JP3634237B2 - Drinking water - Google Patents

Drinking water Download PDF

Info

Publication number
JP3634237B2
JP3634237B2 JP2000132010A JP2000132010A JP3634237B2 JP 3634237 B2 JP3634237 B2 JP 3634237B2 JP 2000132010 A JP2000132010 A JP 2000132010A JP 2000132010 A JP2000132010 A JP 2000132010A JP 3634237 B2 JP3634237 B2 JP 3634237B2
Authority
JP
Japan
Prior art keywords
water
mixing device
raw
channel
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000132010A
Other languages
Japanese (ja)
Other versions
JP2000354865A (en
Inventor
良住 浅川
Original Assignee
株式会社浅川自然食品工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16707599A external-priority patent/JP3557125B2/en
Application filed by 株式会社浅川自然食品工業 filed Critical 株式会社浅川自然食品工業
Priority to JP2000132010A priority Critical patent/JP3634237B2/en
Publication of JP2000354865A publication Critical patent/JP2000354865A/en
Application granted granted Critical
Publication of JP3634237B2 publication Critical patent/JP3634237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

【0001】
【発明の属する技術分野】
本発明は、海洋深層水を利用した飲料水に関する。
【0002】
【従来の技術】
中空糸型などの逆浸透膜モジュールを用いると、大量に原海水を淡水化処理できることは、周く知られている。例えば、特開平7−275671号公報、特開平10−296058号公報、特公昭63−44017号公報などにその例をみることができる。
【0003】
現在、富山県の富山湾と高知県の室戸岬とで海洋深層水が取水されている。この海洋深層水は、ノルウエー沖で冷やされた海水が海底に沈んで深海流となり、地球の自転でスリップして大西洋からアフリカ南端を回ってインド洋へ、更にオーストラリアの南を回って太平洋に移動し、その一部が海溝を経て日本の近くへ数千年の歳月を経て流れ来るとされている。本発明での海洋深層水とは、富栄養性、低水温性、清浄性の三大特徴を有し、太陽光の届かない深海にあったために光合成が進行していないものと定義付けられる。かかる海洋深層水を利用したものに、飲食品を例にとると、日本酒、豆腐、こんにゃくなどが多数存在する。本出願人も室戸海洋深層水を淡水化した飲料水を製造販売している。
【0004】
公的機関の研究発表によれば、前出の海洋深層水には無機質のミネラル成分が84種類も残留されており、例えばアトピー性皮膚炎にも海洋深層水が約60%強の割合で有効であることが報告されている。一方、前出の飲食品においても、味覚の向上に資するものであり、いわゆる健康食品としての有用性が取り上げられている。化粧品にも現に利用されている。但し、各商品毎の効能が如何なる理由によるものであるかは、必ずしも現時点で明らかではない。
【0005】
もともと海水からの生成淡水は、そのまま飲料水にすることに適しない。味覚的に問題があり、却って健康上も好ましくないことは経験的に知られている。そこで例えば、特公平4−72597号公報では、海水の生成淡水に炭酸ガスを吸収させる後処理を行うことにより良質の飲料水を得るものとなっている。
【0006】
【発明が解決しようとする課題】
本出願人は、室戸海洋深層水を淡水化処理した飲料水を製造販売して来た。そこでは糖尿病やアートピー性皮膚炎にも効果的な健康飲料水として認知されるに至っている。但し、本発明者の知見によれば、原海水をほぼ完全に淡水化すると、美味にして良質な飲料水を得ることができないし、海洋深層水これ本来が持つ有効性を十二分に確保できなくなることを知った。
【0007】
この点に関し、海洋深層水の清浄性に着目して、これを原海水にした逆浸透膜モジュールで淡水化し、ろ過の前処理設備の簡素化を図ることが、特開平10−225683号公報に開示されている。しかし、本発明者の経験によれば、清浄性を有する海洋深層水と言えども逆浸透膜モジュールの洗浄は不可欠であり、何よりも洗浄作業を繰り返して行ううちに次第に目詰まりが進んで早期に劣化し、生成淡水の電気伝導率が経時的に高くなり過ぎ、そのままでは「しぶみ」が強すぎて飲料水に不適となる。例えば、新しい逆浸透膜モジュールでは、脱塩透過水の初期電気伝導率は80〜100マイクロジーメンス/cm(以下、μS/cmという)であるところ、一日に40トン処理すると約半年後には300μS/cmを越え、これを以て劣化とみている。一方、新しい逆浸透膜モジュールでは、既にみたとおり生成淡水が純水に近くて味覚的にまずく、これまた飲料水としてそのまま用いることができない。
【0008】
これらの経験から本発明者は、海洋深層水の特性を有効利用しながら、飲料水として最適な電気伝導率を試作検討した結果、本発明を完成するに至ったものである。すなわち、本発明の目的は、海洋深層水の利点を保持して美味で良質な飲料水を得るにある。
【0009】
【課題を解決するための手段】
本発明に係る飲料水は、海洋深層水を脱塩処理して、電気伝導率を190〜250μS/cmに設定したことを特徴とする。ここでの電気伝導率は、210〜230μS/cmに設定することが好ましい。
【0010】
本発明に係る飲料水は、原海水である海洋深層水を逆浸透法で淡水化して得た脱塩透過水に、海洋深層水を加えることにより、電気伝導率を190〜250μS/cmに設定することを特徴とする。この場合電気伝導率は、210〜230μS/cmに設定することが好ましい。ここで脱塩透過水に加える海洋深層水とは、これの原海水である。
【0011】
【作用】
原海水の海洋深層水を逆浸透法で淡水化する際の逆浸透膜モジュールとしては中空糸型、スパイラル型、チューブラー型などを広く適用できる。理論純水の電気伝導率は、約0.055μS/cmの絶縁体である。従って電気伝導率は、水中の電解質の量を知る目安になる。一般の水道水は、250〜66.67μS/cmとされている。本発明においては、電気伝導率に相当する電解質が原海水すなわち海洋深層水の有効成分であることを意味する。
【0012】
本発明に係る飲料水の電気伝導率を190μS/cm以上に設定したのは、これを下回ると先にみたとおり純水に近くなって味覚的にまずくなるからであり、この限りにおいて210μS/cm以上にすることが好ましい。また、本発明に係る飲料水の電気伝導率を250μS/cm以下に設定したのは、これを上回ると「しぶみ」が強くなり過ぎるからであり、この限りにおいて230μS/cm以下にすることが好ましい。
【0013】
【発明の効果】
かかる本発明の飲料水によれば、美味で良質な飲料水が得られるとともに、電気伝導率に見合う海洋深層水の有効電解質が含有されたものとなる。また、本発明において、原海水の海洋深層水を逆浸透法で一旦淡水化処理したのち、その脱塩透過水に海洋深層水を加えた飲料水によれば、上記の効果に加えて、所望の電気伝導率、すなわち190〜250μS/cm、より好ましくは210〜230μS/cmに設定しやすいものとなる。
【0014】
【実施例】
図1は本発明に係る飲料水を得るための海水淡水化装置の全体を概念的に示す。1は中空糸タイプの逆浸透膜モジュールを備えた主ヘッドである。2は同じく中空糸タイプの逆浸透膜モジュールを備えた従ヘッドである。主ヘッド1は処理能力が大きく(40トン/1日)、従ヘッド2は処理能力が小さい(10トン/1日)。主ヘッド1は第1混合装置3を備えており、従ヘッド2は中間混合装置5と第2混合装置6とをそれぞれ備えており、これらは次のように連通接続されている。
【0015】
原海水は、ろ過等の前処理を経たのち、主ヘッド1に内蔵の吸引ポンプで原水路7を介して主ヘッド1に送給される。原海水には高知県室戸岬で取水される室戸海洋深層水を用いた。原水路7の途中からは、弁8を介して原水分岐路9が導出されており、この原水分岐路9の先端が第1混合装置3につながっている。
【0016】
主ヘッド1と第1混合装置3とは、第1透過水路10で連通接続する。主ヘッド1で逆浸透法により淡水化処理された第1透過水は、第1透過水路10を介して第1混合装置3に導く。第1混合装置3には、ここで混合して生成した第1処理水を外部に取り出す第1取出路11が設けられている。主ヘッド1から出る濃縮排水は排出路12を介して外部に全量排出される。
【0017】
第1透過水路10の中途部からは切換弁13を介して透過水分岐路14が導出されており、透過水分岐路14の導出端が従ヘッド2と中間混合装置5とに分岐して連通接続されている。
【0018】
従ヘッド2と中間混合装置5とは、第2透過水路15で連通接続する。従ヘッド2で逆浸透法により淡水化処理された第2透過水は、従ヘッド2から取り出され、第2透過水路15を介して中間混合装置5に導かれる。
【0019】
中間混合装置5と第2混合装置6とは、混合水供給路16で連通接続する。従ヘッド2には、濃縮排水を外部に排出する排出路17を設けてあり、この排出路17と第2混合装置6とが排水供給路19で連通接続されている。
【0020】
第2混合装置6には、ここで混合処理して生成した第2処理水を外部に取り出す第2取出路20が設けられている。そして、前記排水路17と原水路7とが循環路21で連通接続されている。原水路7において、循環路21の一端は原水分岐路9の分岐点よりも原海水の供給方向上手側に接続されている。
【0021】
いま、主ヘッド1の逆浸透膜モジュールが新しいときは、主ヘッド1を稼動させて従ヘッド2の稼動を停止しておく。原水路7からの原海水は、主ヘッド1に供給されるとともに、その一部が原水分岐路9を介して図外のポンプで第1混合装置3にも供給される。原水路7の原海水は逆流防止弁22で循環路21内に流入しない。主ヘッド1で淡水化処理された第1透過水は第1透過水路10を経て第1混合装置3に供給する。このとき、切換弁13が作動して透過水分岐路14に第1透過水は流入していない。
【0022】
第1混合装置3では、原水分岐路9からの原海水の一部と、主ヘッド1から第1透過水路10を経て来る第1透過水とを所定の割合で混合しながら、第1混合装置3で電気伝導率が約200μS/cmの第1処理水を生成し、この第1処理水を第1取出路11を介して貯留タンク23に取り出す。ここでは第1処理水に原海水が一部混入されていることが注目されるべきである。
【0023】
第1混合装置3は、導電率計25を備えており、第1混合装置3に入る直前の原水分岐路9と第1透過水路10とには、流量調整バルブ26・27がそれぞれ設けられている。これにより、第1混合装置3での混合水の電気伝導率を導電率計25で検出し、第1透過水の流量に対して原水分岐路9からの原海水の流入量を加減調節し、第1混合装置3で生成される第1処理水の電気伝導率を基準値(210〜230μS/cm)以下の約200μS/cmに調整する。ここでの電気伝導率は厳密に調整されることを要しない。従って、第1透過水の流入量を一定にしてそのバルブ27は省略し、原水分岐路9の流量のみを前記弁8または前記バルブ26の開閉量で調整するなどして、経験的に前記電気伝導率が150〜200μS/cmになるようにすることを以て足りる。なお、主ヘッド1に付設の導電率計などで、第1透過水の電気伝導率が200μS/cm程度を維持しているときは、第1混合装置3への原海水の取り込みを停止しておくことができる。
【0024】
主ヘッド1の逆浸透膜モジュールが劣化した場合、つまり主ヘッド1から出る第1透過水の電気伝導率が例えば200μS/cmを越えると、主ヘッド1と共に従ヘッド2も稼動させる。このときは弁8を閉じて原海水が第1混合装置3に流入するのを停止するとともに、切換弁13を切り換えて第1透過水が第1透過水路10から透過水分岐路14に流れるようにし、第1混合装置3に流入するのを遮断する。但し、従ヘッド2から出る濃縮排水は、排水路17および循環路21を介して、原水路7から原海水と共に主ヘッド1に送り込まれている。
【0025】
これにて主ヘッド1からの第1透過水は、第1透過水路10および透過水分岐路14を経て従ヘッド2と中間混合装置5とに分配供給される。従ヘッド2にも吸引ポンプを備えている。従ヘッド2は第1透過水を淡水化処理して主ヘッド1の機能不足を補い、従ヘッド2から出る第2透過水は中間混合装置5において未処理の第1透過水と共に所定の割合で混合される。中間混合装置5で混合された混合水は、主ヘッド1および従ヘッド2の逆浸透膜モジュールの新旧や劣化にもかかわらず、例えば約150μS/cm前後になるよう柔軟に対応し、その混合水が混合水供給路16を介して第2混合装置6に送り込まれる。第2混合装置6には従ヘッド2から排水路17を介して出る濃縮排水の一部が送り込まれており、これが中間混合装置5からの混合水に加えられて混合処理される。
【0026】
第2混合装置6は、導電率計30を備えており、第2混合装置6に入る直前の混合水供給路16と排水供給路19とには、流量調整バルブ31・32がそれぞれ設けられている。これにより、第2混合装置6での混合水の電気伝導率を導電率計30で検出し、混合水の流量に対して排水供給路19からの濃縮排水の流入量を加減調節し、第2混合装置6で生成される第2処理水の電気伝導率を基準値(210〜230μS/cm)以下の約200μS/cmに調整する。ここでの電気伝導率は厳密に調整されることを要しない。従って、混合水供給路16からの混合水の流入量を一定にしてそのバルブ31は省略し、排水供給路19からの流入量のみを前記バルブ32の開閉量で調整するなどして、経験的に150〜200μS/cmにするを以て足りる。
【0027】
第2混合装置6からは電気伝導率が約200μS/cmになるよう生成処理された第2処理水が第2取出路20を介して貯留タンク23に取り出される。従ヘッド2の排出路17からは濃縮排水取出路33が導出されており、該取出路33を経た濃縮排水を貯留タンク23内に取り込めるようになっている。貯留タンク23内において、第1混合装置3からの第1処理水には、図示省略したが原海水を混合し、ここで第1処理水と第2処理水とは最終的に電気伝導率が約220μS/cmになるよう厳密に調整して飲料水化する。
【0028】
すなわち、貯留タンク23内の生成処理水を最終的に約220μS/cmの電気伝導率に設定するために、貯留タンク23には導電率計35を備えている。これにより、貯留タンク23内の生成処理水を混合攪拌しながら、その電気伝導率を導電率計35が検出し、その検出信号に基づいてタンク23の生成処理水の電気伝導率を約220μS/cmになるよう制御している。貯留タンク23内で第1処理水の電気伝導率を約220μS/cmにする場合も同様に行う。
【0029】
なお、上記の実施例において第1混合装置3および第2混合装置6に付設の導電率計25・30は、バルブ26・27と31・32との開閉量を加減調節するものである必要はなく、単なる目視上の確認用でもよい
【0030】
かくして得た貯留タンク23内の生成処理水は、このまま容器に入れて飲料水に供する。しかるときは、その飲料水は海洋深層水の脱塩透過水に、海洋深層水の原海水が混合されているので、海洋深層水の特性を備え、かつ電気伝導率が約220μS/cmに設定されていることにより美味で良質なものが得られた。なお、従ヘッド2からの濃縮排水を循環路21を介して外部に排出せずに使用し、かつ第2処理水に追加混合することは、海洋深層水の有効成分を取り入れるのに有利であることが経験的に実証された。
【0031】
なお、主ヘッド1からの第1透過水の電気伝導率が約220μS/cmになると、従ヘッド2を稼働させて第1透過水を透過水分岐路14に切り換えて流すようにしてもよい
【0032】
中間混合装置5は、主ヘッド1と従ヘッド2との逆浸透膜モジュールの劣化度合いに柔軟に対応させるために効果的ではあるが、中間混合装置5を省略してもよい。この場合は従ヘッド2と第2混合装置6とを第2透過水路15で直結し、第2混合装置6において、従ヘッド2からの第2透過水と濃縮排水とを混合すればよい。
【図面の簡単な説明】
【図1】本発明の海水淡水化装置の一例を示す概略説明図である。
【符号の説明】
1 主ヘッド
2 従ヘッド
3 第1混合装置
5 中間混合装置
6 第2混合装置
7 原水路
9 原水分岐路
10 第1透過水路
11 第1取出路
12 主ヘッドの排出路
13 切換弁
14 透過水分岐路
15 第2透過水路
16 混合水供給路
17 従ヘッドの排水路
19 排水供給路
20 第2取出路
21 循環路
23 貯留タンク
25 導電率計
30 導電率計
33 濃縮排水取出路
35 導電率計
36 流量調整バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to drinking water using deep ocean water.
[0002]
[Prior art]
It is well known that when a reverse osmosis membrane module such as a hollow fiber type is used, a large amount of raw seawater can be desalinated. Examples thereof can be found in JP-A-7-275671, JP-A-10-296058, JP-B 63-44017, and the like.
[0003]
Currently, deep sea water is being taken in Toyama Bay in Toyama Prefecture and Cape Muroto in Kochi Prefecture. This deep ocean water sinks off the coast of Norway and sinks into the ocean floor to form a deep ocean current, slips due to the rotation of the earth, travels from the Atlantic Ocean to the southern tip of Africa, then travels south of Australia to the Pacific Ocean. However, it is said that some of them will flow to the vicinity of Japan through the Trench after thousands of years. The deep ocean water in the present invention has three major characteristics of eutrophication, low water temperature, and cleanliness, and is defined as one in which photosynthesis does not proceed because it is in the deep sea where sunlight does not reach. Taking food and drink as an example of such deep sea water, there are many sake, tofu, konjac, and the like. The present applicant also manufactures and sells drinking water in which Muroto deep sea water is desalinated.
[0004]
According to a research announcement by a public institution, 84 types of mineral minerals remain in the deep ocean waters mentioned above. For example, deep ocean waters are effective for atopic dermatitis at a rate of over 60%. It has been reported that. On the other hand, the above-mentioned food and drink also contributes to the improvement of taste, and its usefulness as a so-called health food is taken up. It is also currently used in cosmetics. However, it is not always clear at this time why the effect of each product is due to.
[0005]
Originally generated fresh water from seawater is not suitable for use as drinking water. It is empirically known that there is a taste problem and it is unfavorable for health. Therefore, for example, in Japanese Patent Publication No. 4-72597, high-quality drinking water is obtained by performing a post-treatment in which the generated fresh water of seawater absorbs carbon dioxide.
[0006]
[Problems to be solved by the invention]
The present applicant has manufactured and sold drinking water obtained by desalinating Muroto deep sea water. It has been recognized as an effective health drink for diabetes and arty dermatitis. However, according to the knowledge of the present inventor, if the raw seawater is almost completely desalinated, it is not possible to obtain good-quality drinking water with good taste, and deeply deep seawater, which is sufficiently effective. I knew I couldn't.
[0007]
In this regard, Japanese Patent Application Laid-Open No. 10-225683 proposes focusing on the cleanliness of deep ocean water and desalinating it with a reverse osmosis membrane module using raw seawater to simplify the pretreatment equipment for filtration. It is disclosed. However, according to the experience of the present inventor, it is indispensable to clean the reverse osmosis membrane module even in the deep ocean water having cleanliness. It deteriorates and the electric conductivity of the produced fresh water becomes too high with time, and if it is left as it is, the “brushing” is too strong and it becomes unsuitable for drinking water. For example, in a new reverse osmosis membrane module, the initial electrical conductivity of desalted permeated water is 80 to 100 microsiemens / cm (hereinafter referred to as μS / cm). / Cm, which is regarded as deterioration. On the other hand, in the new reverse osmosis membrane module, as already seen, the produced fresh water is close to pure water and tastes badly and cannot be used as it is as drinking water.
[0008]
Based on these experiences, the present inventor has completed the present invention as a result of experimentally examining the optimum electrical conductivity as drinking water while effectively utilizing the characteristics of deep ocean water. That is, an object of the present invention is to obtain a delicious and high-quality drinking water while retaining the advantages of deep ocean water.
[0009]
[Means for Solving the Problems]
The drinking water according to the present invention is characterized in that the deep sea water is desalted and the electrical conductivity is set to 190 to 250 μS / cm. The electrical conductivity here is preferably set to 210 to 230 μS / cm.
[0010]
In the drinking water according to the present invention, the electrical conductivity is set to 190 to 250 μS / cm by adding the deep sea water to the desalted permeated water obtained by desalinating the deep sea water which is the raw sea water by the reverse osmosis method. It is characterized by doing . In this case, the electrical conductivity is preferably set to 210 to 230 μS / cm. Here, the deep sea water which is added to the demineralized permeate is original sea water this.
[0011]
[Action]
A hollow fiber type, a spiral type, a tubular type, etc. can be widely applied as a reverse osmosis membrane module when desalting the deep sea water of the raw seawater by the reverse osmosis method. The electrical conductivity of theoretical pure water is an insulator of about 0.055 μS / cm. Therefore, electrical conductivity is a measure for knowing the amount of electrolyte in water. General tap water is 250 to 66.67 μS / cm. In the present invention, it means that the electrolyte corresponding to the electrical conductivity is an active ingredient of raw seawater, that is, deep sea water.
[0012]
The reason why the electrical conductivity of the drinking water according to the present invention is set to 190 μS / cm or more is that if it is less than this, it becomes close to pure water as described above, and taste is worse, and in this case, 210 μS / cm. It is preferable to make it above. Moreover, the reason why the electrical conductivity of the drinking water according to the present invention is set to 250 μS / cm or less is that if this is exceeded, the “brushing” becomes too strong, and in this case, the electric conductivity should be 230 μS / cm or less. preferable.
[0013]
【The invention's effect】
According to the drinking water of the present invention, a delicious and high-quality drinking water is obtained, and an effective electrolyte for deep sea water corresponding to the electrical conductivity is contained. Further, in the present invention, after the deep sea water of the raw seawater is once desalinated by the reverse osmosis method, the drinking water obtained by adding the deep sea water to the desalted permeated water, in addition to the above effects, the desired It is easy to set the electrical conductivity, i.e., 190 to 250 [mu] S / cm, more preferably 210 to 230 [mu] S / cm.
[0014]
【Example】
FIG. 1 conceptually shows the entire seawater desalination apparatus for obtaining drinking water according to the present invention. Reference numeral 1 denotes a main head including a hollow fiber type reverse osmosis membrane module. 2 is a slave head similarly equipped with a hollow fiber type reverse osmosis membrane module. The main head 1 has a large processing capacity (40 tons / day), and the slave head 2 has a small processing capacity (10 tons / day). The main head 1 includes a first mixing device 3, and the slave head 2 includes an intermediate mixing device 5 and a second mixing device 6, which are connected in communication as follows.
[0015]
The raw seawater undergoes a pretreatment such as filtration, and is then fed to the main head 1 via the raw water channel 7 by a suction pump built in the main head 1. Muroto deep sea water taken from Cape Muroto, Kochi Prefecture was used as the raw seawater. From the middle of the raw water channel 7, a raw water branch channel 9 is led out via a valve 8, and the leading end of the raw water branch channel 9 is connected to the first mixing device 3.
[0016]
The main head 1 and the first mixing device 3 are connected to each other through a first permeate channel 10. The first permeate that has been desalinated by the reverse osmosis method in the main head 1 is guided to the first mixing device 3 via the first permeate channel 10. The first mixing device 3 is provided with a first extraction path 11 for taking out the first treated water produced by mixing here. The concentrated drainage discharged from the main head 1 is discharged to the outside through the discharge path 12.
[0017]
A permeate branch passage 14 is led out from the middle portion of the first permeate passage 10 through a switching valve 13, and a lead-out end of the permeate branch passage 14 is branched and connected to the slave head 2 and the intermediate mixing device 5. ing.
[0018]
The slave head 2 and the intermediate mixing device 5 are connected in communication by the second permeate channel 15. The second permeated water desalinated by the sub head 2 by the reverse osmosis method is taken out from the sub head 2 and guided to the intermediate mixing device 5 through the second permeate channel 15.
[0019]
The intermediate mixing device 5 and the second mixing device 6 are connected to each other through a mixed water supply path 16. The slave head 2 is provided with a discharge passage 17 for discharging concentrated waste water to the outside, and the discharge passage 17 and the second mixing device 6 are connected in communication with each other through a waste water supply passage 19.
[0020]
The second mixing device 6 is provided with a second extraction path 20 for taking out the second treated water generated by the mixing treatment here. The drainage channel 17 and the raw water channel 7 are connected to each other through a circulation channel 21. In the raw water channel 7, one end of the circulation channel 21 is connected to the upstream side of the raw seawater supply direction from the branch point of the raw water branch channel 9.
[0021]
When the reverse osmosis membrane module of the main head 1 is new, the main head 1 is operated and the operation of the sub head 2 is stopped. The raw sea water from the raw water channel 7 is supplied to the main head 1 and a part thereof is also supplied to the first mixing device 3 through a raw water branch channel 9 by a pump (not shown). The raw sea water in the raw water channel 7 does not flow into the circulation channel 21 by the backflow prevention valve 22. The first permeated water desalinated by the main head 1 is supplied to the first mixing device 3 through the first permeated water channel 10. At this time, the switching valve 13 operates and the first permeate does not flow into the permeate branch 14.
[0022]
In the first mixing device 3, a part of the raw seawater from the raw water branch 9 and the first permeated water coming from the main head 1 through the first permeated water channel 10 are mixed at a predetermined ratio while the first mixing device 3 is mixed. 3, first treated water having an electric conductivity of about 200 μS / cm is generated, and this first treated water is taken out to the storage tank 23 via the first take-out path 11. It should be noted here that the raw seawater is partly mixed in the first treated water.
[0023]
The first mixing device 3 includes a conductivity meter 25, and flow rate adjusting valves 26 and 27 are respectively provided in the raw water branch 9 and the first permeate water channel 10 immediately before entering the first mixing device 3. Yes. Thereby, the electrical conductivity of the mixed water in the first mixing device 3 is detected by the conductivity meter 25, and the inflow amount of the raw seawater from the raw water branch 9 is adjusted with respect to the flow rate of the first permeated water, The electric conductivity of the first treated water generated by the first mixing device 3 is adjusted to about 200 μS / cm which is equal to or less than a reference value (210 to 230 μS / cm). The electrical conductivity here does not need to be strictly adjusted. Therefore, the flow rate of the first permeate is kept constant, the valve 27 is omitted, and only the flow rate of the raw water branch 9 is adjusted by the opening / closing amount of the valve 8 or the valve 26, so It is sufficient to set the conductivity to 150 to 200 μS / cm. When the electrical conductivity of the first permeated water is maintained at about 200 μS / cm with a conductivity meter attached to the main head 1, the intake of the raw seawater into the first mixing device 3 is stopped. I can leave.
[0024]
When the reverse osmosis membrane module of the main head 1 is deteriorated, that is, when the electric conductivity of the first permeate from the main head 1 exceeds 200 μS / cm, for example, the sub head 2 is operated together with the main head 1. At this time, the valve 8 is closed to stop the raw seawater from flowing into the first mixing device 3 and the switching valve 13 is switched so that the first permeate flows from the first permeate channel 10 to the permeate branch 14. The flow into the first mixing device 3 is blocked. However, the concentrated drainage discharged from the slave head 2 is sent to the main head 1 together with the raw seawater from the raw waterway 7 via the drainage channel 17 and the circulation channel 21.
[0025]
Thus, the first permeated water from the main head 1 is distributed and supplied to the slave head 2 and the intermediate mixing device 5 through the first permeated water channel 10 and the permeated water branch channel 14. The slave head 2 is also provided with a suction pump. The sub head 2 desalinates the first permeate to compensate for the lack of function of the main head 1, and the second permeate discharged from the sub head 2 is mixed with the untreated first permeate in the intermediate mixing device 5 at a predetermined ratio. Mixed. The mixed water mixed by the intermediate mixing device 5 responds flexibly to, for example, about 150 μS / cm regardless of whether the reverse osmosis membrane modules of the main head 1 and the sub head 2 are old or new, and the mixed water. Is fed into the second mixing device 6 through the mixed water supply path 16. A part of the concentrated drainage discharged from the slave head 2 through the drainage channel 17 is sent to the second mixing device 6, and this is added to the mixed water from the intermediate mixing device 5 and mixed.
[0026]
The second mixing device 6 includes a conductivity meter 30, and flow rate adjusting valves 31 and 32 are respectively provided in the mixed water supply passage 16 and the drainage supply passage 19 immediately before entering the second mixing device 6. Yes. Thereby, the electrical conductivity of the mixed water in the second mixing device 6 is detected by the conductivity meter 30, and the inflow amount of the concentrated waste water from the waste water supply path 19 is adjusted with respect to the flow rate of the mixed water. The electric conductivity of the second treated water generated by the mixing device 6 is adjusted to about 200 μS / cm, which is a reference value (210 to 230 μS / cm) or less. The electrical conductivity here does not need to be strictly adjusted. Accordingly, the inflow amount of the mixed water from the mixed water supply path 16 is made constant, the valve 31 is omitted, and only the inflow amount from the drainage supply path 19 is adjusted by the opening / closing amount of the valve 32. 150 to 200 μS / cm is sufficient.
[0027]
From the second mixing device 6, the second treated water that has been generated and processed to have an electric conductivity of about 200 μS / cm is taken out to the storage tank 23 via the second take-out path 20. A concentrated drainage extraction path 33 is led out from the discharge path 17 of the slave head 2, and the concentrated drainage that has passed through the extraction path 33 can be taken into the storage tank 23. In the storage tank 23, the first treated water from the first mixing device 3, although not shown mixed raw sea water, eventually electrically conducting the first treated water and the second treated water in here Strictly adjust the rate to about 220 μS / cm to make it a drinking water.
[0028]
That is, in order to finally set the generated treated water in the storage tank 23 to an electric conductivity of about 220 μS / cm, the storage tank 23 includes a conductivity meter 35 . This ensures, stirring mixing generation process water in the storage tank 23, detects the electrical conductivity conductivity meter 35, about the electric conductivity of the generation process water tank 23 based on the detection signal It is controlled to be 220 μS / cm . Similarly performed when that savings distillation about 220μS / cm electrical conductivity of the first treated water in the tank 23.
[0029]
In the above embodiment, the conductivity meters 25 and 30 attached to the first mixing device 3 and the second mixing device 6 need to adjust the opening and closing amounts of the valves 26 and 27 and 31 and 32, respectively. It may be used for simple visual confirmation .
[0030]
The generated treated water in the storage tank 23 thus obtained is put in a container as it is and used for drinking water. When accordingly, the drinking water in desalination permeate deep seawater, since the original seawater deep seawater is mixed, with the characteristics of the deep sea water, and the electrical conductivity of about 220μS / cm By setting, a delicious and good quality product was obtained. In addition, it is advantageous for taking in the active ingredient of deep sea water to use the concentrated waste water from the subhead 2 without discharging | emitting outside through the circulation path 21, and adding it to 2nd treated water. It was proved empirically.
[0031]
When the electrical conductivity of the first permeated water from the main head 1 reaches about 220 μS / cm, the sub head 2 may be operated so that the first permeated water is switched to the permeated water branching path 14 .
[0032]
The intermediate mixing device 5 is effective to flexibly cope with the deterioration degree of the reverse osmosis membrane module between the main head 1 and the sub head 2, but the intermediate mixing device 5 may be omitted. In this case, the slave head 2 and the second mixing device 6 may be directly connected by the second permeate channel 15, and the second permeate from the slave head 2 and the concentrated waste water may be mixed in the second mixer 6.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram showing an example of a seawater desalination apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main head 2 Subhead 3 1st mixing apparatus 5 Intermediate mixing apparatus 6 2nd mixing apparatus 7 Raw water path 9 Raw water branch path 10 First permeate water path 11 First extraction path 12 Main head discharge path 13 Switching valve 14 Permeate water branch path 15 Second permeate water channel 16 Mixed water supply channel 17 Drainage channel 19 of subordinate head Drain supply channel 20 Second extraction channel 21 Circulation channel 23 Storage tank 25 Conductivity meter 30 Conductivity meter 33 Concentration drainage discharge channel 35 Conductivity meter 36 Flow rate Adjustment valve

Claims (2)

原海水である海洋深層水を逆浸透法で淡水化して得た、電気伝導率が基準値以下の脱塩透過水に、海洋深層水の原海水を加えることにより、電気伝導率を基準値の190〜250μS/cmに設定したことを特徴とする飲料水。 By adding the raw seawater to the desalted permeated water whose electrical conductivity is below the standard value obtained by desalting the deep seawater, which is the raw seawater, using the reverse osmosis method, the electrical conductivity is reduced to the standard value. Drinking water characterized by being set to 190 to 250 μS / cm. 電気伝導率の基準値が、210〜230μS/ cm に設定されている請求項1記載の飲料水 The drinking water according to claim 1 , wherein the reference value of electrical conductivity is set to 210 to 230 μS / cm .
JP2000132010A 1999-06-14 2000-05-01 Drinking water Expired - Fee Related JP3634237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000132010A JP3634237B2 (en) 1999-06-14 2000-05-01 Drinking water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16707599A JP3557125B2 (en) 1999-06-14 1999-06-14 Seawater desalination method
JP2000132010A JP3634237B2 (en) 1999-06-14 2000-05-01 Drinking water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16707599A Division JP3557125B2 (en) 1999-06-14 1999-06-14 Seawater desalination method

Publications (2)

Publication Number Publication Date
JP2000354865A JP2000354865A (en) 2000-12-26
JP3634237B2 true JP3634237B2 (en) 2005-03-30

Family

ID=34436863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132010A Expired - Fee Related JP3634237B2 (en) 1999-06-14 2000-05-01 Drinking water

Country Status (1)

Country Link
JP (1) JP3634237B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292371A (en) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2003094055A (en) * 2001-09-27 2003-04-02 Vision:Kk Method for manufacturing mineral water
WO2003062151A1 (en) * 2002-01-22 2003-07-31 Toray Industries, Inc. Method of generating fresh water and fresh-water generator
JP2006151920A (en) * 2004-10-27 2006-06-15 Asakawa Shizen Shokuhin Kogyo:Kk Method for producing drinking water having maintaining effect on homeostasis
JP2009285522A (en) * 2008-05-27 2009-12-10 Miura Co Ltd Reverse osmosis membrane device
JP5674286B2 (en) * 2009-05-29 2015-02-25 株式会社ディーエイチシー Method for producing drinking water

Also Published As

Publication number Publication date
JP2000354865A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
EP2253594B1 (en) Water purification apparatus and method for using pressure filter and pore-control fiber filter
Vial et al. The use of microfiltration membranes for seawater pre-treatment prior to reverse osmosis membranes
EP1644290B1 (en) Method and system for treating wastewater
US6572902B2 (en) Process for producing improved alkaline drinking water and the product produced thereby
Van Hoof et al. The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications
CN104556481A (en) Treatment system and method for preparing high-hardness underground water into domestic drinking water
FR2655642A1 (en) INSTALLATION FOR TREATING WATER WITH A TANGENTIAL FILTRATION LOOP.
Lidén et al. Comparison between ultrafiltration and nanofiltration hollow-fiber membranes for removal of natural organic matter: a pilot study
CN103443031A (en) Seawater desalination system and seawater desalination method
JP3634237B2 (en) Drinking water
CN107215979A (en) A kind of method for desalting seawater
Van Houtte et al. Treating different types of raw water with micro-and ultrafiltration for further desalination using reverse osmosis
JP3731555B2 (en) Cooling water treatment method and treatment apparatus
KR101439948B1 (en) Water treatment apparatus and water treatment method
JP3557125B2 (en) Seawater desalination method
JP4084735B2 (en) Deep sea water desalination equipment
Kim et al. Optimization of microfiltration for seawater suffering from red-tide contamination
KR101624893B1 (en) Apparatus and Method for Controlling Mineral-Concentration of Mineral Water
CN211471013U (en) Water purifier capable of adjusting TDS value
CN211111200U (en) Immersed ultrafiltration membrane water purification treatment device for conventional pollution of drinking water
Hafsi et al. Effects of the chemical injection points in pre-treatment on reverse osmosis (RO) plant performance
Zhang et al. Pilot testing of two inside-out UF modules prior to RO for highturbidity seawater desali
CN103979697B (en) Small-sized type drinking water system capable of direct drinking
Al-Shammari et al. Treatment of Dairy Wastewater Effluent Using Submerged Membrane Microfiltration System
JP2011121003A (en) System for utilizing rain water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

R150 Certificate of patent or registration of utility model

Ref document number: 3634237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees