JP3633295B2 - Exhaust gas purification device for lean combustion internal combustion engine - Google Patents

Exhaust gas purification device for lean combustion internal combustion engine Download PDF

Info

Publication number
JP3633295B2
JP3633295B2 JP20630898A JP20630898A JP3633295B2 JP 3633295 B2 JP3633295 B2 JP 3633295B2 JP 20630898 A JP20630898 A JP 20630898A JP 20630898 A JP20630898 A JP 20630898A JP 3633295 B2 JP3633295 B2 JP 3633295B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
engine
reduction catalyst
storage reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20630898A
Other languages
Japanese (ja)
Other versions
JP2000038943A (en
Inventor
比呂志 田中
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20630898A priority Critical patent/JP3633295B2/en
Priority to US09/346,710 priority patent/US6289672B1/en
Priority to DE69922883T priority patent/DE69922883T2/en
Priority to DE69928844T priority patent/DE69928844T2/en
Priority to EP04009436A priority patent/EP1443196B1/en
Priority to EP99114075A priority patent/EP0974746B1/en
Publication of JP2000038943A publication Critical patent/JP2000038943A/en
Application granted granted Critical
Publication of JP3633295B2 publication Critical patent/JP3633295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関し、詳細には流入する排気の空燃比がリーンのときに排気中のNOを吸収し流入する排気中の酸素濃度が低下すると吸収したNOを放出するNO吸蔵還元触媒を備えた希薄内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
流入する排気空燃比がリーンのときに排気中のNO(窒素酸化物)を吸収し、流入する排気中の酸素濃度が低下すると吸収したNOを放出するNO吸蔵還元触媒が知られている。
この種のNO吸蔵還元触媒を使用した排気浄化装置の例としては、例えば特許登録第2600492号に記載されたものがある。上記特許の排気浄化装置は、リーン空燃比運転を行う機関の排気通路にNO吸蔵還元触媒を配置し、機関のリーン空燃比運転中にNO吸蔵還元触媒に排気中のNOを吸収させ、NO吸蔵還元触媒のNO吸収量が増大したときに機関を短時間理論空燃比以下の空燃比(すなわちリッチ空燃比)で運転するリッチスパイク操作を行うことにより、NO吸蔵還元触媒から吸収したNOを放出させるとともに、放出されたNOを還元浄化している。すなわち、排気の空燃比がリッチ空燃比になると、理論空燃比より大きい空燃比(リーン空燃比)の排気に較べて排気中の酸素濃度が急激に低下するとともに、排気中の未燃HC、CO成分の量が急激に増大する。このため、リッチスパイク操作により機関運転空燃比がリッチ空燃比に切り換えられると、NO吸蔵還元触媒に流入する排気の空燃比はリーン空燃比からリッチ空燃比に変化し、排気中の酸素濃度の低下によりNO吸蔵還元触媒からNOが放出される。また、上記のようにリッチ空燃比の排気中には比較的多量の未燃HC、CO成分が含まれるため、NO吸蔵還元触媒から放出されたNOは排気中の未燃HC、CO成分と反応し還元される。
【0003】
【発明が解決しようとする課題】
上記特許登録第2600492号に記載の排気浄化装置によれば、機関リーン空燃比運転中に発生するNOをNO吸蔵還元触媒に吸収させ、リッチスパイク操作によりNO吸蔵還元触媒からNOを放出させ、同時に還元浄化している。
【0004】
ところが、NO吸蔵還元触媒に流入する排気の空燃比が低下(リッチ空燃比方向に変化)すると、空燃比そのものはリーンであってもNO吸蔵還元触媒からNOが放出され、未浄化のままNO吸蔵還元触媒下流側に流出する場合があることが判明している。
上記のように、排気空燃比がリーン空燃比の範囲内で変化した場合に上記NOの自然放出(以下の説明では、リッチスパイク等によるNO吸蔵還元触媒からのNOの意図的な放出と区別するために、このリーン空燃比の範囲内での空燃比変化によるNO吸蔵還元触媒からのNOの放出を「自然放出」と呼ぶことにする。)が生じる理由は完全には明らかになっていないが、NO吸蔵還元触媒のNO吸蔵能力(最大NO吸蔵量)が空燃比によって変化することが原因と考えられている。
【0005】
NO吸蔵還元触媒のNO吸蔵能力は流入する排気空燃比に影響を受け、比較的理論空燃比に近い弱リーン空燃比領域(例えば理論空燃比から空燃比20程度の領域)ではNO吸蔵能力が空燃比とともに低下することが判明している。図4はNO吸蔵還元触媒のNO吸蔵能力(最大NO吸蔵量)の流入排気空燃比との関係を説明するグラフである。図4に示すように、NO吸蔵還元触媒のNO吸蔵能力は、空燃比20以上の領域では空燃比にかかわらず略一定値となるが、空燃比20以下の領域では排気空燃比が低下するにつれて(理論空燃比に近づくにつれて)低下し、理論空燃比では0になる。
【0006】
このため、NO吸蔵還元触媒が空燃比20以上のリーン空燃比領域で最大NO吸蔵量付近までNOを吸蔵した状態から空燃比が20以下の弱リーン空燃比領域になると吸蔵能力の低下により吸蔵したNOの全量を保持することができなくなり、実際に吸蔵しているNO量と最大吸蔵量との差に相当する量のNO(図4に斜線で示した量)が自然放出されるようになる。しかも、弱リーン空燃比領域では排気中のHC、CO成分量は極めて少ないため放出されたNOはNO吸蔵還元触媒上で還元されず未浄化のままでNO吸蔵還元触媒から流出することになるのである。
【0007】
一般に希薄燃焼内燃機関は空燃比20以上のリーン空燃比領域で運転される場合が多いが、車両機関では加速、登坂時等の機関出力が要求される場合やブレーキ操作において負圧が必要な時等にはリーン空燃比からリッチ空燃比に運転空燃比を変更する場合がある。このような場合には、急激な空燃比変化による出力トルクの急変を避けるため、機関運転空燃比はリーン空燃比から中間の弱リーン空燃比を経てリッチ空燃比に切り換えられる。このため、加速、登坂時などではNO吸蔵還元触媒に流入する排気空燃比がリッチ側に変化する際に上記弱リーン空燃比領域を通過することになり、NO吸蔵還元触媒からのNOの自然放出が生じる場合がある。
【0008】
更に、機関運転空燃比が上記弱リーン空燃比領域を通過する際には機関からのNO排出量も増加することが知られている。図5は機関の運転空燃比(機関燃焼室内の燃焼空燃比)と機関排気中のNO濃度との関係を説明する図である。図5カーブAに示すように機関排気中のNO量は理論空燃比近傍では運転空燃比が上昇するにつれて増大し、空燃比で20〜23の領域で最大になり、その後は空燃比の増大とともに低下する傾向を示す。また、NO吸蔵還元触媒上流側の排気通路に三元触媒等の排気浄化触媒を有する機関では、理論空燃比よりリッチな空燃比では排気中のNOは略完全に還元されるため、この場合、排気浄化触媒下流側のNO吸蔵還元触媒に流入する排気中のNO濃度は図5にカーブBで示すように、理論空燃比以下の空燃比では略0になり、理論空燃比付近で急増してカーブAと一致するようになる。このため、機関が弱リーン空燃比領域(理論空燃比から空燃比20程度までの領域)で運転されると、NO吸蔵還元触媒に流入する排気中のNOは機関の最大NO排出量付近まで増大する。一方、前述のように弱リーン空燃比領域ではNO吸蔵還元触媒のNO吸蔵能力は低下するため、この領域では仮にNO吸蔵還元触媒のNO吸蔵量が比較的少なく、NO吸蔵還元触媒からのNOの自然放出が生じないような場合でも、弱リーン空燃比領域通過中に機関NO排出量が増大すると排気中のNOの全量を吸収できなくなり、排気中のNOが未浄化のままNO吸蔵還元触媒から流出する場合がある。
【0009】
本発明は上記問題に鑑み、リーン空燃比からリッチ空燃比までの領域で運転空燃比が変化する機関にNO吸蔵還元触媒を適用する場合に、機関運転状態の変化によりNO吸蔵還元触媒から未浄化のNOが放出されることを防止可能な内燃機関の排気浄化装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
請求項1に記載の発明によれば、必要に応じて理論空燃比よりリーンな空燃比から理論空燃比よりリッチな空燃比までの空燃比範囲で運転空燃比を変更する希薄燃焼内燃機関の排気浄化装置であって、機関排気通路に配置された、流入する排気の空燃比がリーンのときに排気中のNOXを吸収し流入する排気中の酸素濃度が低下すると吸収したNOXを放出するNOX吸蔵還元触媒と、機関運転状態の変化に起因するNOX吸蔵還元触媒からのNOXの自然放出が生じることを事前に予測する予測手段と、前記予測手段によりNOX吸蔵還元触媒からの前記NOXの自然放出が予測されたときに、NOX吸蔵還元触媒に流入する排気の空燃比をリッチ空燃比に調整し、前記自然放出が生じる前にNOX吸蔵還元触媒から吸収したNOXを放出させ還元浄化するNOX放出操作を行なうNOX放出制御手段と、NOX放出制御手段とを備え、更に、前記内燃機関は、機関吸気通路に配置されたスロットル弁と、運転者の操作するアクセル手段と、運転者による前記アクセル手段の操作に応じて前記スロットル弁開度を制御して機関運転状態を変化させるスロットル制御手段とを備え、前記予測手段は前記アクセル手段の操作に基づいて前記NO X の自然放出が生じることを事前に予測し、前記NO X 放出制御手段は前記NO X の自然放出が予測されたときに、運転者による前記アクセル手段の操作後、前記スロットル制御手段によりスロットル弁開度が変更されるまでの間に前記NO X 放出操作を行なう希薄燃焼内燃機関の排気浄化装置が提供される。
【0011】
すなわち、請求項1の発明では予測手段により機関運転状態の変化に起因するNO吸蔵還元触媒からのNOの自然放出が生じることを事前に予測されると、NO放出制御手段は上記NOの自然放出が生じる前にNO吸蔵還元触媒に流入する排気空燃比をリッチ空燃比に調整することにより、予めNO吸蔵還元触媒からNOを放出させ還元浄化しておく。このため、その後機関運転状態がNOの自然放出が生じる状態になった時にはNO吸蔵還元触媒はNO吸蔵量が極めて少ない状態になっている。従って、自然放出が生じる状態になってもNO吸蔵還元触媒のNO吸蔵量は充分な余裕を残した状態となっておりNO吸蔵還元触媒からはNOが放出されない。このため、機関運転状態の変化により未浄化のNOがNO吸蔵還元触媒から流出することが防止される。
【0012】
なお、本発明でいう「機関運転状態の変化」とは、例えば機関出口における排気の空燃比が変化する場合、及び機関出口における排気空燃比は変化しなくてもNOX吸蔵還元触媒に流入する排気空燃比が変化する場合の両方の場合を含むものとする。
【0013】
更に、本発明では機関にはアクセル手段の操作に基づいてスロットル弁を制御するスロットル制御手段が設けられており、例えば電子制御スロットル弁のような構成がとられている。そして、予測手段は運転者のアクセル手段操作から運転者の要求する運転状態がNOXの自然放出を生じるものである場合には、短時間のうちにNOX自然放出が生じると予測する。NOX放出制御手段は、予測手段によりアクセル操作から短時間のうちにNOX自然放出が生じると予測されるとアクセル操作後、スロットル制御手段がスロットル弁開度を変更して機関運転状態が変化する前にNOX放出操作を行い、NOX吸蔵還元触媒のNOX吸蔵量を減少させる。このため、実際に機関の運転状態が変化してNOXの自然放出が生じる状態になったときには、NOX吸蔵還元触媒のNOX吸蔵量は充分な余裕を残した状態となっておりNOX吸蔵還元触媒からはNOXが放出されない。これにより、機関運転状態の変化により未浄化のNOXがNOX吸蔵還元触媒から流出することが防止される。
【0014】
請求項2に記載の発明によれば、必要に応じて理論空燃比よりリーンな空燃比から理論空燃比よりリッチな空燃比までの空燃比範囲で運転空燃比を変更する希薄燃焼内燃機関の排気浄化装置であって、機関排気通路に配置された、流入する排気の空燃比がリーンのときに排気中のNO X を吸収し流入する排気中の酸素濃度が低下すると吸収したNO X を放出するNO X 吸蔵還元触媒と、機関運転状態の変化に起因するNO X 吸蔵還元触媒からのNO X の自然放出が生じることを事前に予測する予測手段と、前記予測手段によりNO X 吸蔵還元触媒からの前記NO X の自然放出が予測されたときに、NO X 吸蔵還元触媒に流入する排気の空燃比をリッチ空燃比に調整し、前記自然放出が生じる前にNO X 吸蔵還元触媒から吸収したNO X を放出させ還元浄化するNO X 放出操作を行なうNO X 放出制御手段と、を備え更に、前記内燃機関は、機関吸気通路に配置されたスロットル弁と、運転者の操作するアクセル手段と、運転者による前記アクセル手段の操作に応じて前記スロットル弁開度を制御して機関運転状態を変化させるスロットル制御手段とを備え、前記予測手段は前記アクセル手段の操作に基づいて前記NOXの自然放出が生じることを事前に予測し、前記NOX放出制御手段は、前記NOXの自然放出が予測されたときに前記NOX放出操作が完了するまで前記スロットル制御手段による前記スロットル弁開度の変更を禁止する希薄燃焼内燃機関の排気浄化装置が提供される。
【0015】
すなわち、請求項2の発明では機関にはアクセル手段の操作に基づいてスロットル弁を制御するスロットル制御手段が設けられており、例えば電子制御スロットル弁のような構成がとられている。そして、予測手段は運転者のアクセル手段操作から運転者の要求する運転状態がNOXの自然放出を生じるものである場合には、短時間のうちにNOX自然放出が生じると予測する。NOX放出制御手段は、予測手段により短時間のうちにNOX自然放出が生じると予測されるとアクセル操作後、直ちにNOX放出操作を行いNOX吸蔵還元触媒のNOX吸蔵量を低減するとともに、NOX放出操作が完了するまでスロットル制御手段によるスロットル弁開度変更を禁止する。このため、スロットル制御手段がスロットル弁開度を変更して実際に機関運転状態が自然放出が生じる状態になったときには、NOX吸蔵還元触媒のNOX吸蔵量は充分な余裕を残した状態となっておりNOX吸蔵還元触媒からはNOXが放出されない。このため、機関運転状態の変化により未浄化のNOXがNOX吸蔵還元触媒から流出することが防止される。
【0016】
請求項3に記載の発明によれば、前記予測手段は、機関の加速が予測されるときに前記NOXの自然放出が生じると判断する請求項1または2に記載の希薄燃焼内燃機関の排気浄化装置が提供される。
すなわち、請求項3の発明では予測手段は、機関の加速が予測されるときに、短時間のうちにNOXの自然放出が生じると判断する。機関加速時には機関運転空燃比はリーン空燃比からリッチ空燃比に変更され、空燃比が低下する。このため、NOX吸蔵還元触媒の吸蔵能力低下により自然放出が生じる可能性が高い。従って、機関加速に基づいてNOXの自然放出を予測することにより適切なNOX放出操作を行なうことが可能となる。
【0017】
請求項4に記載の発明によれば、前記NOX放出制御手段は、前記機関をリッチ空燃比で運転することにより、NOX吸蔵還元触媒に流入する排気の空燃比をリッチ空燃比に調整する請求項1または2に記載の希薄燃焼内燃機関の排気浄化装置が提供される。
すなわち、請求項4の発明では、NOX放出操作は機関運転空燃比をリッチ空燃比にすることにより行なわれる。NOX吸蔵還元触媒からのNOXの放出、還元浄化は短時間で終了するため、NOX放出操作時には機関運転空燃比は短時間だけリッチ空燃比に変更される。
【0018】
請求項5に記載の発明によれば、前記NOX放出制御手段は、前記機関に機関燃焼室内の燃焼に寄与しない燃料を供給することにより、NOX吸蔵還元触媒に流入する排気の空燃比をリッチ空燃比に調整する請求項1または2に記載の希薄燃焼内燃機関の排気浄化装置が提供される。
すなわち、請求項5の発明では、NOX放出操作は機関に燃焼に寄与しない燃料を供給することにより行なわれる。例えば、気筒内に直接燃料を噴射する筒内燃料噴射弁から気筒の膨張または排気行程中に直接燃焼室内燃料を噴射する二次燃料噴射を実行した場合や、機関の排気ポートに排気ポート燃料噴射弁を設けて排気ポート燃料噴射を実行した場合には、噴射された燃料は燃焼室内で燃焼することなく気化して排気に未燃燃料(未燃炭化水素)として混合する。このため、本発明では、燃焼に寄与しない燃料を機関に供給することにより、機関運転空燃比(燃焼室内の燃焼空燃比)とは独立して排気空燃比がリッチ空燃比に調整され、トルク変動が防止される。
【0019】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明する。
図1は、本発明を自動車用内燃機関に適用した場合の実施形態の概略構成を示す図である。
図1において、1は自動車用内燃機関を示す。本実施形態では、機関1は#1から#4の4つの気筒を備えた4気筒ガソリン機関とされ、#1から#4気筒には直接気筒内に燃料を噴射する燃料噴射弁111から114が設けられている。後述するように、本実施形態の内燃機関1は、理論空燃比より高い(リーンな)空燃比で運転可能なリーンバーンエンジンとされている。
【0020】
また、本実施形態では#1から#4の気筒は互いに点火時期が連続しない2つの気筒からなる2つの気筒群にグループ分けされている。(例えば、図1の実施形態では、気筒点火順序は1−3−4−2であり、#1、#4の気筒と#2、#3の気筒とがそれぞれ気筒群を構成している。)また、各気筒の排気ポートは気筒群毎に排気マニホルドに接続され、気筒群毎の排気通路に接続されている。図1において、21aは#1、#4気筒からなる気筒群の排気ポートを個別排気通路2aに接続する排気マニホルド、21bは#2、#4気筒からなる気筒群の排気ポートを個別排気通路2bに接続する排気マニホルドである。本実施形態では、個別排気通路2a、2b上には三元触媒からなるスタートキャタリスト(以下「SC」と呼ぶ)5aと5bがそれぞれ配置されている。また、個別排気通路2a、2bはSC下流側で共通の排気通路2に合流している。
【0021】
共通排気通路2上には、後述するNO吸蔵還元触媒7が配置されている。図1に29a、29bで示すのは、個別排気通路2a、2bのスタートキャタリスト5a、5b上流側に配置された空燃比センサ、31で示すのは、排気通路2のNO吸蔵還元触媒7出口に配置された空燃比センサである。空燃比センサ29a、29b及び31は、広い空燃比範囲で排気空燃比に対応する電圧信号を出力する、いわゆるリニア空燃比センサとされている。
【0022】
図1において、機関の1の気筒#1から#4の吸気ポートはそれぞれの吸気枝管11〜14を介してサージタンク10aに接続されており、サージタンクは共通の吸気通路10に接続されている。更に、本実施形態では吸気通路10上にはスロットル弁15が設けられている。本実施形態のスロットル弁15はいわゆる電子制御スロットル弁とされており、ステッパモータ等の適宜な形式のアクチュエータ15aにより駆動され後述するECU30からの制御信号に応じた開度をとる。
【0023】
図1に30で示すのは機関1の電子制御ユニット(ECU)である。ECU30は、本実施形態ではRAM、ROM、CPUを備えた公知の構成のマイクロコンピュータとされ、機関1の点火時期制御や燃料噴射制御等の基本制御を行なっている。また、本実施形態では、ECU30は上記の基本制御を行う他に、後述するように機関運転状態に応じて筒内噴射弁111から114の燃料噴射モードを変更し機関の運転空燃比を変更する制御等を行なう他、NOの自然放出が予期される場合に、NO放出操作を行い、NO吸蔵還元触媒下流に未浄化のNOが流出することを防止している。
【0024】
ECU30の入力ポートには、空燃比センサ29a、29bからスタートキャタリスト5a、5b入口における排気空燃比を表す信号と、空燃比センサ31からNO吸蔵還元触媒7出口における排気空燃比を表す信号が、また、図示しない機関吸気マニホルドに設けられた吸気圧センサ33から機関の吸気圧力に対応する信号がそれぞれ入力されている他、機関クランク軸(図示せず)近傍に配置された回転数センサ35から機関回転数に対応する信号が入力されている。更に、本実施形態では、ECU30の入力ポートには機関1のアクセルペダル(図示せず)近傍に配置したアクセル開度センサ37から運転者のアクセルペダル踏込み量(アクセル開度)を表す信号が入力されている。また、ECU30の出力ポートは、各気筒への燃料噴射量及び燃料噴射時期を制御するために、図示しない燃料噴射回路を介して各気筒の燃料噴射弁111から114に接続されている他、スロットル弁15のアクチュエータ15bに図示しない駆動回路を介して接続されスロットル弁15の開度を制御している。
【0025】
本実施形態では、ECU30は機関1を機関の運転状態に応じて以下の5つの燃焼モードで運転する。
▲1▼ リーン空燃比成層燃焼(圧縮行程1回噴射)
▲2▼ リーン空燃比均質混合気/成層燃焼(吸気行程/圧縮行程2回噴射)
▲3▼ リーン空燃比均質混合気燃焼(吸気行程1回噴射)
▲4▼ 理論空燃比均質混合気燃焼(吸気行程1回噴射)
▲5▼ リッチ空燃比均質混合気燃焼(吸気行程1回噴射)
すなわち、機関1の軽負荷運転領域では、上記▲1▼のリーン空燃比成層燃焼が行なわれる。この状態では、筒内燃料噴射は各気筒の圧縮行程後半に1回のみ行なわれ噴射された燃料は気筒点火プラグ近傍に可燃混合気の層を形成する。また、この運転状態での燃料噴射量は極めて少なく、気筒内の全体としての空燃比は25から30程度になる。
【0026】
また、上記▲1▼の状態から負荷が増大して低負荷運転領域になると、上記▲2▼リーン空燃比均質混合気/成層燃焼が行なわれる。機関負荷が増大するにつれて気筒内に噴射する燃料は増量されるが、上記▲1▼の成層燃焼では燃料噴射を圧縮行程後半に行なうため、噴射時間が限られてしまい成層させることのできる燃料量には限界がある。そこで、この負荷領域では圧縮行程後半の燃料噴射だけでは不足する燃料の量を予め吸気行程前半に噴射することにより目標量の燃料を気筒に供給するようにしている。吸気行程前半に気筒内に噴射された燃料は着火時までに極めてリーンな均質混合気を生成する。圧縮行程後半ではこの極めてリーンな均質混合気中に更に燃料が噴射され点火プラグ近傍に着火可能な可燃混合気の層が生成される。着火時にはこの可燃混合気層が燃焼を開始し周囲の希薄な混合気層に火炎が伝播するため安定した燃焼が行なわれるようになる。この状態では吸気行程と圧縮行程での噴射により供給される燃料量は▲1▼より増量されるが、全体としての空燃比はやや低いリーン(例えば空燃比で20から30程度)になる。
【0027】
更に機関負荷が増大すると、機関1では上記▲3▼のリーン空燃比均質混合気燃焼が行なわれる。この状態では燃料噴射は吸気行程前半に1回のみ実行され、燃料噴射量は上記▲2▼より更に増量される。この状態で気筒内に生成される均質混合気は理論空燃比に比較的近いリーン空燃比(例えば空燃比で15から25程度)となる。
【0028】
更に機関負荷が増大して機関高負荷運転領域になると、▲3▼の状態から更に燃料が増量され、上記▲4▼の理論空燃比均質混合気運転が行なわれる。この状態では、気筒内には理論空燃比の均質な混合気が生成されるようになり、機関出力が増大する。また、更に機関負荷が増大して機関の全負荷運転になると、▲4▼の状態から燃料噴射量が更に増量され▲5▼のリッチ空燃比均質混合気運転が行なわれる。この状態では、気筒内に生成される均質混合気の空燃比はリッチ(例えば空燃比で12から14程度)になる。
【0029】
本実施形態では、アクセル開度(運転者のアクセルペダル踏込み量)と機関回転数とに応じて予め実験等に基づいて最適な運転モード(上記▲1▼から▲5▼)が設定されており、ECU30のROMにアクセル開度と機関回転数とを用いたマップとして格納してある。機関1運転中、ECU30はアクセル開度センサ37で検出したアクセル開度と機関回転数とに基づいて、現在上記▲1▼から▲5▼のいずれの運転モードを選択すべきかを決定し、それぞれのモードに応じて燃料噴射量、燃料噴射時期、回数及びスロットル弁開度を決定する。
【0030】
また、モード▲4▼(理論空燃比均質混合気燃焼)が選択された場合には、ECU30は更に上記により算出した燃料噴射量を、機関排気空燃比が理論空燃比となるように空燃比センサ29a、29bの出力に基づいてフィードバック補正する空燃比制御を行なう。
すなわち、上記▲1▼から▲3▼のモード(リーン空燃比燃焼)が選択された場合には、ECU30は上記▲1▼から▲3▼のモード毎に予め準備されたマップに基づいて、アクセル開度と機関回転数とから燃料噴射量を決定する。又、上記▲4▼と▲5▼のモード(理論空燃比またはリッチ空燃比均質混合気燃焼)が選択された場合には、ECU30は上記▲4▼と▲5▼のモード毎に予め準備されたマップに基づいて、吸気圧センサ33で検出された吸気圧力と機関回転数とに基づいて燃料噴射量を設定する。
【0031】
また、スロットル弁15開度はモード▲1▼から▲3▼では全開に近い領域でアクセル開度に応じて制御される。この領域ではアクセル開度が低下するとスロットル弁開度も低減されるが、スロットル弁全開に近い領域であるためスロットル弁開度が変化しても吸気圧力は略一定になり、ほとんど吸気絞りは生じない。
一方モード▲4▼、▲5▼ではスロットル弁開度はアクセル開度に略等しい開度に制御される。すなわち、アクセル開度(アクセルペダル踏込み量)が0のときにはスロットル開度も0に、アクセル開度が100パーセント(アクセルペダルがいっぱいに踏み込まれたとき)にはスロットル開度も100パーセント(全開)にセットされる。
【0032】
上述のように、本実施形態の機関1では機関負荷が増大するにつれて燃料噴射量が増量され、燃料噴射量に応じて運転モードが変更されるとともにスロットル開度が変更される。
次に、本実施形態のスタートキャタリスト5a、5b及びNO吸蔵還元触媒について説明する。
【0033】
スタートキャタリスト(SC)5a、5bは、ハニカム状に成形したコージェライト等の担体を用いて、この担体表面にアルミナの薄いコーティングを形成し、このアルミナ層に白金Pt、パラジウムPd、ロジウムRh等の貴金属触媒成分を担持させた三元触媒として構成される。三元触媒は理論空燃比近傍でHC、CO、NOの3成分を高効率で浄化する。三元触媒は、流入する排気の空燃比が理論空燃比より高くなるとNOの還元能力が低下するため、機関1がリーン空燃比運転されているときの排気中のNOを充分に浄化することはできない。
【0034】
本実施形態のNO吸蔵還元触媒7は、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa 、リチウムLi 、セシウムCs のようなアルカリ金属、バリウムBa 、カルシウムCa のようなアルカリ土類、ランタンLa 、セリウムCe、イットリウムYのような希土類から選ばれた少なくとも一つの成分と、白金Ptのような貴金属とを担持したものである。NO吸蔵還元触媒は流入する排気ガスの空燃比がリーンのときに、排気中のNO(NO、NO)を硝酸イオンNO の形で吸収し、流入排気ガスがリッチになると吸収したNOを放出するNOの吸放出作用を行う。
【0035】
この吸放出のメカニズムについて、以下に白金PtおよびバリウムBaを使用した場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。
流入排気中の酸素濃度が増大すると(すなわち排気の空燃比がリーン空燃比になると)、これら酸素は白金Pt上にO またはO2−の形で付着し、排気中のNOは白金Pt上のO またはO2−と反応し、これによりNOが生成される。また、流入排気中のNO及び上記により生成したNOは白金Pt上で更に酸化されつつ吸収剤中に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO の形で吸収剤内に拡散する。このため、リーン雰囲気下では排気中のNOがNO吸収剤内に硝酸塩の形で吸収されるようになる。
【0036】
また、流入排気中の酸素濃度が大幅に低下すると(すなわち、排気の空燃比が理論空燃比またはリッチ空燃比になると)、白金Pt上でのNO生成量が減少するため、反応が逆方向に進むようになり、吸収剤内の硝酸イオンNO はNOの形で吸収剤から放出されるようになる。この場合、排気中にCO等の還元成分やHC、CO等の成分が存在すると白金Pt上でこれらの成分によりNOが還元される。
【0037】
本実施形態では、リーン空燃比運転可能な機関1が使用されており、機関1がリーン空燃比で運転されているときには、NO吸蔵還元触媒は流入する排気中のNOを吸収する。また、機関1がリッチ空燃比で運転されると、NO吸蔵還元触媒7は吸収したNOを放出、還元浄化する。本実施形態では、リーン空燃比運転中にNO吸蔵還元触媒7に吸収されたNO量が増大すると、短時間機関空燃比をリーン空燃比からリッチ空燃比に切り換えるリッチスパイク運転を行い、NO吸蔵還元触媒からのNOの放出と還元浄化(NO吸蔵還元触媒の再生)を行なうようにしている。
【0038】
本実施形態では、ECU30はNOカウンタCNOXの値を増減することによりNO吸蔵還元触媒7が吸収保持しているNO量を推定する。NO吸蔵還元触媒7に単位時間当たりに吸収されるNOの量はNO吸蔵還元触媒に単位時間当たりに流入する排気中のNO量、すなわち機関1で単位時間当たりに生成されるNO量に比例している。一方、機関で単位時間当たりに発生するNOの量は機関への燃料供給量、空燃比、排気流量等によって定まるため、機関運転条件が定まればNO吸蔵還元触媒に吸収されるNO量を知ることができる。本実施形態では、予め機関運転条件(アクセル開度、機関回転数、吸入空気量、吸気圧力、空燃比、燃料供給量など)を変えて機関が単位時間当たりに発生するNO量を実測し、NO吸蔵還元触媒7に単位時間当たりに吸収されるNO量を、例えば機関負荷(燃料噴射量)と機関回転数とを用いた数値マップの形でECU30のROMに格納している。ECU30は一定時間毎(上記の単位時間毎)に機関負荷(燃料噴射量)と機関回転数とからこのマップを用いて単位時間当たりにNO吸蔵還元触媒に吸収されたNO量を算出し、NOカウンタCNOXの値をこのNO吸収量だけ増大させる。これによりNOカウンタCNOXの値は常にNO吸蔵還元触媒7に吸収されたNOの量を表すようになる。ECU30は、機関のリーン空燃比運転中に、上記NOカウンタCNOXの値が所定値以上に増大したときに、短時間(例えば0.5から1秒程度)機関を前述の▲4▼または▲5▼のモード(理論空燃比またはリッチ空燃比均質混合気燃焼)で運転するリッチスパイク操作を行なう。これにより、NO吸蔵還元触媒から吸収したNOが放出され、還元浄化される。なお、リッチスパイクで排気空燃比をリッチに保持する時間は詳細にはNO吸蔵還元触媒の種類、容量などに基づいて実験等により決定される。また、リッチスパイクを実行してNO吸蔵還元触媒からNOが放出、還元浄化された後はNOカウンタCNOXの値は0にリセットされる。このように、NO吸蔵還元触媒7のNO吸収量に応じてリッチスパイクを行なうことにより、NO吸蔵還元触媒7は適切に再生され、NO吸蔵還元触媒が吸収したNOで飽和することが防止される。
【0039】
ところが、本実施形態のように広い空燃比範囲で運転される機関では、例えば空燃比20以上のリーン空燃比(モード▲1▼、▲2▼)から加速を行なうような場合には、機関負荷の増大により運転空燃比はリーン空燃比から弱リーン空燃比またはリッチ空燃比に切り換えられることになる。加速時に機関運転空燃比がリーン空燃比(モード▲1▼、▲2▼)から弱リーン空燃比(モード▲3▼)に切り換えられると前述のようにNO吸蔵還元触媒のNO吸蔵能力が低下してNOの自然放出が生じる。また、急加速時等で空燃比をリーン空燃比(モード▲1▼、▲2▼)からリッチ空燃比(モード▲3▼または▲4▼)に切り換える際にも、空燃比の急激な変化によるトルク急変を避けるため、機関は数回転程度の時間をかけてモード▲1▼(リーン空燃比成層燃焼(圧縮行程1回噴射))からモード▲2▼(リーン空燃比均質混合気/成層燃焼(吸気行程/圧縮行程2回噴射)とモード▲3▼(リーン空燃比均質混合気燃焼(吸気行程1回噴射))の運転モードを経てから▲5▼(リッチ空燃比均質混合気燃焼(吸気行程1回噴射))に移行するようされる。このため、機関加速時には機関運転空燃比がリッチ方向に変化する際に必ずNO吸蔵還元触媒の吸蔵能力が低下する弱リーン空燃比領域(空燃比で20以下)を通過することになる。この領域では、NO吸蔵還元触媒に吸蔵されたNOのうち、最大吸蔵量を越えた分のNOがNO吸蔵還元触媒から自然放出されることになるが、排気空燃比がリーンであるため放出されたNOは還元されず、未浄化のままでNO吸蔵還元触媒下流側に流出する場合が生じる。更に、図5で説明したように、弱リーン空燃比領域では機関から排出されるNO量も増大するため、機関運転空燃比がリーン空燃比から弱リーン空燃比に変更されると、NO吸蔵還元触媒から放出されたNOのみならず機関から排出されたNOも未浄化のままNO吸蔵還元触媒下流側に流出するおそれがある。
【0040】
そこで、以下に説明する実施形態では、機関加速等により空燃比が上記弱リーン空燃比領域を通過、または弱リーン空燃比領域内で運転空燃比がリッチ方向に変化するおそれがある場合には、実際に機関運転空燃比が弱リーン空燃比領域に入ってNO吸蔵還元触媒からのNOの自然放出が生じる前に、NO吸蔵還元触媒に流入する排気空燃比をリッチ空燃比に調整して強制的にNO吸蔵還元触媒からNOを放出させ還元浄化するようにしている。このように、予めNO吸蔵還元触媒から吸収したNOのほぼ全量を放出させ、還元浄化しておくことにより、その後機関運転空燃比が実際に弱リーン空燃比領域になったときにはNO吸蔵還元触媒には自然放出されるべきNOは吸蔵されていない状態になる。このため、弱リーン空燃比領域通過中にもNO吸蔵還元触媒からのNOの自然放出が生じない。また、NO吸蔵量がほぼ0まで減少した状態では弱リーン空燃比領域においてもNO吸蔵還元触媒の吸蔵能力には充分な余裕が生じる。このため、弱リーン空燃比領域において機関から比較的多量のNOが排出された場合でも、排出されたNOの全量がNO吸蔵還元触媒に吸収されるようになり未浄化のNOがNO吸蔵還元触媒下流に流出する事態が防止される。
【0041】
以下、上記NOの自然放出防止のためのNO放出制御操作の実施形態について説明する。
(1)第1の実施形態
本実施形態では、ECU30はアクセル開度の増加率に基づいて運転者が加速を要求していることを判別する。運転者の加速要求があった場合には短時間のうちに加速が実行され空燃比がリッチ方向に変化することになる。しかし、実際には本実施形態のような電子制御スロットル弁ではアクセル開度の変化により直ちにスロットル弁開度が変化するわけではなく、アクセル開度の変化からスロットル弁開度が実際に変化を開始するするまでにはわずかな遅れ時間Tが生じる。
【0042】
すなわち、アクセル開度が変化するとECU30はアクセル開度に応じて目標スロットル弁開度を演算し、スロットル弁15のアクチュエータ15bに制御信号を出力してスロットル弁15を駆動する。このため、アクセル開度の変化から実際にスロットル弁が動作するまでには、スロットル開度の演算に要する時間と制御信号が入力してからアクチュエータ15bが動作を開始するまでの時間、更にはスロットル弁機構の各部分の摩擦等による反力に打ち勝つまでアクチュエータ15bのトルクが増大するのに要する時間等の時間が必要となり、これらの時間の合計が遅れ時間Tとなる。通常Tは数十ミリ秒から200ミリ秒程度までの時間となる。本実施形態では、アクセル開度が変化を開始してから上記遅れ時間Tが経過するまでの間全気筒に同時に所定量の燃料を噴射する。この燃料噴射は各気筒の行程とは無関係に行なわれる非同期燃料噴射となる。また、この非同期燃料噴射における燃料噴射量は、各気筒からの排気空燃比が理論空燃比よりリッチ側になるように設定される。これにより、機関の一部の気筒では気筒の吸気または圧縮行程中にに非同期燃料噴射による燃料が供給される。この場合には、燃焼室内の燃焼空燃比がリッチ空燃比となり、リッチ空燃比の排気が気筒から排出される。また、他の気筒では気筒の膨張または排気行程中に非同期燃料噴射による燃料が供給される。この場合には非同期燃料噴射は二次燃料噴射となるため、噴射された燃料は燃焼に寄与しないまま排気通路に排出され燃焼室内の燃焼空燃比は非同期燃料噴射により影響を受けない。このため、NO吸蔵還元触媒には未燃炭化水素を多量に含むリッチ空燃比の排気が到達することになり、短時間でNO吸蔵還元触媒からNOが放出され還元浄化される。従って、遅れ時間Tが経過して実際にスロットル弁開度が変化を開始したときにはNO吸蔵還元触媒からほぼ全量のNOが放出されておりスロットル開度変化によりNO吸蔵還元触媒に流入する排気空燃比が弱リーン空燃比領域になった場合でもNOの自然放出が生じない。また、NO吸蔵還元触媒はほぼ吸蔵量ゼロの状態になっているため、弱リーン空燃比領域で機関から排出されるNOはNO吸蔵還元触媒に吸収され下流側に流出しない。
【0043】
図2は、上記NO放出制御操作を説明するフローチャートである。本操作はECU30により一定時間毎に実行されるルーチンにより行なわれる。
図2の操作がスタートすると、ステップ201では前回ルーチン実行時からのアクセル開度の変化ΔACCPが所定値αより大きいか否かが判定される。ΔACCP≦αであった場合にはアクセルペダル踏込み量は大きく増加しておらず、現在運転者により加速は要求されていないと考えられるため、本操作はステップ215で後述する計時カウンタCTの値を0にセットした後直ちに終了する。一方、ΔACCP>αであった場合には、運転者によりアクセルペダルがある速度以上で踏み込まれたことになり、運転者が加速を要求していると判断される。このため、NO放出操作を行なう必要がある可能性があるため、次にステップ203に進み現在NO吸蔵還元触媒に吸蔵されているNO量を表すNOカウンタCNOXの値が所定値βを越えているか否かを判定する。βは実用上NO吸蔵還元触媒のNO吸蔵量がほぼゼロと考えることができるCNOXの値である。CNOX≦βであった場合にはNO放出操作を行なう必要がないため、本操作はステップ215を実行して直ちに終了する。
【0044】
また、ステップ203でCNOX>βであった場合には、次にステップ205で現在NO放出操作を実行可能な条件が満足されているか否かが実行許可フラグXAREAの値に基づいて判定される。例えば、機関がアイドル運転されているような場合には非同期噴射を行なうと機関回転数が大幅に変動する可能性がある。ECU30は別途実行されるルーチンにより、例えば機関がアイドル運転中である場合には実行許可フラグXAREAの値を0にセットしてNO放出操作実行を禁止する。従って、ステップ205でXAREA≠1であった場合には本操作はステップ215実行後直ちに終了する。一方、ステップ205でXAREA=1であった場合、すなわち現在NO放出操作実行可能であった場合には、ステップ207から213のNO放出操作が実行される。
【0045】
すなわち、ステップ207では計時カウンタCTの値が所定値CTより小さいか否かが判定され、CT<CTの場合にはステップ209でNO放出操作のための燃料噴射量が演算され、直ちにステップ211で全気筒に算出された量の燃料の非同期噴射を実行する。そして、非同期噴射実行後ステップ213で計時カウンタCTの値を1だけ増大させて本操作は終了する。
【0046】
計時カウンタCTはステップ201でΔACCP≦αの場合には常にステップ215で0にリセットされるため、ステップ213におけるCTの値は、ステップ201でΔACCP>αとなってからの操作実行回数を表すこととなる。また、本操作は一定時間間隔で実行されるため、カウンタCTの値は加速要求があってから(ΔACCP>αになってから)の経過時間に対応することになる。従って、本実施形態では加速要求があってから所定値CTが経過するまで操作実行毎に非同期噴射が実行されるようになる。なお、CTは、前述のスロットル弁開度が変化を始めるまでの遅れ時間Tに対応する値に設定される。すなわち、図2の操作を実行することにより、運転者の加速要求が検出されてから、加速要求に応じてスロットル弁開度が変化を始めるまでの間にNO放出操作が行なわれることになり、スロットル開度変化により機関運転状態が変化してNOの自然放出が生じる状態になるまでにNO吸蔵還元触媒に吸蔵されたNOのほぼ全量が放出され、還元浄化されるようになる。このため、本実施形態によれば機関運転状態の変化によりNO吸蔵還元触媒下流に未浄化のNOが流出する事態が防止される。
【0047】
(2)第2の実施形態
次に、本発明の第2の実施形態について説明する。上記第1の実施形態では運転者の加速要求があってからスロットル弁開度が変化を開始するまでの遅れ時間中にNO放出操作を行なっていたが、本実施形態では運転者の加速要求が検出された場合には、まずNO放出操作を実行し、放出操作が完了した後にスロットル弁開度の変更を許可するようにした点が第1の実施形態と相違している。これにより、NO放出操作が実行された後でなければ機関運転状態の変化が生じないため、運転状態変化時には確実にNO吸蔵還元触媒のNO吸蔵量をほぼゼロにしておくことが可能となる。
【0048】
図3は、上記NO放出制御操作を説明するフローチャートである。本操作はECU30により一定時間毎に実行されるルーチンにより行なわれる。
図3の操作がスタートすると、ステップ301では運転者の加速要求があるか否か、ステップ303では現在のNO吸蔵還元触媒のNO吸蔵量が所定値β以上か否か、ステップ305では現在NO放出操作を実行可能か否かが判定される。ステップ301からステップ305は、図2ステップ201から205とそれぞれ同一の操作である。
【0049】
ステップ301から305のいずれか一つ以上の条件が成立しなかった場合には、ステップ315で後述するフラグXINJの値が0にリセットされ、本操作はステップ317でスロットル弁開度制御操作を実行後終了する。ステップ317ではECU30はアクセル開度に基づいて、予め定めた関係から、スロットル弁15の目標開度を算出するとともに、アクチュエータ15bを駆動してスロットル弁15開度を目標開度に制御する。
【0050】
また、ステップ301から305の全部の条件が成立した場合にはステップ307でフラグXINJの値が1にセットされているか否かが判定され、XINJ=1の場合にはステップ317が実行される。
また、ステップ307でXINJ≠1の場合には次にステップ309でNO放出操作のための燃料噴射量が算出され、その後直ちにステップ311で全気筒の非同期燃料噴射が実行される。ステップ309とステップ311は、図2ステップ209、211とそれぞれ同一の操作である。上記により非同期噴射が終了すると、ステップ313では前述のフラグXINJの値が1にセットされ、今回の操作は終了する。
【0051】
本実施形態では、加速要求が検出されない場合(ステップ301でΔACCP≦αの場合)には、フラグXINJの値は常にステップ315で0にリセットされる。このため、最初に加速要求(ステップ301でΔACCP>α)が検出された場合にはステップ307ではXINJ=0であるためステップ309とステップ311の非同期燃料噴射が実行され、この非同期燃料噴射が実行されるまでステップ317のスロットル弁開度制御は実行されない。また、加速要求検出後1回非同期燃料噴射が実行されるとステップ313ではフラグXINJの値は1にセットされるため、次回の操作からはステップ307の後に直ちにステップ317が実行されるようになりスロットル弁開度制御が実行されるようになる。
【0052】
すなわち、本実施形態では運転者の加速要求があると、まず全気筒に1回非同期燃料噴射を実行し(ステップ309から313)てNO放出操作を行い、NO放出操作が完了した後に初めてスロットル開度制御操作を開始する(ステップ313)ようにしている。これにより、機関運転状態が変化したときには確実にNO放出操作が完了しているため、NO吸蔵還元触媒下流側に未浄化のNOが流出することが確実に防止される。
【0053】
なお、上記第1と第2の実施形態ではNO放出操作時に非同期燃料噴射を行い一部の気筒の燃焼空燃比を理論空燃比よりリッチ側にするとともに、他の気筒には燃焼に寄与しない燃料を供給している。このため、全部の気筒の燃焼空燃比を理論空燃比よりリッチ側にする場合にくらべて機関全体として出力トルクの増大は小さくなり、トルクショックが生じることが防止される。
【0054】
また、排気ポート燃料噴射弁を備える機関では、図2、図3の非同期燃料噴射に代えて排気ポート燃料噴射を実行するようにしても良い。この場合、排気ポートに噴射された燃料は燃焼に寄与しないため、全気筒で機関燃焼空燃比は影響を受けず出力トルクの変動が完全に防止される。
また、図2ステップ209及び図3ステップ309におけるNO放出操作のための燃料噴射量は、NO吸蔵還元触媒に流入する排気の空燃比が充分なリッチ空燃比になるような一定値としても良いが、機関運転状態に応じて算出するようにしても良い。
【0055】
例えば、機関運転空燃比が比較的低い場合にはNO放出操作のための燃料噴射量は比較的少なくても排気空燃比を充分にリッチにすることができる。このため、NO放出操作のための燃料噴射量は機関運転空燃比に応じて設定するようにしても良い。
また、NO吸蔵還元触媒に多量のNOが吸蔵されているような場合には、NO放出操作により放出されたNOを浄化するために多量のHC(炭化水素)が必要とされる。このため、NO放出操作のための燃料噴射量はNO吸蔵還元触媒のNO吸蔵量(NOカウンタCNOXの値)に応じて設定するようにしても良い。
【0056】
【発明の効果】
各請求項に記載の発明によれば、理論空燃比からリーン空燃比までの領域で運転空燃比が変化する機関にNO吸蔵還元触媒を適用する場合に、機関運転状態の変化によりNO吸蔵還元触媒から未浄化のNOが放出されることが防止可能となる共通の効果を奏する。
【図面の簡単な説明】
【図1】本発明を自動車用内燃機関に適用した場合の実施形態の概略構成を示す図である。
【図2】本発明のNO放出制御操作の一実施形態を説明するフローチャートである。
【図3】本発明のNO放出制御操作の別の実施形態を説明するフローチャートである。
【図4】NO吸蔵還元触媒のNO吸蔵能力の空燃比による変化傾向を説明する図である。
【図5】内燃機関のNO排出量の運転空燃比による変化傾向を説明する図である。
【符号の説明】
1…内燃機関
2…排気通路
7…NO吸蔵還元触媒
15…スロットル弁
29a、29b、31…空燃比センサ
30…電子制御ユニット(ECU)
37…アクセル開度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, to NO in exhaust gas when the air-fuel ratio of exhaust gas flowing in is lean.XNO absorbed when the oxygen concentration in the exhaust gasXNO releaseXThe present invention relates to an exhaust emission control device for a lean internal combustion engine equipped with an occlusion reduction catalyst.
[0002]
[Prior art]
NO in exhaust when exhaust air-fuel ratio is leanX(Nitrogen oxide) absorbed, NO absorbed when the oxygen concentration in the inflowing exhaust gas decreasesXNO releaseXOcclusion reduction catalysts are known.
This kind of NOXAs an example of an exhaust gas purification apparatus using an occlusion reduction catalyst, for example, there is one described in Japanese Patent Registration No. 2600492. The exhaust purification device of the above-mentioned patent has NO in an exhaust passage of an engine that performs lean air-fuel ratio operation.XAn NOx storage reduction catalyst is installed and NO during the lean air-fuel ratio operation of the engine.XNO in exhaust gas to storage reduction catalystXAbsorbs NOXNO of storage reduction catalystXBy performing a rich spike operation in which the engine is operated at an air / fuel ratio below the stoichiometric air / fuel ratio for a short time (ie, rich air / fuel ratio) when the amount of absorption increases, NOXNO absorbed from the storage reduction catalystXAs well as released NOXReduce and purify. That is, when the air-fuel ratio of the exhaust gas becomes a rich air-fuel ratio, the oxygen concentration in the exhaust gas rapidly decreases as compared with the exhaust gas having an air-fuel ratio larger than the stoichiometric air-fuel ratio (lean air-fuel ratio), and unburned HC, CO in the exhaust gas. The amount of ingredients increases rapidly. Therefore, when the engine operating air-fuel ratio is switched to the rich air-fuel ratio by the rich spike operation, NOXThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst changes from the lean air-fuel ratio to the rich air-fuel ratio, and NO decreases due to the decrease in the oxygen concentration in the exhaust gas.XNO from the storage reduction catalystXIs released. Further, as described above, the rich air-fuel ratio exhaust gas contains a relatively large amount of unburned HC and CO components.XNO released from the storage reduction catalystXReacts with unburned HC and CO components in the exhaust and is reduced.
[0003]
[Problems to be solved by the invention]
According to the exhaust purification device described in the above-mentioned Patent Registration No. 2600602, NO generated during engine lean air-fuel ratio operationXNOXIt is absorbed by the storage reduction catalyst and NO by rich spike operationXNO from the storage reduction catalystXAre released and reduced and purified at the same time.
[0004]
However, NOXWhen the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst decreases (changes in the rich air-fuel ratio direction), even if the air-fuel ratio itself is lean, NOXNO from the storage reduction catalystXIs released and NO remains unpurifiedXIt has been found that there are cases in which it flows out downstream of the storage reduction catalyst.
As described above, when the exhaust air-fuel ratio changes within the range of the lean air-fuel ratio, the NOXSpontaneous release (in the following description, NO due to rich spikes, etc.XNO from storage reduction catalystXIn order to distinguish it from the intentional release of NO, NO due to the change in the air-fuel ratio within this lean air-fuel ratio rangeXNO from storage reduction catalystXThis release is called “spontaneous release”. ) Is not fully understood, but NOXNO of storage reduction catalystXStorage capacity (maximum NOXIt is considered that the cause is that the amount of occlusion changes with the air-fuel ratio.
[0005]
NOXNO of storage reduction catalystXThe storage capacity is affected by the exhaust air / fuel ratio flowing in, and in a weak lean air / fuel ratio region that is relatively close to the stoichiometric air / fuel ratio (for example, a region from the stoichiometric air fuel ratio to the air / fuel ratio of about 20), NO is stored.XIt has been found that the storage capacity decreases with the air / fuel ratio. 4 is NOXNO of storage reduction catalystXStorage capacity (maximum NOXIt is a graph explaining the relationship with the inflow exhaust air fuel ratio of (occlusion amount). As shown in FIG.XNO of storage reduction catalystXThe storage capacity becomes substantially constant regardless of the air-fuel ratio in the region where the air-fuel ratio is 20 or more, but decreases in the region where the air-fuel ratio is 20 or less as the exhaust air-fuel ratio decreases (approaching the stoichiometric air-fuel ratio). It becomes 0 at the fuel ratio.
[0006]
For this reason, NOXMaximum NO in the lean air-fuel ratio range where the storage reduction catalyst is 20 or moreXNO until near the amount of occlusionXNO is occluded due to a decrease in occlusion capacity when the air-fuel ratio enters the weak lean air-fuel ratio region of 20 or less from the occluded state.XCan no longer hold all the amount of NO actually occludedXThe amount of NO corresponding to the difference between the amount and the maximum storage amountX(Amount shown by hatching in FIG. 4) is spontaneously released. Moreover, since the amount of HC and CO components in the exhaust gas is extremely small in the weak lean air-fuel ratio region, the released NOXIs NOXNO on the NOx storage reduction catalystXIt will flow out of the storage reduction catalyst.
[0007]
In general, a lean combustion internal combustion engine is often operated in a lean air-fuel ratio range of 20 or more, but in a vehicle engine, when engine output is required for acceleration, climbing, etc., or when negative pressure is required for braking operation For example, the operating air-fuel ratio may be changed from a lean air-fuel ratio to a rich air-fuel ratio. In such a case, the engine operating air-fuel ratio is switched from the lean air-fuel ratio to the rich air-fuel ratio via an intermediate weak lean air-fuel ratio in order to avoid a sudden change in output torque due to a sudden air-fuel ratio change. For this reason, it is NO when accelerating or climbing.XWhen the exhaust air-fuel ratio flowing into the storage reduction catalyst changes to the rich side, it passes through the weak lean air-fuel ratio region, and NOXNO from storage reduction catalystXSpontaneous release may occur.
[0008]
Further, when the engine operating air-fuel ratio passes through the weak lean air-fuel ratio region, the NO from the engineXEmissions are also known to increase. FIG. 5 shows the engine operating air-fuel ratio (combustion air-fuel ratio in the engine combustion chamber) and NO in the engine exhaust.XIt is a figure explaining the relationship with a density | concentration. As shown in Fig. 5 curve A, NO in the engine exhaustXIn the vicinity of the stoichiometric air-fuel ratio, the amount increases as the operating air-fuel ratio rises, reaches a maximum in the region of 20 to 23 at the air-fuel ratio, and thereafter shows a tendency to decrease as the air-fuel ratio increases. NOXIn an engine having an exhaust purification catalyst, such as a three-way catalyst, in the exhaust passage upstream of the storage reduction catalyst, the NO in the exhaust is exhausted at an air fuel ratio richer than the stoichiometric air fuel ratio.XIn this case, the NO on the downstream side of the exhaust purification catalyst is reduced.XNO in the exhaust gas flowing into the storage reduction catalystXAs indicated by curve B in FIG. 5, the concentration becomes substantially zero at an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio, and rapidly increases near the stoichiometric air-fuel ratio to coincide with curve A. Therefore, when the engine is operated in a weak lean air-fuel ratio region (region from the stoichiometric air-fuel ratio to about 20 air-fuel ratio), NOXNO in the exhaust gas flowing into the storage reduction catalystXIs the engine's largest NOXIncreases to near discharge. On the other hand, as described above, in the weak lean air-fuel ratio region, NOXNO of storage reduction catalystXSince the storage capacity declines, NO is temporarily assumed in this region.XNO of storage reduction catalystXThe amount of occlusion is relatively small, NOXNO from storage reduction catalystXEven when there is no spontaneous release of engine, the engine NO.XNOx in the exhaust when the emission increasesXCan not absorb the entire amount of NO in the exhaustXIs unpurified NOXIt may flow out of the storage reduction catalyst.
[0009]
In view of the above problems, the present invention provides an engine in which the operating air-fuel ratio changes in the region from the lean air-fuel ratio to the rich air-fuel ratio.XWhen the storage reduction catalyst is applied, NO changes due to changes in engine operating conditions.XUnpurified NO from the storage reduction catalystXAn object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can prevent the release of exhaust gas.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, the exhaust of the lean combustion internal combustion engine that changes the operating air-fuel ratio within the air-fuel ratio range from the air-fuel ratio leaner than the stoichiometric air-fuel ratio to the air-fuel ratio richer than the stoichiometric air-fuel ratio as necessary. A purification device, which is disposed in an engine exhaust passage and is NO in exhaust when the air-fuel ratio of inflowing exhaust is leanXNO absorbed when the oxygen concentration in the exhaust gasXNO releaseXNOx resulting from changes in operating conditions of the storage reduction catalyst and engineXNO from storage reduction catalystXA predicting means for predicting the spontaneous release of NO in advance, and NOXThe NO from the storage reduction catalystXWhen spontaneous release of NO is predicted, NOXThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is adjusted to a rich air-fuel ratio, and before the spontaneous release occurs, NOXNO absorbed from the storage reduction catalystXNO is released and reduced and purifiedXNO to perform the discharge operationXRelease control means, NOXA release control means, andThe internal combustion engine changes the engine operating state by controlling a throttle valve disposed in the engine intake passage, accelerator means operated by a driver, and controlling the throttle valve opening according to the operation of the accelerator means by the driver. Throttle control means for causing the prediction means to perform the NO based on the operation of the accelerator means. X Predicting the spontaneous release of NO in advance, the NO X The release control means is the NO X NO is released during the period from when the accelerator is operated by the driver until the throttle valve opening is changed by the throttle control means. X An exhaust emission control device for a lean combustion internal combustion engine that performs a discharge operation is provided.
[0011]
That is, in the invention of claim 1, the NO caused by the change in the engine operating state by the prediction meansXNO from storage reduction catalystXIf it is predicted in advance that spontaneous release of NO will occur, NOXRelease control means is NOXNO before spontaneous release ofXBy adjusting the exhaust air-fuel ratio flowing into the storage reduction catalyst to a rich air-fuel ratio, NO in advance.XNO from the storage reduction catalystXTo reduce and purify. Therefore, after that, the engine operation state is NOXNO when the spontaneous release ofXThe NOx storage reduction catalystXThe amount of occlusion is extremely small. Therefore, even if spontaneous release occurs, NOXNO of storage reduction catalystXThe amount of occlusion remains in a state with sufficient margin.XNO from the storage reduction catalystXIs not released. For this reason, unpurified NOXIs NOXOutflow from the storage reduction catalyst is prevented.
[0012]
The “change in engine operating state” in the present invention means, for example, that the air-fuel ratio of exhaust at the engine outlet changes, and NO even if the exhaust air-fuel ratio at the engine outlet does not change.XThis includes both cases where the exhaust air-fuel ratio flowing into the storage reduction catalyst changes.
[0013]
Furthermore, in the present inventionThe engine is provided with throttle control means for controlling the throttle valve based on the operation of the accelerator means. For example, the engine is configured like an electronically controlled throttle valve. The predicting means determines that the driving state requested by the driver from the driver's accelerator means operation is NO.XIn the case where it causes spontaneous release of NO in a short timeXExpect spontaneous release to occur. NOXThe release control means performs NO in a short time from the accelerator operation by the prediction means.XIf it is predicted that spontaneous release will occur, after the accelerator operation, the throttle control means changes the throttle valve opening and before the engine operating state changes, NOXRelease operation, NOXNO of storage reduction catalystXReduce occlusion. For this reason, the operating state of the engine actually changes and NOXWhen it becomes a state where spontaneous release of NO occurs, NOXNO of storage reduction catalystXThe amount of occlusion remains in a state with sufficient margin.XNO from the storage reduction catalystXIs not released. As a result, unpurified NOXIs NOXOutflow from the storage reduction catalyst is prevented.
[0014]
According to the second aspect of the present invention, the exhaust of the lean combustion internal combustion engine that changes the operating air-fuel ratio within an air-fuel ratio range from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to an air-fuel ratio richer than the stoichiometric air-fuel ratio as necessary. A purification device, which is disposed in an engine exhaust passage, and has NO in exhaust when the air-fuel ratio of the inflowing exhaust is lean X NO absorbed when the oxygen concentration in the exhaust gas X NO release X NOx resulting from changes in operating conditions of the storage reduction catalyst and engine X NO from storage reduction catalyst X A predicting means for predicting the spontaneous release of NO in advance, and NO X The NO from the storage reduction catalyst X When spontaneous release of NO is predicted, NO X The air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is adjusted to a rich air-fuel ratio, and before the spontaneous release occurs, NO X NO absorbed from the storage reduction catalyst X NO is released and reduced and purified X NO to perform the discharge operation X A release control means; andThe internal combustion engine changes the engine operating state by controlling a throttle valve disposed in the engine intake passage, an accelerator means operated by a driver, and controlling the throttle valve opening according to the operation of the accelerator means by the driver. Throttle control means for causing the NOx based on the operation of the accelerator means.XPredicting the spontaneous release of NO in advance, the NOXThe release control means is the NOXWhen the spontaneous release of NO is predictedXAn exhaust emission control device for a lean combustion internal combustion engine is provided that prohibits change of the throttle valve opening by the throttle control means until the release operation is completed.
[0015]
That is,Claim 2In this invention, the engine is provided with throttle control means for controlling the throttle valve based on the operation of the accelerator means, and has a configuration such as an electronically controlled throttle valve. The predicting means determines that the driving state requested by the driver from the driver's accelerator means operation is NO.XIn the case where it causes spontaneous release of NO in a short timeXExpect spontaneous release to occur. NOXThe release control means makes NO in a short time by the prediction means.XIf spontaneous release is predicted, NO immediately after the accelerator operationXRelease operation and NOXNO of storage reduction catalystXWhile reducing the amount of occlusion, NOXThe throttle valve opening change by the throttle control means is prohibited until the release operation is completed. For this reason, when the throttle control means changes the throttle valve opening and the engine operating state actually becomes a state where spontaneous release occurs, the NOXNO of storage reduction catalystXThe amount of occlusion remains in a state with sufficient margin.XNO from the storage reduction catalystXIs not released. For this reason, unpurified NOXIs NOXOutflow from the storage reduction catalyst is prevented.
[0016]
Claim 3According to the invention described in the item (2), the predicting means is the NO when the acceleration of the engine is predicted.XJudgment of spontaneous release ofClaim 1 or 2An exhaust emission control device for a lean combustion internal combustion engine as described in 1) is provided.
That is,Claim 3In the invention of the present invention, the predicting means is NO in a short time when the acceleration of the engine is predicted.XIs determined to occur spontaneously. During engine acceleration, the engine operating air-fuel ratio is changed from the lean air-fuel ratio to the rich air-fuel ratio, and the air-fuel ratio decreases. For this reason, NOXSpontaneous release is likely to occur due to a decrease in the storage capacity of the storage reduction catalyst. Therefore, NO based on engine accelerationXBy predicting the spontaneous release of NOXThe discharge operation can be performed.
[0017]
Claim 4According to the invention described in the above, the NOXThe release control means operates the engine at a rich air-fuel ratio, therebyXAdjust the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst to a rich air-fuel ratioClaim 1 or 2An exhaust emission control device for a lean combustion internal combustion engine as described in 1) is provided.
That is,Claim 4In the invention of NOXThe releasing operation is performed by setting the engine operating air-fuel ratio to a rich air-fuel ratio. NOXNO from storage reduction catalystXNO and reduction and purification are completed in a short time.XDuring the discharge operation, the engine operating air-fuel ratio is changed to the rich air-fuel ratio for a short time.
[0018]
Claim 5According to the invention described in the above, the NOXThe release control means supplies the engine with fuel that does not contribute to the combustion in the engine combustion chamber, thereby reducing NO.XAdjust the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst to a rich air-fuel ratioClaim 1 or 2An exhaust emission control device for a lean combustion internal combustion engine as described in 1) is provided.
That is,Claim 5In the invention of NOXThe discharge operation is performed by supplying the engine with fuel that does not contribute to combustion. For example, when secondary fuel injection is performed in which fuel in the combustion chamber is directly injected during the expansion or exhaust stroke of the cylinder from an in-cylinder fuel injection valve that injects fuel directly into the cylinder, or exhaust port fuel injection into the exhaust port of the engine When exhaust port fuel injection is performed by providing a valve, the injected fuel is vaporized without being burned in the combustion chamber, and is mixed into the exhaust as unburned fuel (unburned hydrocarbon). For this reason,The present inventionThen, by supplying fuel that does not contribute to combustion to the engine, the exhaust air-fuel ratio is adjusted to a rich air-fuel ratio independently of the engine operating air-fuel ratio (combustion air-fuel ratio in the combustion chamber), and torque fluctuations are prevented.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of an embodiment in which the present invention is applied to an automobile internal combustion engine.
In FIG. 1, reference numeral 1 denotes an automobile internal combustion engine. In the present embodiment, the engine 1 is a four-cylinder gasoline engine having four cylinders # 1 to # 4, and the fuel injection valves 111 to 114 for injecting fuel directly into the cylinders are provided for the # 1 to # 4 cylinders. Is provided. As will be described later, the internal combustion engine 1 of the present embodiment is a lean burn engine that can be operated at an air fuel ratio higher (lean) than the stoichiometric air fuel ratio.
[0020]
Further, in the present embodiment, the cylinders # 1 to # 4 are grouped into two cylinder groups including two cylinders whose ignition timings are not continuous with each other. (For example, in the embodiment of FIG. 1, the cylinder firing order is 1-3-4-2, and the cylinders # 1 and # 4 and the cylinders # 2 and # 3 each constitute a cylinder group. In addition, the exhaust port of each cylinder is connected to an exhaust manifold for each cylinder group, and is connected to an exhaust passage for each cylinder group. In FIG. 1, reference numeral 21a denotes an exhaust manifold for connecting the exhaust ports of the cylinder group consisting of # 1 and # 4 cylinders to the individual exhaust passage 2a, and 21b denotes the exhaust port of the cylinder group consisting of # 2 and # 4 cylinders to the individual exhaust passage 2b. Is an exhaust manifold connected to In the present embodiment, start catalysts (hereinafter referred to as “SC”) 5a and 5b made of a three-way catalyst are arranged on the individual exhaust passages 2a and 2b, respectively. Further, the individual exhaust passages 2a and 2b merge with the common exhaust passage 2 on the downstream side of the SC.
[0021]
On the common exhaust passage 2, NO, which will be described later, is provided.XAn occlusion reduction catalyst 7 is arranged. In FIG. 1, 29a and 29b indicate air-fuel ratio sensors disposed upstream of the start catalyst 5a and 5b of the individual exhaust passages 2a and 2b, and 31 indicates the NO in the exhaust passage 2.XAn air-fuel ratio sensor disposed at the outlet of the storage reduction catalyst 7. The air-fuel ratio sensors 29a, 29b, and 31 are so-called linear air-fuel ratio sensors that output a voltage signal corresponding to the exhaust air-fuel ratio in a wide air-fuel ratio range.
[0022]
In FIG. 1, the intake ports of cylinders # 1 to # 4 of one engine are connected to a surge tank 10 a via intake manifolds 11 to 14, and the surge tank is connected to a common intake passage 10. Yes. Further, in the present embodiment, a throttle valve 15 is provided on the intake passage 10. The throttle valve 15 of the present embodiment is a so-called electronically controlled throttle valve, which is driven by an actuator 15a of an appropriate type such as a stepper motor and has an opening corresponding to a control signal from an ECU 30 described later.
[0023]
An electronic control unit (ECU) of the engine 1 is indicated by 30 in FIG. In this embodiment, the ECU 30 is a microcomputer having a known configuration including a RAM, a ROM, and a CPU, and performs basic control such as ignition timing control and fuel injection control of the engine 1. In the present embodiment, the ECU 30 performs the basic control described above, and changes the fuel injection mode of the in-cylinder injection valves 111 to 114 in accordance with the engine operating state to change the operating air-fuel ratio of the engine, as will be described later. In addition to controlling etc., NOXNO is expected when spontaneous release is expectedXRelease operation, NOXUnpurified NO downstream of the storage reduction catalystXIs prevented from leaking.
[0024]
The input port of the ECU 30 includes a signal indicating the exhaust air / fuel ratio at the inlets of the start catalyst 5a and 5b from the air / fuel ratio sensors 29a and 29b, and the NO / NO from the air / fuel ratio sensor 31.XIn addition to a signal representing the exhaust air / fuel ratio at the outlet of the storage reduction catalyst 7 and a signal corresponding to the intake pressure of the engine from an intake pressure sensor 33 provided in an unillustrated engine intake manifold, an engine crankshaft ( A signal corresponding to the engine speed is input from a speed sensor 35 arranged in the vicinity. Furthermore, in the present embodiment, a signal representing the accelerator pedal depression amount (accelerator opening) of the driver is input to an input port of the ECU 30 from an accelerator opening sensor 37 disposed in the vicinity of an accelerator pedal (not shown) of the engine 1. Has been. The output port of the ECU 30 is connected to the fuel injection valves 111 to 114 of each cylinder through a fuel injection circuit (not shown) in order to control the fuel injection amount and fuel injection timing to each cylinder. The opening of the throttle valve 15 is controlled by being connected to the actuator 15b of the valve 15 via a drive circuit (not shown).
[0025]
In the present embodiment, the ECU 30 operates the engine 1 in the following five combustion modes according to the operating state of the engine.
(1) Lean air-fuel ratio stratified combustion (injection once in the compression stroke)
(2) Lean air-fuel ratio homogeneous mixture / stratified combustion (intake stroke / compression stroke twice injection)
(3) Lean air-fuel ratio homogeneous mixture combustion (intake stroke one injection)
(4) Theoretical air-fuel ratio homogeneous mixture combustion (intake stroke one injection)
(5) Rich air-fuel ratio homogeneous mixture combustion (intake stroke one injection)
That is, in the light load operation region of the engine 1, the lean air-fuel ratio stratified combustion (1) is performed. In this state, in-cylinder fuel injection is performed only once in the latter half of the compression stroke of each cylinder, and the injected fuel forms a combustible mixture layer near the cylinder spark plug. Further, the fuel injection amount in this operation state is extremely small, and the air-fuel ratio as a whole in the cylinder is about 25 to 30.
[0026]
Further, when the load increases from the state (1) to the low load operation region, (2) the lean air-fuel ratio homogeneous mixture / stratified combustion is performed. As the engine load increases, the amount of fuel injected into the cylinder increases. However, in the stratified combustion of (1), the fuel injection is performed in the latter half of the compression stroke, so the injection time is limited and the amount of fuel that can be stratified Has its limits. Therefore, in this load region, a target amount of fuel is supplied to the cylinders by injecting in advance into the first half of the intake stroke an amount of fuel that is insufficient only by fuel injection in the latter half of the compression stroke. The fuel injected into the cylinder in the first half of the intake stroke generates a very lean homogeneous mixture by the time of ignition. In the latter half of the compression stroke, further fuel is injected into this extremely lean homogeneous mixture to generate a combustible mixture layer that can be ignited in the vicinity of the spark plug. At the time of ignition, the combustible air-fuel mixture layer starts to burn, and the flame propagates to the surrounding lean air-fuel mixture layer, so that stable combustion is performed. In this state, the amount of fuel supplied by the injection in the intake stroke and the compression stroke is increased from (1), but the overall air-fuel ratio becomes slightly low (for example, about 20 to 30 in the air-fuel ratio).
[0027]
When the engine load further increases, the engine 1 performs the lean air-fuel ratio homogeneous mixture combustion of (3) above. In this state, fuel injection is executed only once in the first half of the intake stroke, and the fuel injection amount is further increased from the above (2). In this state, the homogeneous air-fuel mixture generated in the cylinder has a lean air-fuel ratio that is relatively close to the stoichiometric air-fuel ratio (for example, about 15 to 25 as the air-fuel ratio).
[0028]
When the engine load further increases and the engine high load operation region is reached, the fuel is further increased from the state (3), and the stoichiometric air-fuel ratio homogeneous mixture operation (4) is performed. In this state, a homogeneous air-fuel mixture having a stoichiometric air-fuel ratio is generated in the cylinder, and the engine output increases. When the engine load is further increased and the engine is fully loaded, the fuel injection amount is further increased from the state (4), and the rich air-fuel ratio homogeneous mixture operation (5) is performed. In this state, the air-fuel ratio of the homogeneous mixture generated in the cylinder becomes rich (for example, about 12 to 14 as the air-fuel ratio).
[0029]
In the present embodiment, the optimum operation mode (above (1) to (5)) is set in advance based on experiments or the like according to the accelerator opening (the amount by which the driver depresses the accelerator pedal) and the engine speed. , Stored in the ROM of the ECU 30 as a map using the accelerator opening and the engine speed. During the engine 1 operation, the ECU 30 determines which one of the above operation modes (1) to (5) should be selected based on the accelerator opening detected by the accelerator opening sensor 37 and the engine speed. The fuel injection amount, the fuel injection timing, the number of times, and the throttle valve opening are determined according to the mode.
[0030]
Further, when mode (4) (theoretical air-fuel ratio homogeneous mixture combustion) is selected, the ECU 30 further calculates the fuel injection amount calculated as described above from the air-fuel ratio sensor so that the engine exhaust air-fuel ratio becomes the stoichiometric air-fuel ratio. Air-fuel ratio control for feedback correction is performed based on the outputs of 29a and 29b.
That is, when the mode (1) to (3) (lean air-fuel ratio combustion) is selected, the ECU 30 determines the accelerator based on the map prepared in advance for each mode (1) to (3). The fuel injection amount is determined from the opening degree and the engine speed. When the modes (4) and (5) (theoretical air-fuel ratio or rich air-fuel ratio homogeneous mixture combustion) are selected, the ECU 30 is prepared in advance for each of the modes (4) and (5). Based on the map, the fuel injection amount is set based on the intake pressure detected by the intake pressure sensor 33 and the engine speed.
[0031]
Further, the throttle valve 15 opening is controlled according to the accelerator opening in a region close to full opening in the modes (1) to (3). In this region, the throttle valve opening decreases as the accelerator opening decreases.However, since the throttle valve opening changes, the intake pressure remains substantially constant even when the throttle valve opening changes. Absent.
On the other hand, in modes {circle around (4)} and {circle around (5)}, the throttle valve opening is controlled to an opening substantially equal to the accelerator opening. That is, when the accelerator opening (accelerator pedal depression amount) is 0, the throttle opening is also 0, and when the accelerator opening is 100% (when the accelerator pedal is fully depressed), the throttle opening is also 100% (fully open). Set to
[0032]
As described above, in the engine 1 of the present embodiment, the fuel injection amount is increased as the engine load increases, and the operation mode is changed and the throttle opening is changed according to the fuel injection amount.
Next, the start catalyst 5a, 5b and NO of this embodimentXThe storage reduction catalyst will be described.
[0033]
The start catalyst (SC) 5a, 5b uses a carrier such as cordierite formed in a honeycomb shape, and a thin coating of alumina is formed on the surface of the carrier, and platinum Pt, palladium Pd, rhodium Rh, etc. are formed on the alumina layer. It is comprised as a three-way catalyst which supported the noble metal catalyst component. The three-way catalyst is near HC, CO, NO near the stoichiometric air-fuel ratio.XThese three components are purified with high efficiency. The three way catalyst is NO when the air-fuel ratio of the inflowing exhaust gas becomes higher than the stoichiometric air-fuel ratio.XBecause the reduction capacity of the engine 1 is reduced, the NO in the exhaust when the engine 1 is operated with a lean air-fuel ratio is reduced.XCannot be sufficiently purified.
[0034]
NO of this embodimentXThe occlusion reduction catalyst 7 uses, for example, alumina as a carrier, and on this carrier, for example, an alkali metal such as potassium K, sodium Na 2, lithium Li 2, cesium Cs, an alkaline earth such as barium Ba 2, calcium Ca 2, lanthanum La 2, cerium. It carries at least one component selected from rare earths such as Ce and yttrium Y and a noble metal such as platinum Pt. NOXThe NOx storage reduction catalyst is used when the air-fuel ratio of the inflowing exhaust gas is lean.X(NO2, NO) to nitrate ion NO3 NO is absorbed when the inflowing exhaust gas becomes richXNO releaseXPerforms absorption and release action.
[0035]
This absorption / release mechanism will be described below using platinum Pt and barium Ba as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths, and rare earths.
When the oxygen concentration in the inflowing exhaust gas increases (that is, when the air-fuel ratio of the exhaust gas becomes a lean air-fuel ratio), these oxygens become O on the platinum Pt.2 Or O2-NO in the exhaustXIs O on platinum Pt2 Or O2-To react with NO2Is generated. In addition, NO in inflow exhaust2And NO produced by the above2Is absorbed in the absorbent while being further oxidized on platinum Pt and combined with barium oxide BaO and nitrate ions NO.3 Diffuses into the absorbent in the form of For this reason, NO in the exhaust gas in a lean atmosphereXIs NOXIt becomes absorbed in the form of nitrate in the absorbent.
[0036]
Further, when the oxygen concentration in the inflowing exhaust gas is greatly reduced (that is, when the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio or the rich air-fuel ratio), NO on the platinum Pt is increased.2Since the production amount decreases, the reaction proceeds in the reverse direction, and nitrate ion NO in the absorbent3 Is NO2From the absorbent in the form of In this case, reducing components such as CO, HC, CO2If there are components such as NO on the platinum Pt,2Is reduced.
[0037]
In the present embodiment, the engine 1 capable of lean air-fuel ratio operation is used, and when the engine 1 is operated at the lean air-fuel ratio, NOXThe storage reduction catalyst is NO in the exhaust gas flowing in.XTo absorb. Further, when the engine 1 is operated at a rich air-fuel ratio, NOXThe NOx storage reduction catalyst 7 has absorbed NO.XRelease, reduce and purify. In this embodiment, NO during lean air-fuel ratio operation.XNO absorbed by the storage reduction catalyst 7XWhen the amount increases, a rich spike operation is performed in which the engine air-fuel ratio is switched from a lean air-fuel ratio to a rich air-fuel ratio for a short time.XNO from storage reduction catalystXRelease and reduction purification (NOXThe regeneration of the storage reduction catalyst is performed.
[0038]
In this embodiment, the ECU 30 is NOXNO by increasing or decreasing the value of counter CNOXXNO absorbed and stored by the storage reduction catalyst 7XEstimate the amount. NOXNO absorbed by the storage reduction catalyst 7 per unit timeXAmount of NOXNO in exhaust flowing into the storage reduction catalyst per unit timeXQuantity, ie NO generated per unit time in engine 1XIt is proportional to the amount. On the other hand, NO generated per unit time in the engineXIs determined by the amount of fuel supplied to the engine, air-fuel ratio, exhaust flow rate, etc., so if the engine operating conditions are determined, NOXNO absorbed by the storage reduction catalystXYou can know the amount. In the present embodiment, the engine operation conditions (accelerator opening, engine speed, intake air amount, intake air pressure, air fuel ratio, fuel supply amount, etc.) are changed in advance, and the NO generated by the engine per unit time.XMeasure the amount, NOXNO absorbed by the storage reduction catalyst 7 per unit timeXThe amount is stored in the ROM of the ECU 30 in the form of a numerical map using, for example, the engine load (fuel injection amount) and the engine speed. The ECU 30 uses this map to determine NO per unit time from the engine load (fuel injection amount) and the engine speed at regular intervals (every unit time).XNO absorbed by the storage reduction catalystXCalculate the amount, NOXThe value of the counter CNOX is set to this NOXIncrease the amount absorbed. This makes NOXThe value of the counter CNOX is always NOXNO absorbed by the storage reduction catalyst 7XTo represent the amount of. The ECU 30 performs the above NO during the lean air-fuel ratio operation of the engine.XWhen the value of the counter CNOX increases to a predetermined value or more, the engine is operated for a short time (for example, about 0.5 to 1 second) in the above-described mode (4) or (5) (theoretical air-fuel ratio or rich air-fuel ratio homogeneous mixture). Rich spike operation that operates with combustion). As a result, NOXNO absorbed from the storage reduction catalystXIs released and reduced and purified. Note that the time required to keep the exhaust air-fuel ratio rich with a rich spike is NO in detail.XIt is determined by experiments or the like based on the type and capacity of the storage reduction catalyst. Also, execute rich spike and NOXNO from the storage reduction catalystXNO is released and reduced and purifiedXThe value of the counter CNOX is reset to 0. Like this, NOXNO of storage reduction catalyst 7XBy performing rich spike according to the amount of absorption, NOXThe storage reduction catalyst 7 is properly regenerated, and NOXNO absorbed by the storage reduction catalystXSaturation is prevented.
[0039]
However, in an engine operated in a wide air-fuel ratio range as in this embodiment, for example, when acceleration is performed from a lean air-fuel ratio (mode (1), (2)) of 20 or more, the engine load As a result, the operating air-fuel ratio is switched from the lean air-fuel ratio to the weak lean air-fuel ratio or the rich air-fuel ratio. As described above, when the engine operating air-fuel ratio is switched from the lean air-fuel ratio (mode (1), (2)) to the weak lean air-fuel ratio (mode (3)) during acceleration,XNO of storage reduction catalystXNO occlusion decreasesXOccurs spontaneously. In addition, when the air-fuel ratio is switched from the lean air-fuel ratio (mode (1), (2)) to the rich air-fuel ratio (mode (3) or (4)) at the time of sudden acceleration or the like, due to a sudden change in the air-fuel ratio. In order to avoid sudden torque changes, the engine spends several revolutions to change from mode (1) (lean air-fuel ratio stratified combustion (injection once in the compression stroke)) to mode (2) (lean air-fuel ratio homogeneous mixture / stratified combustion ( (5) (Rich air-fuel ratio homogeneous mixture combustion (intake stroke) after operation mode of intake stroke / compression stroke twice injection) and mode (3) (lean air-fuel ratio homogeneous mixture combustion (intake stroke once injection)) Therefore, when the engine accelerates, the engine operating air-fuel ratio always changes to the rich direction.XIt passes through a weak lean air-fuel ratio region (20 or less in air-fuel ratio) in which the storage capacity of the storage reduction catalyst decreases. In this area, NOXNO stored in the storage reduction catalystXOf which, the amount of NO that exceeds the maximum storage amountXIs NOXAlthough it is spontaneously released from the storage reduction catalyst, it is released because the exhaust air-fuel ratio is lean.XIs not reduced and remains unpurified NOXIn some cases, it flows out downstream of the storage reduction catalyst. Further, as described with reference to FIG. 5, NO exhausted from the engine in the weak lean air-fuel ratio region.XSince the amount also increases, when the engine operating air-fuel ratio is changed from the lean air-fuel ratio to the weak lean air-fuel ratio, NOXNO released from the storage reduction catalystXAs well as NO emissions from institutionsXNO unpurifiedXThere is a risk of flowing out downstream of the storage reduction catalyst.
[0040]
Therefore, in the embodiment described below, when the air-fuel ratio passes through the weak lean air-fuel ratio region due to engine acceleration or the like, or the operating air-fuel ratio may change in the rich direction within the weak lean air-fuel ratio region, When the engine operating air-fuel ratio actually enters the weak lean air-fuel ratio region, NOXNO from storage reduction catalystXBefore spontaneous release of NO occursXAdjust the exhaust air-fuel ratio flowing into the storage reduction catalyst to a rich air-fuel ratio and force NOXNO from the storage reduction catalystXIs released to reduce and purify. Thus, NO in advanceXNO absorbed from the storage reduction catalystXNO is released when the engine operating air-fuel ratio is actually in the weak lean air-fuel ratio region.XNO that should be released spontaneously to the storage reduction catalystXIs not occluded. For this reason, even during the passage of the weak lean air-fuel ratio region, NOXNO from storage reduction catalystXDoes not occur spontaneously. NOXIn the state where the occlusion amount is reduced to almost zero, even in the weak lean air-fuel ratio region, NOXThere is a sufficient margin in the storage capacity of the storage reduction catalyst. Therefore, a relatively large amount of NO from the engine in the weak lean air-fuel ratio region.XEven if NO is discharged, NO dischargedXThe total amount of NOXUnpurified NO, now absorbed by the storage reduction catalystXIs NOXA situation of flowing out downstream of the storage reduction catalyst is prevented.
[0041]
The above NOXNO to prevent spontaneous releaseXAn embodiment of the release control operation will be described.
(1) First embodiment
In the present embodiment, the ECU 30 determines that the driver is requesting acceleration based on the rate of increase in the accelerator opening. When the driver requests acceleration, acceleration is executed in a short time and the air-fuel ratio changes in the rich direction. However, actually, in the electronically controlled throttle valve as in this embodiment, the throttle valve opening does not change immediately due to the change in the accelerator opening, but the throttle valve opening actually starts changing from the change in the accelerator opening. Slight delay time TdOccurs.
[0042]
That is, when the accelerator opening changes, the ECU 30 calculates a target throttle valve opening according to the accelerator opening, and outputs a control signal to the actuator 15 b of the throttle valve 15 to drive the throttle valve 15. For this reason, the time required for calculating the throttle opening and the time from the input of the control signal to the start of the operation of the actuator 15b from the change of the accelerator opening to the actual operation of the throttle valve, and further the throttle It takes time such as time required for the torque of the actuator 15b to increase until the reaction force due to friction or the like of each part of the valve mechanism is overcome, and the sum of these times is the delay time T.dIt becomes. Usually TdIs a time from several tens of milliseconds to about 200 milliseconds. In the present embodiment, the delay time T after the accelerator opening starts changing.dUntil a period of time elapses, a predetermined amount of fuel is simultaneously injected into all the cylinders. This fuel injection is an asynchronous fuel injection performed independently of the stroke of each cylinder. Further, the fuel injection amount in the asynchronous fuel injection is set so that the exhaust air-fuel ratio from each cylinder is richer than the stoichiometric air-fuel ratio. Thereby, in some cylinders of the engine, fuel by asynchronous fuel injection is supplied during the intake or compression stroke of the cylinder. In this case, the combustion air-fuel ratio in the combustion chamber becomes the rich air-fuel ratio, and the exhaust with the rich air-fuel ratio is discharged from the cylinder. In other cylinders, fuel is supplied by asynchronous fuel injection during the expansion or exhaust stroke of the cylinder. In this case, since asynchronous fuel injection becomes secondary fuel injection, the injected fuel is discharged to the exhaust passage without contributing to combustion, and the combustion air-fuel ratio in the combustion chamber is not affected by the asynchronous fuel injection. For this reason, NOXA rich air-fuel ratio exhaust gas containing a large amount of unburned hydrocarbons will reach the storage reduction catalyst, and in a short time NOXNO from the storage reduction catalystXIs released and reduced and purified. Therefore, the delay time TdWhen the throttle valve opening actually starts changing afterXAlmost all of the NO from the storage reduction catalystXHas been released and NO due to changes in throttle openingXNO even when the exhaust air-fuel ratio flowing into the storage reduction catalyst is in the weak lean air-fuel ratio regionXDoes not occur spontaneously. NOXThe NOx discharged from the engine in the weak lean air-fuel ratio region because the NOx storage reduction catalyst is in a state of almost zero storage.XIs NOXIt is absorbed by the storage reduction catalyst and does not flow downstream.
[0043]
FIG. 2 shows the above NO.XIt is a flowchart explaining discharge | release control operation. This operation is performed by a routine executed by the ECU 30 at regular intervals.
When the operation of FIG. 2 starts, it is determined in step 201 whether or not the change ΔACCP in the accelerator opening from the previous routine execution is greater than a predetermined value α. If ΔACCP ≦ α, the accelerator pedal depression amount does not increase greatly, and it is considered that acceleration is not currently requested by the driver. Therefore, this operation sets the value of the time counter CT described later in step 215. Exit immediately after setting to 0. On the other hand, if ΔACCP> α, it means that the driver has depressed the accelerator pedal at a certain speed or higher, and it is determined that the driver is requesting acceleration. For this reason, NOXSince there is a possibility that the discharge operation needs to be performed, the process proceeds to step 203, and the current NOXNO stored in the storage reduction catalystXNO representing quantityXIt is determined whether or not the value of the counter CNOX exceeds a predetermined value β. β is practically NOXNO of storage reduction catalystXIt is a value of CNOX that can be considered that the occlusion amount is almost zero. NO if CNOX ≦ βXSince it is not necessary to perform the discharge operation, this operation is immediately terminated after executing Step 215.
[0044]
If CNOX> β in step 203, then in step 205, the current NO.XIt is determined based on the value of the execution permission flag XAREA whether the conditions under which the discharge operation can be performed are satisfied. For example, when the engine is idling, the engine speed may fluctuate significantly when asynchronous injection is performed. The ECU 30 sets a value of the execution permission flag XAREA to 0 by a routine that is separately executed, for example, when the engine is in an idling operation.XProhibit execution of release operation. Therefore, if XAREA ≠ 1 in step 205, the operation is terminated immediately after execution of step 215. On the other hand, if XAREA = 1 in step 205, that is, the current NO.XIf it is possible to execute the discharge operation, NO in steps 207 to 213XA release operation is performed.
[0045]
That is, in step 207, the value of the time counter CT is set to the predetermined value CT.dIt is determined whether it is smaller than CT <CTdIf NO, NO at step 209XThe fuel injection amount for the release operation is calculated, and immediately, asynchronous injection of the amount of fuel calculated for all the cylinders in step 211 is executed. Then, after the asynchronous injection is executed, the value of the time counter CT is increased by 1 in step 213, and this operation ends.
[0046]
Since the time counter CT is always reset to 0 in step 215 when ΔACCP ≦ α in step 201, the value of CT in step 213 represents the number of operation executions after ΔACCP> α in step 201. It becomes. Further, since this operation is executed at regular time intervals, the value of the counter CT corresponds to the elapsed time after the acceleration request is made (after ΔACCP> α). Therefore, in the present embodiment, the predetermined value CT is obtained after an acceleration request is made.dAsynchronous injection is executed every time the operation is executed until the time elapses. CTdIs the delay time T until the throttle valve opening starts to change.dIs set to a value corresponding to. That is, by performing the operation of FIG. 2, NO is detected after the driver's acceleration request is detected until the throttle valve opening starts to change in response to the acceleration request.XThe release operation will be performed, and the engine operating state will change due to the change in the throttle opening.XNO until the spontaneous release ofXNO stored in the storage reduction catalystXAlmost the entire amount is released and reduced and purified. For this reason, according to this embodiment, NO changes due to changes in the engine operating state.XUnpurified NO downstream of the storage reduction catalystXIs prevented from leaking.
[0047]
(2) Second embodiment
Next, a second embodiment of the present invention will be described. In the first embodiment, NO is detected during the delay time from when the driver requests acceleration until the throttle valve opening starts to change.XIn the present embodiment, when a driver's acceleration request is detected, first, NO is performed.XThe difference from the first embodiment is that the release operation is executed and the change of the throttle valve opening is permitted after the release operation is completed. As a result, NOXSince the engine operating state does not change until after the discharge operation has been executed, it is ensured that the NO changes when the operating state changes.XNO of storage reduction catalystXIt becomes possible to make the occlusion amount substantially zero.
[0048]
FIG. 3 shows the above NO.XIt is a flowchart explaining discharge | release control operation. This operation is performed by a routine executed by the ECU 30 at regular intervals.
When the operation of FIG. 3 starts, it is determined in step 301 whether or not there is a driver's acceleration request, and in step 303 the current NO.XNO of storage reduction catalystXWhether or not the occlusion amount is equal to or greater than the predetermined value β, step 305 isXIt is determined whether or not the discharge operation can be executed. Steps 301 to 305 are the same operations as steps 201 to 205 in FIG.
[0049]
If at least one of the conditions in steps 301 to 305 is not satisfied, the value of a flag XINJ, which will be described later, is reset to 0 in step 315, and this operation executes a throttle valve opening control operation in step 317 End after. In step 317, the ECU 30 calculates the target opening of the throttle valve 15 from a predetermined relationship based on the accelerator opening, and drives the actuator 15b to control the throttle valve 15 opening to the target opening.
[0050]
If all the conditions in steps 301 to 305 are satisfied, it is determined in step 307 whether or not the value of the flag XINJ is set to 1, and if XINJ = 1, step 317 is executed.
If XINJ ≠ 1 at step 307, then NO at step 309.XThe fuel injection amount for the release operation is calculated, and immediately after that, asynchronous fuel injection for all cylinders is executed in step 311. Steps 309 and 311 are the same operations as steps 209 and 211 in FIG. When asynchronous injection is completed as described above, in step 313, the value of the flag XINJ described above is set to 1, and the current operation ends.
[0051]
In this embodiment, when the acceleration request is not detected (when ΔACCP ≦ α in step 301), the value of the flag XINJ is always reset to 0 in step 315. Therefore, when an acceleration request (ΔACCP> α in step 301) is first detected, asynchronous fuel injection in steps 309 and 311 is executed in step 307 because XINJ = 0, and this asynchronous fuel injection is executed. Until this is done, the throttle valve opening control in step 317 is not executed. In addition, when asynchronous fuel injection is executed once after the acceleration request is detected, the value of the flag XINJ is set to 1 in step 313. Therefore, step 317 is executed immediately after step 307 from the next operation. The throttle valve opening degree control is executed.
[0052]
That is, in this embodiment, when there is a driver's acceleration request, first, asynchronous fuel injection is executed once for all cylinders (steps 309 to 313) and NO.XRelease operation, NOXThe throttle opening control operation is started only after the releasing operation is completed (step 313). This ensures that when the engine operating state changes, NOXBecause the discharge operation is complete, NOXUnpurified NO downstream of the storage reduction catalystXIs reliably prevented from flowing out.
[0053]
In the first and second embodiments, NO is used.XAsynchronous fuel injection is performed during the release operation so that the combustion air-fuel ratio of some cylinders is made richer than the theoretical air-fuel ratio, and fuel that does not contribute to combustion is supplied to other cylinders. For this reason, compared with the case where the combustion air-fuel ratios of all the cylinders are made richer than the stoichiometric air-fuel ratio, the increase in the output torque of the engine as a whole is reduced and the occurrence of torque shock is prevented.
[0054]
Further, in an engine provided with an exhaust port fuel injection valve, exhaust port fuel injection may be executed instead of the asynchronous fuel injection shown in FIGS. In this case, since the fuel injected into the exhaust port does not contribute to combustion, the engine combustion air-fuel ratio is not affected in all cylinders, and fluctuations in output torque are completely prevented.
Further, NO in step 209 in FIG. 2 and step 309 in FIG.XThe fuel injection amount for the discharge operation is NOXAlthough it may be a constant value so that the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst becomes a sufficiently rich air-fuel ratio, it may be calculated according to the engine operating state.
[0055]
For example, if the engine operating air-fuel ratio is relatively low, NOXEven if the fuel injection amount for the release operation is relatively small, the exhaust air-fuel ratio can be made sufficiently rich. For this reason, NOXThe fuel injection amount for the release operation may be set according to the engine operating air-fuel ratio.
NOXA large amount of NO in the storage reduction catalystXNO is stored, NOXNO released by the discharge operationXA large amount of HC (hydrocarbon) is required to purify the water. For this reason, NOXThe fuel injection amount for the discharge operation is NOXNO of storage reduction catalystXStorage amount (NOXIt may be set according to the value of the counter CNOX.
[0056]
【The invention's effect】
According to the invention described in each claim, the engine in which the operating air-fuel ratio changes in the region from the stoichiometric air-fuel ratio to the lean air-fuel ratio is NO.XWhen the storage reduction catalyst is applied, NO changes due to changes in engine operating conditions.XUnpurified NO from the storage reduction catalystXThis has the common effect of preventing the release of.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an embodiment in which the present invention is applied to an automobile internal combustion engine.
FIG. 2 shows NO of the present invention.XIt is a flowchart explaining one Embodiment of discharge | release control operation.
FIG. 3 shows NO of the present invention.XIt is a flowchart explaining another embodiment of discharge | release control operation.
FIG. 4 NOXNO of storage reduction catalystXIt is a figure explaining the change tendency by the air fuel ratio of storage capacity.
FIG. 5: NO of internal combustion engineXIt is a figure explaining the change tendency by the operating air fuel ratio of discharge | emission amount.
[Explanation of symbols]
1. Internal combustion engine
2 ... Exhaust passage
7 ... NOXOcclusion reduction catalyst
15 ... Throttle valve
29a, 29b, 31 ... air-fuel ratio sensor
30 ... Electronic control unit (ECU)
37 ... Accelerator opening sensor

Claims (5)

必要に応じて理論空燃比よりリーンな空燃比から理論空燃比よりリッチな空燃比までの空燃比範囲で運転空燃比を変更する希薄燃焼内燃機関の排気浄化装置であって、
機関排気通路に配置された、流入する排気の空燃比がリーンのときに排気中のNOXを吸収し流入する排気中の酸素濃度が低下すると吸収したNOXを放出するNOX吸蔵還元触媒と、
機関運転状態の変化に起因するNOX吸蔵還元触媒からのNOXの自然放出が生じることを事前に予測する予測手段と、
前記予測手段によりNOX吸蔵還元触媒からの前記NOXの自然放出が予測されたときに、NOX吸蔵還元触媒に流入する排気の空燃比をリッチ空燃比に調整し、前記自然放出が生じる前にNOX吸蔵還元触媒から吸収したNOXを放出させ還元浄化するNOX放出操作を行なうNOX放出制御手段と、
を備え、更に、
前記内燃機関は、機関吸気通路に配置されたスロットル弁と、運転者の操作するアクセル手段と、運転者による前記アクセル手段の操作に応じて前記スロットル弁開度を制御して機関運転状態を変化させるスロットル制御手段とを備え、
前記予測手段は前記アクセル手段の操作に基づいて前記NO X の自然放出が生じることを事前に予測し、
前記NO X 放出制御手段は前記NO X の自然放出が予測されたときに、運転者による前記アクセル手段の操作後、前記スロットル制御手段によりスロットル弁開度が変更されるまでの間に前記NO X 放出操作を行なう希薄燃焼内燃機関の排気浄化装置。
An exhaust emission control device for a lean combustion internal combustion engine that changes the operating air-fuel ratio in an air-fuel ratio range from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to an air-fuel ratio richer than the stoichiometric air-fuel ratio as required,
Disposed in the engine exhaust passage, and the NO X storage reduction catalyst air-fuel ratio of the exhaust gas flowing into the oxygen concentration in the exhaust gas to absorb flowing the NO X in the exhaust gas when the lean releasing NO X absorbed to decrease ,
A predicting means for predicting in advance that spontaneous release of NO X from the NO X storage reduction catalyst due to a change in engine operating state occurs;
When the spontaneous emission of the NO X from the NO X storage reduction catalyst has been predicted by the predicting means to adjust the air-fuel ratio of the exhaust gas flowing to the NO X occluding and reducing catalyst to a rich air-fuel ratio, before the spontaneous emission occurs and NO X emission control means for NO X release operation to release NO X absorbed from the NO X storage reduction catalyst reduces and purifies the,
In addition,
The internal combustion engine changes the engine operating state by controlling the throttle valve opening according to the throttle valve disposed in the engine intake passage, the accelerator means operated by the driver, and the operation of the accelerator means by the driver. Throttle control means for causing
The predicting means predicts in advance that spontaneous release of the NO x will occur based on the operation of the accelerator means ,
When the the NO X release controlling means predicted spontaneous emission of the NO X, after the operation of the accelerator means by the driver, the until the throttle valve opening is changed by said throttle control means NO X An exhaust emission control device for a lean combustion internal combustion engine that performs a discharge operation.
必要に応じて理論空燃比よりリーンな空燃比から理論空燃比よりリッチな空燃比までの空燃比範囲で運転空燃比を変更する希薄燃焼内燃機関の排気浄化装置であって、An exhaust emission control device for a lean combustion internal combustion engine that changes the operating air-fuel ratio in an air-fuel ratio range from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to an air-fuel ratio richer than the stoichiometric air-fuel ratio as required,
機関排気通路に配置された、流入する排気の空燃比がリーンのときに排気中のNONO in the exhaust when the air-fuel ratio of the exhaust flowing into the engine exhaust passage is lean XX を吸収し流入する排気中の酸素濃度が低下すると吸収したNONO absorbed when the oxygen concentration in the exhaust gas XX を放出するNONO release XX 吸蔵還元触媒と、An occlusion reduction catalyst;
機関運転状態の変化に起因するNONO resulting from changes in engine operating conditions XX 吸蔵還元触媒からのNONO from storage reduction catalyst XX の自然放出が生じることを事前に予測する予測手段と、A predictive means for predicting in advance that spontaneous release of
前記予測手段によりNONO by the prediction means XX 吸蔵還元触媒からの前記NOThe NO from the storage reduction catalyst XX の自然放出が予測されたときに、NOWhen spontaneous release of NO is predicted, NO XX 吸蔵還元触媒に流入する排気の空燃比をリッチ空燃比に調整し、前記自然放出が生じる前にNOThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is adjusted to a rich air-fuel ratio, and before the spontaneous release occurs, NO XX 吸蔵還元触媒から吸収したNONO absorbed from the storage reduction catalyst XX を放出させ還元浄化するNONO is released and reduced and purified XX 放出操作を行なうNONO to perform the discharge operation XX 放出制御手段と、Release control means;
を備え更に、In addition,
前記内燃機関は、機関吸気通路に配置されたスロットル弁と、運転者の操作するアクセル手段と、運転者による前記アクセル手段の操作に応じて前記スロットル弁開度を制御して機関運転状態を変化させるスロットル制御手段とを備え、The internal combustion engine changes the engine operating state by controlling the throttle valve opening according to the throttle valve disposed in the engine intake passage, the accelerator means operated by the driver, and the operation of the accelerator means by the driver. Throttle control means for causing
前記予測手段は前記アクセル手段の操作に基づいて前記NOThe prediction means is based on the operation of the accelerator means and the NO XX の自然放出が生じることを事前に予測し、Predicting the spontaneous release of
前記NONO XX 放出制御手段は、前記NOThe release control means is the NO XX の自然放出が予測されたときに前記NOWhen the spontaneous release of NO is predicted XX 放出操作が完了するまで前記スロットル制御手段による前記スロットル弁開度の変更を禁止する希薄燃焼内燃機関の排気浄化装置。An exhaust emission control device for a lean combustion internal combustion engine, which prohibits a change of the throttle valve opening by the throttle control means until a release operation is completed.
前記予測手段は、機関の加速が予測されるときに前記NO X の自然放出が生じると判断する請求項1または2に記載の希薄燃焼内燃機関の排気浄化装置 The exhaust emission control device of a lean burn internal combustion engine according to claim 1 or 2, wherein the prediction means determines that the spontaneous release of the NO x occurs when the acceleration of the engine is predicted . 前記NONO XX 放出制御手段は、前記機関をリッチ空燃比で運転することにより、NOThe release control means operates the engine at a rich air-fuel ratio, thereby XX 吸蔵還元触媒に流入する排気の空燃比をリッチ空燃比に調整する請求項1または2に記載の希薄燃焼内燃機関の排気浄化装置。The exhaust gas purification apparatus for a lean combustion internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is adjusted to a rich air-fuel ratio. 前記NO X 放出制御手段は、前記機関に機関燃焼室内の燃焼に寄与しない燃料を供給することにより、NO X 吸蔵還元触媒に流入する排気の空燃比をリッチ空 燃比に調整する請求項1または2に記載の希薄燃焼内燃機関の排気浄化装置 The NO x release control means adjusts the air- fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst to a rich air- fuel ratio by supplying the engine with fuel that does not contribute to combustion in the engine combustion chamber. 2. An exhaust emission control device for a lean burn internal combustion engine .
JP20630898A 1998-07-21 1998-07-22 Exhaust gas purification device for lean combustion internal combustion engine Expired - Lifetime JP3633295B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20630898A JP3633295B2 (en) 1998-07-22 1998-07-22 Exhaust gas purification device for lean combustion internal combustion engine
US09/346,710 US6289672B1 (en) 1998-07-21 1999-07-02 Exhaust gas purification device for an internal combustion engine
DE69922883T DE69922883T2 (en) 1998-07-21 1999-07-20 Exhaust gas purification device for an internal combustion engine
DE69928844T DE69928844T2 (en) 1998-07-21 1999-07-20 Exhaust gas purification device for an internal combustion engine
EP04009436A EP1443196B1 (en) 1998-07-21 1999-07-20 An exhaust gas purification device for an internal combustion engine
EP99114075A EP0974746B1 (en) 1998-07-21 1999-07-20 An exhaust gas purification device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20630898A JP3633295B2 (en) 1998-07-22 1998-07-22 Exhaust gas purification device for lean combustion internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000038943A JP2000038943A (en) 2000-02-08
JP3633295B2 true JP3633295B2 (en) 2005-03-30

Family

ID=16521161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20630898A Expired - Lifetime JP3633295B2 (en) 1998-07-21 1998-07-22 Exhaust gas purification device for lean combustion internal combustion engine

Country Status (1)

Country Link
JP (1) JP3633295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157059A1 (en) * 2011-05-16 2012-11-22 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997177B2 (en) * 2008-06-09 2012-08-08 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
ES2731523T3 (en) * 2012-07-27 2019-11-15 Toyota Motor Co Ltd Exhaust purification device of an internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157059A1 (en) * 2011-05-16 2012-11-22 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
CN103534452A (en) * 2011-05-16 2014-01-22 丰田自动车株式会社 Air-fuel ratio control device for internal combustion engine
JP5664884B2 (en) * 2011-05-16 2015-02-04 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
RU2566093C2 (en) * 2011-05-16 2015-10-20 Тойота Дзидося Кабусики Кайся Device controlling ratio of components of fuel-air mix for internal combustion engine
US9212583B2 (en) 2011-05-16 2015-12-15 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JP2000038943A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
EP0974746B1 (en) An exhaust gas purification device for an internal combustion engine
EP0974747B1 (en) A control system for an internal combustion engine
US6233925B1 (en) Exhaust discharge control device for internal combustion engine
EP0971104B1 (en) An exhaust gas purification device for an internal combustion engine
JP4208012B2 (en) Exhaust gas purification device for internal combustion engine
US20100186386A1 (en) Exhaust gas purification apparatus for internal combustion engine and method of controlling the same
JP3788049B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP2001132436A (en) Exhaust gas heating device for internal combustion engine
JPH11210570A (en) Exhaust emission control device for lean combustion internal combustion engine
JP2001159363A (en) Exhaust emission control device for internal combustion engine
JP3633295B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP3680237B2 (en) Exhaust gas purification device for internal combustion engine
JP3624702B2 (en) Control device for internal combustion engine
JP3680241B2 (en) Exhaust gas purification device for internal combustion engine
JP3633312B2 (en) Exhaust gas purification device for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP3478135B2 (en) Exhaust gas purification device for internal combustion engine
JP3956951B2 (en) Fuel injection device for internal combustion engine
JP3890775B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000110643A (en) Fuel injection device for internal combustion engine
JP3680245B2 (en) Fuel injection control device for internal combustion engine
JP2003020982A (en) Method of purifying emission of internal combustion engine
JP2005325693A (en) Exhaust emission control device for internal combustion engine
JP2000170525A (en) Exhaust emission control device for internal combustion engine
JP2000145438A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

EXPY Cancellation because of completion of term