JP3633187B2 - Method for producing group III-V compound semiconductor film containing nitrogen - Google Patents

Method for producing group III-V compound semiconductor film containing nitrogen Download PDF

Info

Publication number
JP3633187B2
JP3633187B2 JP04603297A JP4603297A JP3633187B2 JP 3633187 B2 JP3633187 B2 JP 3633187B2 JP 04603297 A JP04603297 A JP 04603297A JP 4603297 A JP4603297 A JP 4603297A JP 3633187 B2 JP3633187 B2 JP 3633187B2
Authority
JP
Japan
Prior art keywords
solid source
semiconductor film
compound semiconductor
group iii
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04603297A
Other languages
Japanese (ja)
Other versions
JPH10242058A (en
Inventor
文保 田上
慎吾 榊原
洋 藤安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP04603297A priority Critical patent/JP3633187B2/en
Publication of JPH10242058A publication Critical patent/JPH10242058A/en
Application granted granted Critical
Publication of JP3633187B2 publication Critical patent/JP3633187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、窒素(N)を含むIII−V族化合物半導体膜の製造方法に係り、特に結晶性に優れたp型化合物半導体膜を得るための不純物添加法に関する。
【0002】
【従来の技術】
III−V族化合物半導体のうちGaNは、青色発光素子用の半導体材料として従来より注目されている。しかしGaNでは、n型は得られるが、自己補償効果によってp型半導体が簡単には得られず、従ってpn接合形成が容易ではない。
【0003】
例えば、良質の化合物半導体膜を得る方法として、HWE(Hot Wall Epitaxy)法が知られている。HWE装置を用いてp型のGaN膜を得るには、半導体膜の母相となる固体ソース(Ga)を減圧チャンバ内に配置してこれを加熱蒸発させると同時に、チャンバ外部からは、気体ソースNHを固体ソース上に供給する。そしてこれらの原料をホットウォール部で熱分解する。更にチャンバ内にはアクセプタ不純物源としてMg単体またはMgの有機化合物を配置してこれを加熱蒸発させてやはりホットウォール部で熱分解させる。Mgの有機化合物としては、ビスシクロペンタジエルマグネシウム(CpMg)が一般に用いられる。そしてホットウォール部の上に配置された成膜用基板に、アクセプタ不純物であるMgを添加したp型GaN膜を形成する。
【0004】
【発明が解決しようとする課題】
しかし、上述したGaNへのアクセプタ不純物Mgの添加法では、III族サイトへの添加のみを考えており、形成されるGaN膜はNが抜けることにより生じる原子空孔が多いものとなる。そしてこの原子空孔により、結晶性が劣化するだけでなく、ドナーライクの不純物レベルが生じて、高い正孔濃度を持つ良質のp型GaN膜が得られない。
【0005】
この発明は、上記事情を考慮してなされたもので、良質のp型半導体膜を得ることを可能とした窒素を含むIII−V族化合物半導体膜の製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
この発明は、減圧されたチャンバ内で半導体膜の母相となる第1の固体ソースを含む原料を熱分解して成膜用基板に窒素を含むIII−V族化合物半導体膜を形成する方法において、前記チャンバ内にMgを含む第2の固体ソースを配置して、この第2の固体ソースを前記原料と共に熱分解し、生成されたMgをアクセプタ不純物として添加した化合物半導体膜を形成することを特徴とする。
この発明において好ましくは、前記第2の固体ソースを収容した第2の固体ソース容器は、前記第1の固体ソースを収容した第1の固体ソース容器と同軸的に第1の固体ソース容器の下方に配置し、前記成膜用基板は前記第1の固体ソース容器の上方に配置し、かつ前記第1の固体ソース容器と成膜用基板の間には各固体ソースからの蒸発気体を熱分解するガス案内管を配置する。
【0007】
この発明によると、GaN等への不純物ソースとして固体ソースである窒化マグネシウム(Mg)を用いることにより、熱分解により生成されるMgがアクセプタ不純物としてGaNに添加されると同時に、Nが原子空孔を補償する働きをする。これにより、原子空孔の少ない良質の結晶性を有し、かつ高い正孔濃度を持つp型のIII−V族化合物半導体膜を得ることができる。
また、一般に固体の窒化物はBNに代表されるように蒸気圧が低く、石英容器等に入れて加熱蒸発させることは難しいが、Mgは超高真空下でなくても数100℃程度の加熱で蒸発させることができる。従って、半導体膜の母相となるGaを第1の固体ソースとし、チャンバ外部からは気体ソースNHを供給し、また不純物源となるMgを含む第2の固体ソースを用意したHWE装置を用いて、容易にp型GaN膜を形成することができる。
【0008】
【発明の実施の形態】
以下、図面を参照して、この発明の実施例を説明する。
図1は、この発明の一実施例に用いたHWE装置の構成を示す。チャンバ11はHWE装置本体であり、内部は真空ポンプ12により減圧される。チャンバ11内部には、半導体膜の母相形成用の第1の固定ソース(この実施例の場合Ga)を収容する筒状の第1の固体ソース容器13と、不純物源となる第2の固体ソース(この実施例の場合Mg)を収容する筒状の第2の固体ソース容器14が同軸的に、かつ第2の固体ソース容器14が第1の固体ソース容器13の下方に位置するように配置されている。即ち第2の固体ソース容器14は、その上端を第1の固体ソース容器13の底部を貫通させて、第2の固体ソース容器14内部に開口するように配置される。
【0009】
これら二つの固体ソースの上方には、ホルダー19により保持されヒータ20により加熱される成膜用基板18が配置される。また、固体ソースと基板保持部の間には、各固体ソースからの蒸発気体を熱分解して基板18の面に案内するガス案内管16が、図の例では第1の固体ソース容器13と一体に形成されている。これら固体ソース容器13,14及びガス案内管15は全て石英管であり、これらの周囲には、加熱ヒータ16a,16bが配設される。加熱ヒータ16a,16bは熱遮蔽体17a,17bにより囲まれている。
即ちこの実施例の装置は、母相形成用の固体ソース部Bの下に、不純物源の固体ソース部A(通常、リザーバと呼ばれる)が配置され、固体ソース部Bの上のガス案内管15の部分が各固体ソースからの蒸発気体を熱分解させるホットウォール部Cとなっている。
【0010】
GaNを成膜する場合のもう一つの原料Nは、チャンバ11の外部に設けられた気体ソースボンベ21からNHの形で供給される。即ちボンベ21のNHガスは、バルブ22及びマスフローコントローラ23を介し、チャンバ11を貫通するガス導入管24を介して、ガス案内管15の底部に供給されるようになっている。このようにして外部から供給されるNHガスもガス案内管15において熱分解されることになる。
【0011】
次に具体的に、図1のHWE装置を用いてp型GaN膜を成膜する場合を説明すると、前述のように第1の固体ソース容器13にはGaを、第2の固体ソース容器14にはMgを入れる。成膜用基板18には、(0001)面を主面とするAl基板を用いる。但し、SiC,ZnO,GaAs等の基板を用いることもできる。チャンバ11内を10−6Torr程度まで減圧した状態で、第1の固体ソース容器13を750〜950℃に、第2の固体ソース容器14を100〜700℃にそれぞれ加熱し、またガス案内管15を560〜600℃に加熱する。これにより各固体ソースは蒸発し、その蒸発気体と外部から供給されたNHはガス案内管14、即ちホットウォール部Cで熱分解されて基板18に供給され、基板18にGaN膜が成膜される。
【0012】
この実施例においては、不純物源であるMgが熱分解されて、MgとNが生成され、Mgがアクセプタ不純物となり、Nは形成されるGaNからNが抜けることによるN不足を補償する働きをする。即ち、Nを含む固体不純物ソースを用いることにより、原料ガスNHだけでは不十分になり易いV族サイトのN不足を補い、Nが抜けることにより生成されるN空孔によるドナーの密度を減らし、同時にIII族サイトへのアクセプタであるMg添加が可能となる。従って、得られるGaN膜は原子空孔の少ない良質の結晶膜となり、またドナーとして作用する原子空孔が少なくなる結果、高い正孔濃度のp型GaN層が得られる。
【0013】
従来技術のように、NHを熱分解することによってのみNを供給する場合において、GaとNの蒸気圧を比較すると、Nの方が高く、特に結晶成長温度(1000℃)においては、Nの蒸気圧が更に高まり、基板上に一旦GaNが形成されても、GaN膜中からNが離脱してしまう。NがGaN膜から離脱することによりN空孔が生じ、このN空孔がドナーとなってしまい、n型半導体となる傾向を示していた。
しかしこの実施例によれば、アクセプタとして働くMgをGaN膜のGa格子に取り込み、かつNを補償することでN空孔の発生を抑制しているので、ドナー密度を小さくすることができる。
成長したGaN膜は、GaN膜中の正味のアクセプタ密度NaとGaN膜中の正味のドナー密度Ndとの差でp型かn型かが決まる。この実施例においては、Mgを導入することでアクセプタ密度Naを大きくし、更にN空孔を減らすことでドナー密度Ndを小さくしており、GaN膜を良質なp型半導体膜として形成することが可能になる。
【0014】
この発明は、上記実施例に限られない。例えば実施例では、GaN膜を形成したが、AlNやInN等、Nを含む他のIII−V族化合物半導体膜を成膜する場合に同様にこの発明を適用することができる。
【0015】
【発明の効果】
以上述べたようにこの発明によれば、Nを含むIII−V族化合物半導体膜への不純物ソースとして固体ソースMgを用いることにより、熱分解により生成されるMgがアクセプタ不純物としてGaNに添加されると同時に、Nが原子空孔を補償する作用をし、良質の結晶性を有しかつ高い正孔濃度を持つp型の化合物半導体膜を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例に用いたHWE装置の構成を示す。
【符号の説明】
11…チャンバ、12…真空ポンプ、13…第1の固体ソース容器、14…第2の固体ソース容器、15…ガス案内管(ホットウォール部)、16a,16b…ヒータ、17a,17b…熱遮蔽体、18…成膜用基板、19…ホルダー、20…ヒータ、21…ガスボンベ、22…バルブ、23…マスフローコントローラ、24…ガス導入管、Ga…第1の固体ソース、Mg…第2の固体ソース。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a group III-V compound semiconductor film containing nitrogen (N), and more particularly, to an impurity addition method for obtaining a p-type compound semiconductor film having excellent crystallinity.
[0002]
[Prior art]
Of the group III-V compound semiconductors, GaN has been attracting attention as a semiconductor material for blue light emitting devices. However, with GaN, an n-type can be obtained, but a p-type semiconductor cannot be easily obtained due to a self-compensation effect, and therefore, a pn junction cannot be easily formed.
[0003]
For example, an HWE (Hot Wall Epitaxy) method is known as a method for obtaining a high-quality compound semiconductor film. In order to obtain a p-type GaN film using the HWE apparatus, a solid source (Ga) serving as a parent phase of a semiconductor film is placed in a reduced pressure chamber and is heated and evaporated. NH 3 is fed onto the solid source. These raw materials are pyrolyzed at the hot wall. Further, Mg alone or an organic compound of Mg is disposed as an acceptor impurity source in the chamber, and this is heated and evaporated to be thermally decomposed at the hot wall portion. As an organic compound of Mg, biscyclopentadier magnesium (Cp 2 Mg) is generally used. Then, a p-type GaN film to which Mg, which is an acceptor impurity, is added is formed on the deposition substrate disposed on the hot wall portion.
[0004]
[Problems to be solved by the invention]
However, in the above-described method of adding the acceptor impurity Mg to GaN, only addition to the group III site is considered, and the GaN film to be formed has many atomic vacancies generated when N escapes. The atomic vacancies not only deteriorate the crystallinity but also cause a donor-like impurity level, and a high-quality p-type GaN film having a high hole concentration cannot be obtained.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a group III-V compound semiconductor film containing nitrogen that makes it possible to obtain a high-quality p-type semiconductor film.
[0006]
[Means for Solving the Problems]
The present invention relates to a method for forming a III-V compound semiconductor film containing nitrogen on a film formation substrate by thermally decomposing a raw material containing a first solid source serving as a parent phase of a semiconductor film in a decompressed chamber. , Disposing a second solid source containing Mg 3 N 2 in the chamber, pyrolyzing the second solid source together with the raw material, and forming a compound semiconductor film in which the generated Mg is added as an acceptor impurity It is characterized by doing.
In the present invention, preferably, the second solid source container containing the second solid source is coaxially below the first solid source container containing the first solid source. The film formation substrate is disposed above the first solid source container, and the vaporized gas from each solid source is thermally decomposed between the first solid source container and the film formation substrate. A gas guide tube is arranged.
[0007]
According to the present invention, by using magnesium nitride (Mg 3 N 2 ), which is a solid source, as an impurity source to GaN or the like, Mg generated by thermal decomposition is added to GaN as an acceptor impurity, and at the same time N is added. It works to compensate for atomic vacancies. Thereby, a p-type III-V group compound semiconductor film having good crystallinity with few atomic vacancies and high hole concentration can be obtained.
In general, solid nitride has a low vapor pressure as typified by BN, and it is difficult to heat and evaporate it in a quartz container or the like, but Mg 3 N 2 is several hundreds of degrees Celsius even if it is not under ultra-high vacuum. It can be evaporated with moderate heating. Therefore, Ga is used as the parent phase of the semiconductor film as a first solid source, a gas source NH 3 is supplied from the outside of the chamber, and a second solid source containing Mg 3 N 2 as an impurity source is prepared. A p-type GaN film can be easily formed using the apparatus.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the configuration of an HWE apparatus used in one embodiment of the present invention. The chamber 11 is an HWE apparatus main body, and the inside is decompressed by the vacuum pump 12. Inside the chamber 11 is a cylindrical first solid source container 13 that houses a first fixed source (Ga in this embodiment) for forming a matrix phase of a semiconductor film, and a second solid that becomes an impurity source. A cylindrical second solid source container 14 containing a source (Mg 3 N 2 in this embodiment) is coaxially positioned, and the second solid source container 14 is positioned below the first solid source container 13. Are arranged to be. That is, the second solid source container 14 is arranged so that the upper end of the second solid source container 14 penetrates the bottom of the first solid source container 13 and opens into the second solid source container 14.
[0009]
Above these two solid sources, a film-forming substrate 18 held by a holder 19 and heated by a heater 20 is disposed. Further, between the solid source and the substrate holding part, a gas guide pipe 16 for thermally decomposing the evaporated gas from each solid source and guiding it to the surface of the substrate 18, in the example shown in the drawing, It is integrally formed. The solid source containers 13 and 14 and the gas guide tube 15 are all quartz tubes, and heaters 16a and 16b are disposed around them. The heaters 16a and 16b are surrounded by heat shields 17a and 17b.
That is, in the apparatus of this embodiment, a solid source part A (generally referred to as a reservoir) of an impurity source is disposed under a solid source part B for forming a mother phase, and a gas guide tube 15 above the solid source part B is provided. This portion is a hot wall portion C for thermally decomposing evaporated gas from each solid source.
[0010]
Another raw material N in the case of forming a GaN film is supplied in the form of NH 3 from a gas source cylinder 21 provided outside the chamber 11. That is, the NH 3 gas in the cylinder 21 is supplied to the bottom of the gas guide pipe 15 through the valve 22 and the mass flow controller 23 and through the gas introduction pipe 24 penetrating the chamber 11. In this way, the NH 3 gas supplied from the outside is also thermally decomposed in the gas guide tube 15.
[0011]
Next, the case where a p-type GaN film is formed using the HWE apparatus of FIG. 1 will be described specifically. As described above, the first solid source container 13 contains Ga, and the second solid source container 14 Is filled with Mg 3 N 2 . As the film forming substrate 18, an Al 2 O 3 substrate having a (0001) plane as a main surface is used. However, a substrate such as SiC, ZnO, or GaAs can also be used. In a state where the pressure inside the chamber 11 is reduced to about 10 −6 Torr, the first solid source container 13 is heated to 750 to 950 ° C., the second solid source container 14 is heated to 100 to 700 ° C., and the gas guide tube 15 is heated to 560-600 ° C. As a result, each solid source evaporates, and the evaporated gas and NH 3 supplied from the outside are thermally decomposed by the gas guide tube 14, that is, the hot wall portion C, and supplied to the substrate 18, and a GaN film is formed on the substrate 18. Is done.
[0012]
In this embodiment, Mg 3 N 2 as an impurity source is thermally decomposed to produce Mg and N, Mg becomes an acceptor impurity, and N compensates for N deficiency due to N escaping from the formed GaN. Work. That is, by using a solid impurity source containing N, it is possible to make up for the N deficiency of the V group site, which is likely to be insufficient only with the source gas NH 3 , and to reduce the density of donors due to N vacancies generated by the escape of N. At the same time, it is possible to add Mg as an acceptor to the group III site. Therefore, the resulting GaN film is a high-quality crystal film with few atomic vacancies, and the atomic vacancies acting as donors are reduced, resulting in a p-type GaN layer with a high hole concentration.
[0013]
In the case where N is supplied only by thermally decomposing NH 3 as in the prior art, when comparing the vapor pressures of Ga and N, N is higher, especially at the crystal growth temperature (1000 ° C.). The vapor pressure further increases, and even if GaN is once formed on the substrate, N is released from the GaN film. N detaches from the GaN film to generate N vacancies, and these N vacancies serve as donors, indicating a tendency to become n-type semiconductors.
However, according to this embodiment, Mg acting as an acceptor is incorporated into the Ga lattice of the GaN film and N is compensated for by suppressing N generation, so that the donor density can be reduced.
The grown GaN film is determined to be p-type or n-type depending on the difference between the net acceptor density Na in the GaN film and the net donor density Nd in the GaN film. In this embodiment, the acceptor density Na is increased by introducing Mg, and the donor density Nd is decreased by reducing N vacancies, so that the GaN film can be formed as a high-quality p-type semiconductor film. It becomes possible.
[0014]
The present invention is not limited to the above embodiment. For example, although the GaN film is formed in the embodiment, the present invention can be similarly applied to the case where another III-V compound semiconductor film containing N such as AlN or InN is formed.
[0015]
【The invention's effect】
As described above, according to the present invention, by using the solid source Mg 3 N 2 as an impurity source for the III-V group compound semiconductor film containing N, Mg generated by thermal decomposition becomes GaN as an acceptor impurity. Simultaneously with the addition, N acts to compensate for atomic vacancies, and a p-type compound semiconductor film having good crystallinity and a high hole concentration can be obtained.
[Brief description of the drawings]
FIG. 1 shows a configuration of an HWE apparatus used in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Chamber, 12 ... Vacuum pump, 13 ... 1st solid source container, 14 ... 2nd solid source container, 15 ... Gas guide pipe (hot wall part), 16a, 16b ... Heater, 17a, 17b ... Heat shielding body, 18 ... deposition substrate 19 ... holder, 20 ... heater, 21 ... gas cylinder, 22 ... valve, 23 ... mass flow controller, 24 ... gas inlet tube, Ga ... first solid source, Mg 3 N 2 ... first 2 solid sources.

Claims (2)

減圧されたチャンバ内で半導体膜の母相となる第1の固体ソースを含む原料を熱分解して成膜用基板に窒素を含むIII−V族化合物半導体膜を形成する方法において、
前記チャンバ内にMgを含む第2の固体ソースを配置して、この第2の固体ソースを前記原料と共に熱分解し、生成されたMgをアクセプタ不純物として添加した化合物半導体膜を形成する
ことを特徴とする窒素を含むIII−V族化合物半導体膜の製造方法。
In a method for thermally decomposing a raw material containing a first solid source that becomes a parent phase of a semiconductor film in a decompressed chamber to form a group III-V compound semiconductor film containing nitrogen on a deposition substrate,
A second solid source containing Mg 3 N 2 is disposed in the chamber, the second solid source is pyrolyzed together with the raw material, and a compound semiconductor film in which the generated Mg is added as an acceptor impurity is formed. A method for producing a group III-V compound semiconductor film containing nitrogen, characterized by:
前記第2の固体ソースを収容した第2の固体ソース容器は、前記第1の固体ソースを収容した第1の固体ソース容器と同軸的に第1の固体ソース容器の下方に配置し、前記成膜用基板は前記第1の固体ソース容器の上方に配置し、かつ前記第1の固体ソース容器と成膜用基板の間には各固体ソースからの蒸発気体を熱分解するガス案内管を配置する
ことを特徴とする請求項1記載の窒素を含むIII−V族化合物半導体膜の製造方法。
The second solid source container containing the second solid source is arranged below the first solid source container coaxially with the first solid source container containing the first solid source, and The film substrate is disposed above the first solid source container, and a gas guide tube for thermally decomposing evaporated gas from each solid source is disposed between the first solid source container and the film forming substrate. The method for producing a group III-V compound semiconductor film containing nitrogen according to claim 1.
JP04603297A 1997-02-28 1997-02-28 Method for producing group III-V compound semiconductor film containing nitrogen Expired - Fee Related JP3633187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04603297A JP3633187B2 (en) 1997-02-28 1997-02-28 Method for producing group III-V compound semiconductor film containing nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04603297A JP3633187B2 (en) 1997-02-28 1997-02-28 Method for producing group III-V compound semiconductor film containing nitrogen

Publications (2)

Publication Number Publication Date
JPH10242058A JPH10242058A (en) 1998-09-11
JP3633187B2 true JP3633187B2 (en) 2005-03-30

Family

ID=12735708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04603297A Expired - Fee Related JP3633187B2 (en) 1997-02-28 1997-02-28 Method for producing group III-V compound semiconductor film containing nitrogen

Country Status (1)

Country Link
JP (1) JP3633187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100297573B1 (en) * 1998-04-09 2001-10-25 박근섭 Reaction furnace for fabricating the third to the fifth group compound semiconductor
DE102004050806A1 (en) * 2004-10-16 2006-11-16 Azzurro Semiconductors Ag Process for the preparation of (Al, Ga) N single crystals
JP5077919B2 (en) * 2006-09-28 2012-11-21 独立行政法人物質・材料研究機構 Vacuum deposition equipment

Also Published As

Publication number Publication date
JPH10242058A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
Calawa On the use of AsH3 in the molecular beam epitaxial growth of GaAs
US10988858B2 (en) Method for depositing a crystal layer at low temperatures, in particular a photoluminescent IV-IV layer on an IV substrate, and an optoelectronic component having such a layer
Davis Thin films and devices of diamond, silicon carbide and gallium nitride
JP3929017B2 (en) Semiconductor layer growth method
JPH09512385A (en) Multilayer crystal structure and manufacturing method thereof
KR20090112766A (en) Group-? metal nitride and preparation thereof
US6334901B1 (en) Apparatus for forming semiconductor crystal
JP3633187B2 (en) Method for producing group III-V compound semiconductor film containing nitrogen
JP4036436B2 (en) Method for growing quantum well structures
JP3633186B2 (en) Method for producing II-VI compound semiconductor film containing zinc
CN105098016B (en) Based on γ faces LiAlO2Yellow light LED material and preparation method thereof on substrate
US7943492B2 (en) Method of forming nitride film and nitride structure
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
CN105070801B (en) Non- Si doping is without InGaN yellow light LED materials and preparation method thereof
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JP2739778B2 (en) Method for selective growth of group 3-5 compound semiconductor
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
US11661673B1 (en) HVPE apparatus and methods for growing indium nitride and indium nitride materials and structures grown thereby
Zhang et al. Investigation of preparation and properties of epitaxial growth GaN film on Si (1 1 1) substrate
Kazakov et al. Orientation-patterned templates GaAs/Ge/GaAs for nonlinear optical devices. I. Molecular beam epitaxy
JPH088460A (en) Method of manufacturing p-type algan semiconductor
JPS61260622A (en) Growth for gaas single crystal thin film
JP2651751B2 (en) Compound semiconductor crystal growth method
JPH0713966B2 (en) Method for manufacturing GaAs semiconductor diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees