
上記のように、マスクパターンの投影像の光強度分布がそれぞれ測定される上記面の数は、多いほど測定精度が向上するが、数が多くなると操作が煩雑になる、通常は、上記面の数を3(結像面および結像面上下のデフォーカス面各1)とすれば実用上充分な結果が得られる。
【0027】
投影レンズによって形成された上記パターンの投影像は、拡大レンズによって拡大された後、CCDなど光センサに入射され、この光センサからの信号はコンピュータに入力されてパターンの投影像の上記光強度分布が求められる。
【0028】
また、ホトレジスト膜を結像面およびデフォーカス面に配置して、同一のマスクパターンを介してそれぞれ露光および現像を行って、マスクパターンに対応した膜厚分布(凹凸)を有するレジストパターンを形成し、この膜厚分布から投影像の光強度分布を求めることもできる。
【0029】
投影露光装置用レンズによる投影像を直接測定することは、一般に投影露光レンズの製造工程におけるレンズ調整工程で行われており、さらに、最近の投影露光装置には像特性モニタリング用に光学像モニターが内蔵されたものもある。本発明ではこれらの既に確立された技術を利用することも可能である。これら光学像モニター方法については、例えば、エスピーアイイー・プロシーディング、第2726巻、オプティカル・マイクロリソグラフィ、第788頁から798頁(1996年)(SPIE Proceedings Vol.2726, Optical Microlithography IX,pp.788−798,1996)などに記載されている。
【0030】
なお、本発明が適用できるマスクパターンの平面形状の一例を図4に示した。このマスクパターンは正方形の光透過部24とそれを囲む遮光部25を有しているが、本発明で用いることのできるマスクパターンはこの形状に限らない。
【0031】
【実施例】
〈実施例1〉
本実施例は、本発明を投影レンズ製造工程におけるレンズの評価および調整に適用した例を示す。図2は本実施例に用いたレンズ評価装置の概略を模式的に示した図である。
【0032】
図2(a)に示したように、空間的にほぼコヒーレントな照明光1によってマスク2を照明し、マスク2を透過した光を投影レンズ3によって結像面4に結像させた。結像面4付近のマスクパターンの投影像は拡大レンズ系5によって拡大され、CCDセンサー6上に結像される。CCDセンサー6からの信号をコンピュータ7へ入力して処理し、マスクパターンの投影像の光強度分布を求めた。
【0033】
拡大レンズ系5とCCDセンサー6からなる投影像モニター8を光軸9の方向に移動させて上記測定を行い、図2(b)に示したように、上記結像面4から若干離れたデフォーカス面10における投影像の光強度分布を測定した。この測定を、互いに離れた複数のデフォーカス面10においてそれぞれ行った。また、上記投影像モニター8を露光領域内で水平方向に移動させて、露光領域内の様々な位置における投影像の光強度分布を測定した。
【0034】
ほぼ合焦点位置4および4μmデフォーカスした位置10において得られた光学像分布から、先に説明したアルゴリズムを用いて、投影レンズ3の波面収差を求めた。周知の通り、投影レンズ収差は露光領域内の位置に依存するので、レンズ露光領域内の種々な位置に対する像の測定結果から、上記露光領域内の収差分布を求めた。
【0035】
次に、上記収差データをフィードバックし、上記収差データにもとづいて上記投影レンズの各レンズ要素の位置を調整した後、再度収差測定を行ったところ、収差量が大幅に改善された。また、この方法を用いることにより、レンズ調整に要する時間は従来の約30%に短縮され、良品率を約40%向上させることができた。さらに、このようにして調整された投影レンズを露光装置に搭載することにより、露光領域内における回路パターンの寸法均一性は設計寸法±17%から設計寸法±8%へ向上した。
【0036】
なお、拡大レンズ5のCCDセンサー6側結像面に微小ピンホールを設け、この微小ピンホールを介して像をCCDセンサー6に入射させるようにすれば、共焦点顕微鏡効果によって、投影像モニターの解像度はさらに向上する。
【0037】
また、マスク2の代わりに、マスク面に単一モードレーザーを結像させ、得られたレーザースポットの投影レンズ3による像を、上記マスク2を用いた場合と同様に処理してもよい。このようにすることにより、マスクが不完全であるかもしれないという恐れを避けることができる。ただし、上記レーザーの波長は、上記投影レンズに使用が想定される光の波長とレンズ所定の許容範囲内で一致させる必要がある。
【0038】
〈実施例2〉
次に、実際の露光装置を用いた回路パターン形成工程に本発明を適用した例を図3を用いて説明する。まず、図3(a)に示したように、Si基板21の表面上にレジスト(FH−EX1U;富士ハント社製品名)を塗布してレジスト膜22を形成し、KrFエキシマレーザ投影露光装置を用いてマスクパターンを上記レジスト膜上に投影露光した。この際、露光装置の照明条件を空間的にほぼコヒーレントとなるように変更した。同一マスクパターンに対して、合焦点位置(結像面)および±3μmデフォーカス位置にそれぞれ露光を行い、所定の現像液で現像して各フォーカス位置におけるレジストパターン22を形成した。なお、本実施例で用いた上記レジストは、上記レーザ光の波長に対する吸収が相当大きく、いわゆるレジストコントラストが低いため、現像後のレジストパターン断面形状は光強度分布を忠実に反映した形状が得られた。
【0039】
次に走査型原子間力顕微鏡(AFM)を用いて、微小AFMチップ23を上記レジストパターン22の表面を走査させ、上記マスクパターンに対応したレジストパターン22の表面の凹凸を、各焦点位置における露光毎に測定して、図3(b)に示す凹凸データ(マスクパターンに対応したレジストパターン22の膜厚分布)を得た。
【0040】
この凹凸データをコンピュータヘ入力し、エスピーアイイー・プロシーディング・第2726巻、オプティカル・マイクロリソグラフィ、第410頁から416頁 (1996年)(SPIE Proceedings Vol.2726, Optical Microlithography IX,pp.410−416,1996)に示されている方法を用いて、図3(c)に示した各焦点位置における投影像光強度分布を求めた。
【0041】
さらに、実施例1と同様の方法(上記アルゴリズム)を用いて、上記各焦点位置における投影像光強度分布(図3(c))から、投影露光装置に用いられている投影レンズの波面収差を求めた。この操作を、上記投影レンズの露光領域内の互いに異なる多くの位置で行い、露光領域内の波面収差分布を求めた。
【0042】
次に、マスクパターンに対して光学的近接効果の補正を行い、上記波面収差によって生じたパターン変形を相殺した。具体的には、光学的近接効果プログラム内の光学像計算部において、測定した波面収差を仮定して最適マスク形状を求めた。波面収差は露光領域内で分布を有するので、上記補正はマスク内の位置に応じて行った。補正したマスクを用いて露光を行った結果、露光領域の全域でレジストパターン寸法均一性は設計寸法±17%から設計寸法±9%に向上した。
【0043】
〈実施例3〉
本発明を用いて半導体生産ラインで使用されている投影露光装置の収差状態をモニタリングした例を示す。CCDセンサーアレイのセンサー面を遮光膜で覆いその各ピクセル中心に露光波長より小さな微小ピンホールを設けた専用光学像検出装置を作製した。これを投影露光装置のウエハーステージ上に設置し、専用マスクと位置合わせした後、ウエハーステージを水平方向にスキャンしながらCCDセンサーの出力をモニターすることにより、マスクパターンの光強度分布を測定できるようにした。異なるデフォーカス位置、露光位置に対する測定結果より、上記実施例1、2と同様にして投影光学系の収差分布を求めた。
【0044】
本実施例では、露光領域内の多くの位置に像モニタリング用パターンを有する専用のマスク、およびこれに対応した位置にセンサーを有する専用光学像検出装置を用いることにより高速で収差解析を行うことができた。
【0045】
このような測定を定期的に行って収差の経時的変化を調べ、収差量が所定の許容範囲を超えた場合は、投影光学系のレンズ要素の位置調整を行って収差を低減した。これにより、露光装置の結像性能を常に好ましい状態に保ち、半導体集積回路の品質を一定に保つことができた。なお、上記専用光学像検出装置を、CCDセンサーを作製したSiウエハーで構成することにより、異なる露光装置上で用いることもできる。
【0046】
なお、上記実施例における光強度分布測定方法としては、各実施例でそれぞれ用いられた方法に限定されるものではなく、他の方法を用いることができる。
【0047】
【発明の効果】
上記説明から明らかなように、本発明による投影レンズの収差測定方法は、投影レンズの異なる複数の焦点位置におけるマスクパターン投影像の光学像強度分布から、位相回復の手法を用いて投影レンズの収差を求め、この情報を用いて上記投影レンズ又はマスクパターン形状を調整することにより、上記投影レンズまたはマスクパターンを用いて形成されるパターンの精度、均一性を大幅に向上することができる。
【図面の簡単な説明】
【図1】本発明の構成を説明するための流れ図。
【図2】本発明の第1の実施例を説明するための図。
【図3】本発明の第2の実施例を説明するための図。
【図4】本発明を適用できるパターンの平面形状の一例を示す図。
【符号の説明】
1…照明光、2…マスク2、3…投影レンズ、4…結像面、5…拡大レンズ系、6…CCDセンサー、7…コンピュータ、8…投影像モニター、9…光軸、10…デフォーカス面、21…Si基板、22…レジスト膜、23…AFMチップ、24…光透過部、25…遮光部。[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection lens aberration measurement method, and more particularly to a projection lens aberration measurement method useful for evaluation and adjustment of various optical devices such as a semiconductor integrated circuit, particularly a projection exposure apparatus used for circuit pattern formation, and correction of various mask patterns. About.
[0002]
[Prior art]
As is well known, high performance and high integration of a semiconductor integrated circuit are achieved by miniaturizing various circuit patterns constituting the semiconductor integrated circuit, and such a fine circuit pattern is formed using photolithography. It has been. In optical lithography, a predetermined pattern of an original image mask (reticle) is projected onto a resist film made of a photosensitive material formed on a semiconductor substrate by a projection lens, whereby the pattern is transferred to the resist film to form a resist pattern. In this technique, the circuit pattern is formed from the resist pattern. In order to improve the resolution of an optical system used for optical lithography and achieve miniaturization, the exposure wavelength has been shortened and the numerical aperture of the projection lens has been increased. Also, the exposure area of the projection lens has been expanded in order to cope with the increase in chip area accompanying the increase in scale of integrated circuits.
[0003]
On the other hand, a technique called phase recovery is known as an optical field. In general, among the characteristics of light (or electron beam), the characteristic that can be measured directly is the intensity, but the phase recovery is, for example, from the intensity distribution of two images on the image plane and the pupil plane. This is a general term for the method for obtaining the complex amplitude distribution itself, and has been studied for the purpose of improving the resolution in an electron microscope or an astronomical telescope having a large aberration. Furthermore, as one of the algorithms for the phase recovery method, a method for obtaining a complex amplitude distribution from the image intensity distributions on the image plane and the defocus plane is also known. Regarding the phase recovery method, for example, Image Processing and Computer-Aided Design in Electron Optics (Academic Press, London and New York, 1973), pages 66-81 (Image Processing and Computer-aided Design in Electron Optics, Academic Press, London and New York, 1973, pp. 66-81).
[0004]
[Problems to be solved by the invention]
However, as the numerical aperture of the projection lens increases and the exposure area expands as described above, the design and manufacture of the projection lens becomes more difficult.
[0005]
Further, in order to cope with higher performance and higher integration of semiconductor integrated circuits, circuit patterns have been designed with dimensions that are almost the resolution limit of a projection lens. In this case, since the projection image of the mask pattern is greatly affected by the aberration of the projection lens, the shape and dimensions of the final circuit pattern (resist pattern) deviate from the design value, or vary greatly within the exposure area. There is a problem. In order to solve these problems, it is indispensable to suppress the aberration of the projection lens as much as possible in the lens manufacturing process, and for that purpose, the aberration of the projection lens can be measured accurately.
[0006]
A projection lens used for optical lithography is a compound lens in which about 10 to 20 lens elements are combined, and aberration characteristics can be adjusted by changing the relative positional relationship between the individual lenses. However, in order to adjust the aberration, it is necessary to accurately measure the aberration of the projection lens, but it is generally difficult to directly measure the aberration. For this reason, conventionally, it has been empirically determined to compare the resist pattern shape and optical image simulation results when specific aberrations exist with the actual resist pattern shape and optical image measurement results using a projection image monitor. Aberration has been estimated.
[0007]
However, this method not only can indirectly predict the tendency of aberration, but also has problems such as requiring a lot of time and labor. Although wavefront aberration can be measured using an interferometer in principle, it is a huge and expensive interferometer to measure the wavefront aberration of a projection lens having a very large diameter, length and weight by this method. Is necessary and practical use is difficult.
[0008]
An object of the present invention is to provide an aberration measurement method for a projection lens, which can directly measure the wavefront aberration distribution itself of the projection lens, much more simply than the conventional method.
[0009]
[Means for Solving the Problems]
The purpose is to illuminate a mask having a predetermined pattern with light, and image the light transmitted through the mask in the vicinity of the imaging surface by a projection lens for measuring aberrations, on the optical axis in the vicinity of the imaging surface. Measure the light intensity distribution of the projected image of the mask pattern on each of the multiple vertical surfaces, and use the phase recovery technique to determine the vicinity of the image plane or the projection from the obtained light intensity distribution of the projected image on the multiple surfaces. This is achieved by obtaining a complex amplitude distribution in the vicinity of the pupil of the lens, and further obtaining the wavefront aberration of the projection lens from the complex amplitude distribution of the optical image.
[0010]
A phase recovery technique is used to measure optical images in different planes perpendicular to the optical axis in the vicinity of the image plane and to determine the complex amplitude distribution on the image plane from the distribution of the obtained optical images. You can apply as follows. For simplicity, if the mask pattern is a one-dimensional pattern, the complex amplitude distribution of the diffraction image after passing through the pupil is A (X), and the complex amplitude distribution of the image plane diffraction image is a (x), they are mutually Fourier transform F There is a relationship, and it is expressed by equation (1).
a (x) = F (A (X)) (1)
Here, x and X are normalized coordinates on the image plane and the pupil plane, respectively.
[0011]
Next, when an operation of multiplying the diffraction image complex amplitude distribution by the defocus wavefront aberration distribution on the pupil plane is defined as a defocus aberration operator D, the defocus plane complex amplitude distribution ad (x) is expressed by Expression (2). .
Figure 0003634550
However, Finv is an inverse Fourier transform.
[0012]
Next, the phase recovery algorithm which is the basis of the present invention will be described with reference to FIG. First, the image plane phase distribution is set to f0 (x) (step 11), the light intensity distribution I (x) on the image plane is measured, and the image plane amplitude absolute value distribution am (x) = sqrt (I (x)) (Step 12), the image plane complex amplitude distribution a0 (x) can be expressed as a0 (x) = am × exp (I · f0 (x)) (step 13).
[0013]
Substituting a = a0 (x) into the above equation (2) to obtain the complex amplitude distribution ad0 (x) on the defocus plane yields the following equation (3).
Figure 0003634550
However, ad0 ′ (x) is the absolute value of ad0 (x), g0 (x) is the phase, and i is the imaginary unit (step 14).
[0014]
Next, the absolute amplitude distribution adm (x) is obtained from the measured value Id (x) of the actual intensity distribution on the defocus plane (step 15), and the absolute amplitude value ad0 ′ (x) in the equation (3) is calculated as When the amplitude absolute value distribution adm (x) = sqrt (Id (x)) obtained from the actual intensity distribution measurement Id (x) on the focus plane is substituted, Equation (4) is obtained (step 16).
ad0 (x) = adm (x) × exp (i g0 (x)) ……… (4)
Assuming that this equation (4) is a complex amplitude distribution on the defocus plane, and a1 (x) is obtained by inversely calculating the image plane complex amplitude distribution from the above equation (2), a1 (x) is expressed by the following equation (5) ).
a1 (x) = F (Dinv (Finv (adm (x) × exp (ig0 (x))))) = a1 '(x) × exp (if1 (x)) ……… (5)
However, a1 '(x) is the amplitude absolute value of a1 (x), f1 (x ) is Ri phase der, Dinv is the inverse operator D (step 17). Next, the amplitude absolute value a1 ′ (x) in the equation (5) is replaced with the measurement value am (x) of the amplitude absolute value on the image plane (step 13), and the complex of the defocus plane is again obtained using the above equation (2). Assuming that the calculated amplitude distribution is ad1 (x), ad1 (x) is expressed by the following equation (6) (step 14).
ad1 (x) = F (D (Finv (a1 (x)))) = ad1 '× exp (ig1 (x)) ……… (6)
In this way, the phase distribution (gi (x) = atan (Im ( adi (x)) of the defocus plane obtained from the i-th image plane complex amplitude distribution ai (x) is obtained from the i-th defocus plane complex amplitude distribution. ) / Re ( adi (x)))) and a measured value adm of the absolute amplitude value on the defocus plane (that is, adi (x) = adm (x) × exp (igi (x))), i + 1 The image plane phase distribution (fi + 1 (x) = atan (Im ( ai + 1 ()) is obtained from the i-th defocus plane complex amplitude distribution adi (x) obtained above. x)) / Re ( ai + 1 (x)))) and the measured amplitude am in the image plane am (ie ai + 1 (x) = am × exp (ifi + 1 (x)) ). If the change of the complex amplitude distribution becomes sufficiently small by repeating this process, the obtained phase distribution and thus the complex amplitude distribution can be regarded as satisfying the measurement result. As a calculation convergence condition, an appropriate condition generally used in numerical calculation by an iterative method can be used.
[0015]
The complex amplitude distribution A (X) of the pupil diffraction image is obtained by performing inverse Fourier transform on the image plane complex amplitude distribution when converged. On the other hand, the complex amplitude distribution A (X) of the pupil diffraction image is expressed as the product of the pupil function P (X) and the Fourier transform T (X) of the mask pattern. The pupil function is obtained from the following equation (7) by dividing by the Fourier transform of:
P (X) = A (X) / T (X) (7)
The phase part of this pupil function (complex number) is nothing but wavefront aberration.
[0016]
In the above description, it is assumed that the initial phase distribution is uniform. However, when a phase shift mask or the like is used, it is desirable to assume the phase distribution that is naturally predicted as the initial phase distribution on the image plane. In the above description, the calculation is repeated between the image plane and the defocus plane. However, it is not essential that one plane is the image plane, and the calculation is repeatedly performed between two or more arbitrary defocus planes. However, the complex amplitude distribution of the aerial image and the pupil diffraction image and the aberration of the projection lens can be obtained.
[0017]
The mask pattern used for this purpose is preferably a pattern that has a spectrum over the entire pupil surface and does not become zero in the pupil surface in order to obtain information on the entire pupil surface. Therefore, for example, a minute opening pattern (hole pattern) isolated in the light shielding portion may be used. However, since these images have a very large dynamic range (intensity difference) between a strong bright portion at the center of the pattern and a weak diffraction pattern around the image plane, it is difficult to obtain sufficient information for both. Therefore, in this case, it is preferable to sample the image at a position slightly defocused from the image plane. However, in the case of an isolated hole pattern, the intensity becomes extremely weak when defocused, so care must be taken when capturing an image, such as performing sufficient exposure integration and paying attention to noise. In addition, a diffraction grating pattern that spreads radially from the center, such as Siemens Star, is also a preferable pattern.
[0018]
Note that the above description assumes that all masks are perfectly correct (as designed). When the accuracy of the mask actually becomes a problem, it is desirable to measure the accuracy of the mask in advance by another means and correct the actual measurement result using the obtained measurement data.
[0019]
It is preferable that the plurality of surfaces include an imaging surface and defocus surfaces above and below the imaging surface. However, in this case, the position of the defocus surface closest to the image formation surface is 0.5λ / NA 2 from the image formation surface. It is preferable that the wavelength of light and NA represent the numerical aperture of the projection lens. The larger the number of the surfaces on which the light intensity distribution of the projected image of the mask pattern is measured, the better the measurement accuracy. However, the larger the number, the more complicated the operation. If the image plane and the defocus planes 1 and 2 above and below the image plane are used, a practically sufficient result can be obtained. A preferable result can be obtained if the interval between the adjacent planes is λ / NA 2 to 10λ / NA 2 (where λ is the wavelength of the light and NA is the numerical aperture of the projection lens).
[0020]
The projected image of the pattern can be magnified by a magnifying lens and then incident on an optical sensor to measure the light intensity. As this optical sensor, a CCD sensor is practically convenient. In this case, the light intensity distribution of the projection image of the pattern is measured by moving the projection image monitor including the magnifying lens and the CCD sensor to different positions on the optical axis.
[0021]
The resolution can be further improved by providing a pinhole in the imaging surface on the CCD sensor side of the magnifying lens and allowing the projected image of the pattern to enter the CCD sensor through the pinhole.
[0022]
Further, the aberration of the projection lens can be adjusted by using the value of the wavefront aberration measured by the projection lens aberration measuring method of the present invention.
[0023]
Furthermore, the shape of the mask pattern can be corrected by using the value of the wavefront aberration measured by the projection lens aberration measuring method of the present invention.
[0024]
The projection lens may be an optical system that partially includes a reflecting mirror or a reflecting optical system that is entirely composed of reflecting mirrors.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, the light transmitted through the mask having a predetermined pattern is imaged in the vicinity of the imaging surface by the projection lens whose aberration is to be measured, and in a plurality of surfaces perpendicular to the optical axis in the vicinity of the imaging surface, The light intensity distribution of the projected image of the mask pattern is measured, and the complex amplitude near the imaging plane or near the pupil of the projection lens is obtained from the obtained light intensity distribution of the projected image on the plurality of surfaces by using the phase recovery method described above. The distribution is obtained, and the aberration of the projection lens is calculated from the information.
[0026]
As described above, the number of the surfaces on which the light intensity distributions of the projection images of the mask pattern are measured increases as the number of the surfaces increases. However, the operation becomes complicated as the number increases. If the number is 3 (one for each of the imaging plane and the defocus planes above and below the imaging plane), a practically sufficient result can be obtained.
[0027]
The projected image of the pattern formed by the projection lens is magnified by the magnifying lens and then incident on a photosensor such as a CCD. The signal from the photosensor is input to the computer and the light intensity distribution of the projected image of the pattern. Is required.
[0028]
In addition, a photoresist film is placed on the imaging plane and the defocus plane, and exposure and development are performed through the same mask pattern to form a resist pattern having a film thickness distribution (unevenness) corresponding to the mask pattern. The light intensity distribution of the projected image can also be obtained from this film thickness distribution.
[0029]
The direct measurement of the projection image by the lens for the projection exposure apparatus is generally performed in the lens adjustment process in the manufacturing process of the projection exposure lens, and the recent projection exposure apparatus has an optical image monitor for image characteristic monitoring. Some are built-in. In the present invention, these already established techniques can be used. As for these optical image monitoring methods, for example, SP Proceeding, Vol. 2726, Optical Microlithography, pp. 788 to 798 (1996) (SPIE Proceedings Vol. 2726, Optical Microlithography IX, pp. 788). -798, 1996).
[0030]
An example of the planar shape of a mask pattern to which the present invention can be applied is shown in FIG. Although this mask pattern has a square light transmitting portion 24 and a light shielding portion 25 surrounding it, the mask pattern that can be used in the present invention is not limited to this shape.
[0031]
【Example】
<Example 1>
The present embodiment shows an example in which the present invention is applied to lens evaluation and adjustment in a projection lens manufacturing process. FIG. 2 is a diagram schematically showing an outline of the lens evaluation apparatus used in this embodiment.
[0032]
As shown in FIG. 2A, the mask 2 was illuminated with spatially almost coherent illumination light 1, and the light transmitted through the mask 2 was imaged on the imaging surface 4 by the projection lens 3. The projected image of the mask pattern in the vicinity of the imaging plane 4 is enlarged by the magnifying lens system 5 and formed on the CCD sensor 6. The signal from the CCD sensor 6 was input to the computer 7 and processed to obtain the light intensity distribution of the projected image of the mask pattern.
[0033]
The projection image monitor 8 consisting of the magnifying lens system 5 and the CCD sensor 6 is moved in the direction of the optical axis 9 to perform the above measurement, and as shown in FIG. The light intensity distribution of the projected image on the focus surface 10 was measured. This measurement was performed on each of a plurality of defocus surfaces 10 separated from each other. The projection image monitor 8 was moved in the horizontal direction within the exposure area, and the light intensity distribution of the projection image at various positions in the exposure area was measured.
[0034]
The wavefront aberration of the projection lens 3 was obtained from the optical image distribution obtained at the in-focus position 4 and the position 10 defocused by 4 μm using the algorithm described above. As is well known, since the projection lens aberration depends on the position in the exposure area, the aberration distribution in the exposure area was obtained from the measurement results of the images at various positions in the lens exposure area.
[0035]
Next, when the aberration data was fed back, the position of each lens element of the projection lens was adjusted based on the aberration data, and then the aberration measurement was performed again, the amount of aberration was greatly improved. Also, by using this method, the time required for lens adjustment was reduced to about 30% of the conventional method, and the yield rate was improved by about 40%. Further, by mounting the projection lens adjusted in this way on the exposure apparatus, the dimensional uniformity of the circuit pattern in the exposure region is improved from the design dimension ± 17% to the design dimension ± 8%.
[0036]
If a minute pinhole is provided on the imaging surface of the magnifying lens 5 on the CCD sensor 6 side and an image is incident on the CCD sensor 6 through this minute pinhole, the confocal microscope effect causes the projection image monitor. The resolution is further improved.
[0037]
Further, instead of the mask 2, a single mode laser may be imaged on the mask surface, and an image of the obtained laser spot by the projection lens 3 may be processed in the same manner as when the mask 2 is used. In this way, the fear that the mask may be incomplete can be avoided. However, the wavelength of the laser needs to match the wavelength of light assumed to be used for the projection lens within a predetermined tolerance of the lens.
[0038]
<Example 2>
Next, an example in which the present invention is applied to a circuit pattern forming process using an actual exposure apparatus will be described with reference to FIG. First, as shown in FIG. 3A, a resist (FH-EX1U; product name of Fuji Hunt) is applied on the surface of the Si substrate 21 to form a resist film 22, and a KrF excimer laser projection exposure apparatus is used. The mask pattern was used for projection exposure on the resist film. At this time, the illumination conditions of the exposure apparatus were changed so as to be almost coherent spatially. The same mask pattern was exposed to a focal point position (imaging plane) and a ± 3 μm defocus position, and developed with a predetermined developer to form a resist pattern 22 at each focus position. The resist used in this example has a considerably large absorption with respect to the wavelength of the laser beam and a low so-called resist contrast, so that the resist pattern cross-sectional shape after development has a shape that faithfully reflects the light intensity distribution. It was.
[0039]
Next, using a scanning atomic force microscope (AFM), the surface of the resist pattern 22 is scanned with the micro AFM chip 23, and the unevenness of the surface of the resist pattern 22 corresponding to the mask pattern is exposed at each focal position. Measurement was performed every time to obtain unevenness data (film thickness distribution of the resist pattern 22 corresponding to the mask pattern) shown in FIG.
[0040]
This unevenness data is input to a computer, and SP Proceeding, Vol. 2726, Optical Microlithography, pages 410 to 416 (1996) (SPIE Proceedings Vol. 2726, Optical Microlithography IX, pp. 410-). 416, 1996), the projection image light intensity distribution at each focal position shown in FIG. 3C was obtained.
[0041]
Further, by using the same method (the above algorithm) as in the first embodiment, the wavefront aberration of the projection lens used in the projection exposure apparatus is calculated from the projected image light intensity distribution (FIG. 3C) at each focal position. Asked. This operation was performed at many different positions in the exposure area of the projection lens, and the wavefront aberration distribution in the exposure area was obtained.
[0042]
Next, the optical proximity effect was corrected for the mask pattern to cancel the pattern deformation caused by the wavefront aberration. Specifically, in the optical image calculation unit in the optical proximity effect program, the optimum mask shape was obtained assuming the measured wavefront aberration. Since the wavefront aberration has a distribution in the exposure region, the correction is performed according to the position in the mask. As a result of exposure using the corrected mask, the resist pattern dimension uniformity improved from the design dimension ± 17% to the design dimension ± 9% over the entire exposed area.
[0043]
<Example 3>
An example in which the aberration state of a projection exposure apparatus used in a semiconductor production line is monitored using the present invention will be described. A dedicated optical image detection device was produced in which the sensor surface of the CCD sensor array was covered with a light-shielding film and a minute pinhole smaller than the exposure wavelength was provided at the center of each pixel. After installing this on the wafer stage of the projection exposure apparatus and aligning it with the dedicated mask, the light intensity distribution of the mask pattern can be measured by monitoring the output of the CCD sensor while scanning the wafer stage in the horizontal direction. I made it. From the measurement results for different defocus positions and exposure positions, the aberration distribution of the projection optical system was obtained in the same manner as in Examples 1 and 2.
[0044]
In this embodiment, it is possible to perform aberration analysis at high speed by using a dedicated mask having image monitoring patterns at many positions in the exposure region and a dedicated optical image detection apparatus having sensors at corresponding positions. did it.
[0045]
Such measurement is periodically performed to check the change of aberration with time. When the amount of aberration exceeds a predetermined allowable range, the position of the lens element of the projection optical system is adjusted to reduce the aberration. As a result, the imaging performance of the exposure apparatus can always be kept in a preferable state, and the quality of the semiconductor integrated circuit can be kept constant. Note that the above-described dedicated optical image detection device can be used on a different exposure device by forming it with a Si wafer on which a CCD sensor is manufactured.
[0046]
In addition, as a light intensity distribution measuring method in the said Example, it is not limited to the method each used in each Example, Other methods can be used.
[0047]
【The invention's effect】
As is apparent from the above description, the projection lens aberration measurement method according to the present invention uses the phase recovery method to calculate the aberration of the projection lens from the optical image intensity distribution of the mask pattern projection image at a plurality of different focal positions of the projection lens. By adjusting the shape of the projection lens or mask pattern using this information, the accuracy and uniformity of the pattern formed using the projection lens or mask pattern can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a configuration of the present invention.
FIG. 2 is a diagram for explaining a first embodiment of the present invention.
FIG. 3 is a diagram for explaining a second embodiment of the present invention.
FIG. 4 is a diagram showing an example of a planar shape of a pattern to which the present invention can be applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Illumination light, 2 ... Mask 2, 3 ... Projection lens, 4 ... Imaging surface, 5 ... Magnifying lens system, 6 ... CCD sensor, 7 ... Computer, 8 ... Projection image monitor, 9 ... Optical axis, 10 ... De Focus surface, 21... Si substrate, 22... Resist film, 23... AFM chip, 24.

Claims (7)

所定のパターンを有するマスクを光で照明して、上記パターンを投影レンズによって上記マスクの結像面近傍に結像させ、光軸に垂直で上記結像面近傍の複数の平面における上記パターンの投影像の光強度分布をそれぞれ測定し、上記複数の平面における投影像光強度分布から、位相回復法によって上記結像面付近もしくは上記投影レンズの瞳付近の光学像複素振幅分布を求め、当該光学像複素振幅分布から上記投影レンズの波面収差を求めることを特徴とする投影レンズの収差測定方法。A mask having a predetermined pattern is illuminated with light, the pattern is imaged near the imaging plane of the mask by a projection lens, and the pattern is projected onto a plurality of planes perpendicular to the optical axis and near the imaging plane. The optical intensity distribution of the image is measured, and the optical image complex amplitude distribution near the imaging plane or near the pupil of the projection lens is obtained from the projected image light intensity distribution on the plurality of planes by a phase recovery method. A method for measuring an aberration of a projection lens, comprising: obtaining a wavefront aberration of the projection lens from a complex amplitude distribution. 上記平面は上記投影レンズの結像面とデフォーカス面若しくは上記投影レンズの複数のデフォーカス面からなることを特徴とする請求項1に記載の投影レンズの収差測定方法。2. The projection lens aberration measuring method according to claim 1, wherein the plane includes an imaging plane and a defocus plane of the projection lens or a plurality of defocus planes of the projection lens. 隣接する上記平面の間隔はλ/NA〜10λ/NA(ただし、λは上記光の波長、NAは上記投影レンズの開口数を、それぞれ表わす)であることを特徴とする請求項1若しくは2に記載の投影レンズの収差測定方法。The interval between the adjacent planes is λ / NA 2 to 10λ / NA 2 (where λ represents the wavelength of the light and NA represents the numerical aperture of the projection lens, respectively). 3. A method for measuring an aberration of a projection lens according to 2. 上記パターンの投影像は拡大レンズによって拡大された後、光センサに入射されることを特徴とする請求項1から3のいずれか一に記載の投影レンズの収差測定方法。4. The projection lens aberration measurement method according to claim 1, wherein the projection image of the pattern is enlarged by a magnifying lens and then incident on an optical sensor. 上記光センサはCCDセンサであり、上記パターンの投影像の光強度分布は、上記拡大レンズと上記CCDセンサからなる投影像モニタを上記光軸上の互いに異なる位置に移動させて、それぞれ測定されることを特徴とする請求項4に記載の投影レンズの収差測定方法。The optical sensor is a CCD sensor, and the light intensity distribution of the projected image of the pattern is measured by moving the projection image monitor comprising the magnifying lens and the CCD sensor to different positions on the optical axis. The method for measuring an aberration of a projection lens according to claim 4. 請求項1から請求項5のいずれか一に記載の投影レンズの収差測定方法によって測定された上記波面収差の値を用いて、上記投影レンズの収差を調整することを特徴とする投影レンズの収差調整方法。An aberration of the projection lens, wherein the aberration of the projection lens is adjusted using the value of the wavefront aberration measured by the projection lens aberration measurement method according to any one of claims 1 to 5. Adjustment method. 請求項1から請求項5のいずれか一に記載の投影レンズの収差測定方法によって測定された上記波面収差の値を用いて、上記マスクパターンの形状を補正することを特徴とするマスクパターンの形状の補正方法。The shape of the mask pattern, wherein the shape of the mask pattern is corrected using the value of the wavefront aberration measured by the projection lens aberration measuring method according to any one of claims 1 to 5. Correction method.
JP08504297A 1997-04-03 1997-04-03 Aberration measurement method for projection lens Expired - Fee Related JP3634550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08504297A JP3634550B2 (en) 1997-04-03 1997-04-03 Aberration measurement method for projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08504297A JP3634550B2 (en) 1997-04-03 1997-04-03 Aberration measurement method for projection lens

Publications (2)

Publication Number Publication Date
JPH10284368A JPH10284368A (en) 1998-10-23
JP3634550B2 true JP3634550B2 (en) 2005-03-30

Family

ID=13847638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08504297A Expired - Fee Related JP3634550B2 (en) 1997-04-03 1997-04-03 Aberration measurement method for projection lens

Country Status (1)

Country Link
JP (1) JP3634550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081873A1 (en) 2006-12-28 2008-07-10 Jtec Corporation X-ray condensing method and its device using phase restoration method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315658B2 (en) 1998-12-28 2002-08-19 キヤノン株式会社 Projection device and exposure device
WO2000055890A1 (en) * 1999-03-18 2000-09-21 Nikon Corporation Exposure system and aberration measurement method for its projection optical system, and production method for device
JP3774590B2 (en) * 1999-05-28 2006-05-17 キヤノン株式会社 Projection exposure apparatus and device manufacturing method using the same
US6360012B1 (en) * 1999-06-25 2002-03-19 Svg Lithography Systems, Inc. In situ projection optic metrology method and apparatus
JP4729733B2 (en) * 1999-10-08 2011-07-20 独立行政法人 日本原子力研究開発機構 Laser wavefront measurement method
US6693704B1 (en) 2000-09-26 2004-02-17 Nikon Corporation Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method
KR100877022B1 (en) * 2000-10-10 2009-01-07 가부시키가이샤 니콘 Method of evaluating imaging performance
US6753954B2 (en) * 2000-12-06 2004-06-22 Asml Masktools B.V. Method and apparatus for detecting aberrations in a projection lens utilized for projection optics
WO2003001165A1 (en) * 2001-06-26 2003-01-03 Iatia Imaging Pty Ltd Processing of phase data to select phase visualisation image
JP2003156832A (en) 2001-11-22 2003-05-30 Mitsubishi Electric Corp Photomask for aberration measurement, aberration measuring method, instrument for aberration measurement, and manufacturing method for the instrument
JP2003257812A (en) 2002-02-27 2003-09-12 Nikon Corp Evaluating method for imaging optical system, adjusting method for the same, aligner, and alignment method
US7113255B2 (en) * 2003-12-19 2006-09-26 Asml Holding N.V. Grating patch arrangement, lithographic apparatus, method of testing, device manufacturing method, and device manufactured thereby
US7027130B2 (en) * 2004-04-28 2006-04-11 Advanced Micro Devices, Inc. Device and method for determining an illumination intensity profile of an illuminator for a lithography system
JP4910939B2 (en) * 2007-08-15 2012-04-04 凸版印刷株式会社 Color filter inspection method and apparatus using diffraction image
DE102012204704A1 (en) 2012-03-23 2013-09-26 Carl Zeiss Smt Gmbh Measuring device for measuring an imaging quality of an EUV objective
DE102017220872B4 (en) * 2017-11-22 2022-02-03 Carl Zeiss Smt Gmbh Method and system for qualifying a mask for microlithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081873A1 (en) 2006-12-28 2008-07-10 Jtec Corporation X-ray condensing method and its device using phase restoration method

Also Published As

Publication number Publication date
JPH10284368A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
JP3634550B2 (en) Aberration measurement method for projection lens
JP4497968B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP4073735B2 (en) Method for measuring aberrations of a projection system of a lithographic apparatus and device manufacturing method
KR100817988B1 (en) Wavefront­aberration measuring device and exposure apparatus including the device, and wavefront - aberration measuring method
JPWO2003021352A1 (en) Reticle and optical property measurement method
JP2002334831A (en) Lithographic projection apparatus, diffraction module, sensor module, and method of measuring wave front aberration
US6278514B1 (en) Exposure apparatus
US7385672B2 (en) Exposure apparatus and method
US8692975B2 (en) Measurement apparatus, exposure apparatus, and device fabrication method
JP2005244126A (en) Exposure device equipped with measuring device
JP3774590B2 (en) Projection exposure apparatus and device manufacturing method using the same
US8373866B2 (en) Wavefront aberration measuring apparatus, wavefront aberration measuring method, exposure apparatus, and device manufacturing method
JP2002206990A (en) Wave front aberration measuring method and projection exposure device
KR100210567B1 (en) Method of measuring exposure condition and/or averration of projection optical sstem
JP4769448B2 (en) Exposure apparatus having interferometer and device manufacturing method
JP4095598B2 (en) Calculation method of two-dimensional wavefront aberration
JP2000315642A (en) Method and device for measuring deviation in position and distortion due to aberration and reticle
KR20100131924A (en) Wavefront aberration measurement apparatus, exposure apparatus, and method of manufacturing device
JP2007533128A (en) Substrate patterning method using multiple exposure
JP2002169083A (en) Objective optical system, aberration measuring device, projection exposing device, manufacture of those, and manufacture of micro device
JP4590181B2 (en) Measuring method and apparatus, exposure apparatus, and device manufacturing method
JP2003178968A (en) Method of measuring aberration and projection exposure system
JP2001044114A (en) Signal processing method, and method and aligner for exposure
JP2004297046A (en) Method of aberration measurement
JPH11297614A (en) Coma aberration measuring device and projection aligner provided with the device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees