JP3632128B2 - Adsorption element and dehumidifying element provided with the same - Google Patents

Adsorption element and dehumidifying element provided with the same Download PDF

Info

Publication number
JP3632128B2
JP3632128B2 JP2001292692A JP2001292692A JP3632128B2 JP 3632128 B2 JP3632128 B2 JP 3632128B2 JP 2001292692 A JP2001292692 A JP 2001292692A JP 2001292692 A JP2001292692 A JP 2001292692A JP 3632128 B2 JP3632128 B2 JP 3632128B2
Authority
JP
Japan
Prior art keywords
air
adsorption
cooling
treated
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001292692A
Other languages
Japanese (ja)
Other versions
JP2003093831A (en
Inventor
敬久 末岡
冠南 喜
亮 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001292692A priority Critical patent/JP3632128B2/en
Publication of JP2003093831A publication Critical patent/JP2003093831A/en
Application granted granted Critical
Publication of JP3632128B2 publication Critical patent/JP3632128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Description

【0002】
【発明の属する技術分野】
【0003】
本願発明は、吸着用素子及びこれを備えて構成される除湿素子の構造に関するものである。
【従来の技術】
【0004】
図7に示すように、従来一般的な除湿素子Z0は、平板状形態を有し且つ被処理空気Aa(即ち、湿り空気)を通す多数の通風路3,3,・・を平面方向に多数並設するとともに該通風路3,3,・・に水分を吸着する吸着剤を担持してなる吸着用素子1と、平板状形態を有し且つ冷却用空気Abを通す通風路4,4,・・を備えた冷却用素子2とを、平面視において上記吸着用素子1の通風路3と上記冷却用素子2の通風路4とが相互に直交するようにして交互に多段積載し且つこれらを一体化して構成される。
【0005】
そして、かかる除湿素子Z0においては、上記吸着用素子1の通風路3,3,・・に被処理空気Aaを流し、その水分を吸着剤によって吸着除去することでその除湿を行うと同時に、水分の吸着によって吸着用素子1側に発生する吸着熱を、上記冷却用素子2の通風路4,4,・・を流れる冷却用空気Abによって順次冷却してこれを放熱することで上記吸着用素子1の吸着能力を長期に亙って良好に維持するようになっている。
【0006】
従って、除湿素子Z0全体としての除湿能力の向上を図るという観点からすれば、上記吸着用素子1の全域において可及的に均等に水分の吸着除去作用が行われること、換言すれば、上記冷却用素子2による吸着用素子1に対する冷却作用が該吸着用素子2の全域において可及的に均等に行われることが必要であるといえる。
【発明が解決しようとする課題】
【0007】
ところが、上述のように、除湿素子Z0においては、上記吸着用素子1と冷却用素子2とを積層した状態において、該吸着用素子1の通風路3,3,・・と冷却用素子2の通風路4,4,・・とが相互に直交し、該吸着用素子1側を流れる被処理空気Aaと冷却用素子2側を流れる冷却用空気Abとが直交方向に流れる所謂「直交流」状態となることから、次述するように、上記吸着用素子1における吸着除去効率に偏りが生じ、除湿素子Z0全体としての除湿能力が低下する(即ち、当初期待通りの除湿能力が得られない)という問題があった。
【0008】
即ち、一般に、上記吸着用素子1に担持される吸着剤には、これに接触する被処理空気Aaの含水率が高いほど水分の吸着除去効率が高く、含水率が低下するにつれ吸着除去効率も低下するという特性があり、従って、吸着用素子1の壁温もこの吸着除去効率に対応して、吸着除去効率が高い部位ほど発生する吸着熱も多く、それだけ壁温も高くなる。
【0009】
一方、上記冷却用素子2による上記吸着用素子1に対する冷却効率は、該冷却用素子2側を流れる冷却用空気Abの室内温度と該冷却用空気Abにより冷却作用を受ける上記吸着用素子1の壁温との温度差が大きいほど高効率となる。
【0010】
従って、係る観点から上記除湿素子Z0をみれば、上記吸着用素子1の各通風路3,3,・・のそれぞれに被処理空気Aaが略均等に導入され且つこれが該吸着用素子1の上流部1a側から下流部1bに向けて流れる一方、上記冷却用素子2の各通風路4,4,・・のそれぞれに冷却用空気Abが略均等に導入され且つこれが該冷却用素子2の上流部2a側から下流部2bに向けて流れる場合、吸着除去効率と冷却効率との相乗効果として得られる除湿能力は、上記吸着用素子1の上流部1a寄り(即ち、水分の吸着除去効率が高く吸着熱も高い部位)で、且つ上記冷却用素子2の上流部2a(即ち、冷却用空気Abの水温が最も低く上記吸着用素子1の壁温との温度差が最も大きい部位)において最も高くなり、該部位から上記吸着用素子1の下流部1b側及び上記冷却用素子2の下流部2b側へそれぞれ移行するに従って除湿能力が低下するような特性となる。
【0011】
このことは、上記吸着用素子1についてみれば、該吸着用素子1の一部領域において水分の吸着除去作用が集中的に行われ、他の領域は水分の吸着除去作用にほとんど寄与していないこと、換言すれば、上記吸着用素子1の有効吸着領域が小さいことであり、この結果として、除湿素子Z0全体としての除湿能力が低下することになるものである。
【0012】
以上のことからして、除湿素子Z0全体としての除湿能力を高めるためには、上記吸着用素子1の有効吸着領域の拡大を図ること、及び該吸着用素子1に対する冷却用素子2の冷却効率を十分に考慮することが必要となる。しかるに、かかる要請に応え得る有効な技術はいまだ提案されていないというのが実情である。
【0013】
そこで本願発明は、高い除湿能力をもつ除湿素子を得るに好適な吸着用素子及びこれを備えてなる除湿素子を提供することを目的としてなされたものである。
【課題を解決するための手段】
【0014】
本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。
【0015】
本願の第1の発明では、平板状形態を有し且つその面方向に沿って被処理空気Aaを通す多数の通風路3,3,・・を並設してなる吸着用素子において、上記各通風路3,3,・・の流路途中に、該各通風路3,3,・・内をそれぞれ流れる被処理空気Aaを合流させて混合する被処理空気混合部31を設けたことを特徴としている。
【0016】
本願の第2の発明では、上記第1の発明にかかる吸着用素子において、上記被処理空気混合部31を、上記各通風路3,3,・・の流路途中を切り欠いて構成したことを特徴としている。
【0017】
本願の第3の発明では、上記第1の発明にかかる吸着用素子において、上記各通風路3,3,・・の上記被処理空気混合部31の下流側における通路長さを略同一とするように該被処理空気混合部31の平面形状を設定したことを特徴としている。
【0018】
本願の第4の発明では、上記第1の発明にかかる吸着用素子において、上記各通風路3,3,・・の上記被処理空気混合部31の下流側における通路長さを、該通風路3,3,・・の並設方向の一端1c側から他端1d側にかけて連続的に又は段階的に減少変化するように上記被処理空気混合部31の平面形状を設定したことを特徴としている。
【0019】
本願の第5の発明では、上記第1,第2,第3又は第4の発明にかかる吸着用素子において、上記被処理空気混合部31を上記通風路3,3,・・の流路方向に適宜間隔をもって複数個設けたことを特徴としている。
【0020】
本願の第6の発明では、平板状形態を有し且つその面方向に沿って被処理空気Aaを通す多数の通風路3,3,・・を並設してなる吸着用素子1と、平板状形態を有し且つその面方向に沿って冷却用空気Abを通す多数の通風路4,4,・・を並設してなる冷却用素子2とを、平面視において上記吸着用素子1側の通風路3,3,・・と上記冷却用素子2側の通風路4,4,・・とが略直交するように交互に積層して構成される除湿素子において、上記吸着用素子1は上記各通風路3,3,・・の流路途中に該各通風路3,3,・・内をそれぞれ流れる被処理空気Aaを合流させて混合する被処理空気混合部31を備える一方、上記冷却用素子2には、上記冷却用空気Abを、上記吸着用素子1の上記被処理空気混合部31よりも上流側部位に相対する第1領域25Aにおける流量が下流側部位に相対する第2冷却領域25Bにおける流量よりも少なくなるように偏流させる偏流手段23を設けたことを特徴としている。
【0021】
本願の第7の発明では、平板状形態を有し且つその面方向に沿って被処理空気Aaを通す多数の通風路3,3,・・を並設してなる吸着用素子1と、平板状形態を有し且つその面方向に沿って冷却用空気Abを通す多数の通風路4,4,・・を並設してなる冷却用素子2とを、平面視において上記吸着用素子1側の通風路3,3),・・と上記冷却用素子2側の通風路4,4,・・とが略直交するように交互に積層して構成される除湿素子において、上記吸着用素子1は上記各通風路3,3,・・の流路途中に該各通風路3,3,・・内をそれぞれ流れる被処理空気Aaを合流させて混合する被処理空気混合部31を備える一方、上記冷却用素子2はこれを上記吸着用素子1における上記被処理空気混合部31よりも上流側部位と下流側部位にそれぞれ相対する第1領域25Aと第2冷却領域25Bのみに冷却用空気Abを流すように構成したことを特徴としている。
【0022】
本願の第8の発明では、上記第7の発明にかかる除湿素子において、上記冷却用空気Abの流量を、上記第1領域25A側の流量が上記第2領域25B側の流量よりも少なくなるように設定したことを特徴としている。
【発明の効果】
【0023】
本願発明ではかかる構成とすることにより次のような効果が得られる。
【0024】
(a) 本願の第1の発明にかかる吸着用素子では、平板状形態を有し且つその面方向に沿って被処理空気Aaを通す多数の通風路3,3,・・を並設してなる吸着用素子において、上記各通風路3,3,・・の流路途中に、該各通風路3,3,・・内をそれぞれ流れる被処理空気Aaを合流させて混合する被処理空気混合部31を設けている。
【0025】
従って、この発明の吸着用素子によれば、該吸着用素子の各通風路3,3,・・に被処理空気Aaが導入され、これが該各通風路3,3,・・を通ってその下流側に流れるとき、該各通風路3,3,・・の内面に担持された吸着剤によって該被処理空気Aaに含まれている水分が順次除去され、該被処理空気Aaの除湿が実行される。
【0026】
この場合、上記各通風路3,3,・・が吸着用素子の上流側から下流側まで一連の通路とされていると、該各通風路3,3,・・内を流れる被処理空気Aa相互間が隔離されることから、これら各被処理空気Aa相互間には、該吸着用素子における上記各通風路3,3,・・の配置位置に対応して、その温度及び湿度が不均一となる。即ち、通常、上記吸着用素子を流れる被処理空気Aaの流れ方向と略直交方向に冷却用空気が流れるため、冷却用空気の上流側(即ち、低温側)に対応する吸着用素子の通風路3と、冷却用空気の下流側(即ち、高温側)に対応する吸着用素子の通風路3との間においては吸着熱の放熱作用が異なることから当然に被処理空気Aaの温度に差が生じるとともに、この冷却性の相違に対応して吸着除去効率が異なり、その結果として、湿度も相違することになる)。
【0027】
かかる各通風路3,3,・・を流れる被処理空気Aa相互間の温度及び湿度の不均一は、そのまま吸着用素子における水分の吸着除去効率の差として現れ、該吸着用素子には吸着除去効率の高い部位とこれが低い部位とが混在し、その結果、吸着用素子全体としての吸着能力の低下につながることになるものである。
【0028】
ところが、この発明にかかる吸着用素子においては、上記各通風路3,3,・・の流路途中に上記被処理空気混合部31が設けられているので、該各通風路3,3,・・にそれぞれ分流して流入する被処理空気Aaは、被処理空気混合部31に流入し、ここで合流し且つ混合されることで、例え該被処理空気混合部31への流入時に既に各通風路3,3,・・相互間において被処理空気Aaの温度及び湿度が不均一となっていたとしても、該被処理空気混合部31での合流混合によってこれらの均一化が図られる。そして、該被処理空気混合部31の下流側の各通風路3,3,・・には、該被処理空気混合部31で温度及び湿度が均一化された被処理空気Aaが流入し、それぞれ各通風路3,3,・・において水分の吸着除去作用を受けることになる。
【0029】
このため、例えば従来のように、上記各通風路3,3,・・のそれぞれに流入した被処理空気Aaがその途中で混合されることなく隔離状態のまま(即ち、温度及び湿度が不均一とされたまま)流れる場合に比して、該各通風路3,3,・・相互間における吸着除去効率が可及的に均一化され、上記吸着用素子の有効吸着領域の拡大が図られ、その結果、上記吸着用素子全体としてのとしての吸着能力が向上し、延いては該吸着用素子を用いて除湿素子を構成した場合における該除湿素子の除湿能力の向上が期待できるものである。
【0030】
さらに、この発明の吸着用素子においては、上記被処理空気混合部31を設けることで、該被処理空気混合部31の形成部分だけ該吸着用素子の軽量化と低廉化が図れるとともに、比較的高価な吸着剤の使用量を少なくすることができ、これらの相乗効果として上記吸着用素子をより安価に提供でき、また、かかる効果は上記吸着用素子が大型大容量であるほど顕著となる。
【0031】
(b) 本願の第2の発明にかかる吸着用素子によれば、上記(a)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明の吸着用素子においては、上記被処理空気混合部31を、上記各通風路3,3,・・の流路途中を切り欠いて構成しているので、その製作が極めて容易であり、高い吸着能力をもつ吸着用素子をより安価に提供でき、延いては該吸着用素子を備えて構成される除湿素子の低コスト化に寄与し得るものである。
【0032】
(c) 本願の第3の発明にかかる吸着用素子によれば、上記(a)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明の吸着用素子によれば、上記第1の発明にかかる吸着用素子において、上記各通風路3,3,・・の上記被処理空気混合部31の下流側における通路長さを略同一とするように該被処理空気混合部31の平面形状を設定しているので、上記各通風路3,3,・・の上記被処理空気混合部31の下流側部分における流通抵抗が該各通風路3,3,・・相互間において可及的に均等化され、延いては該被処理空気混合部31の下流側の全域での吸着除去効率の均等化が図られ、それだけ上記除湿素子の有効吸着領域の拡大が促進される。
【0033】
(d) 本願の第4の発明にかかる吸着用素子によれば、上記(a)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明の吸着用素子によれば、上記第1の発明にかかる吸着用素子において、上記各通風路3,3,・・の上記被処理空気混合部31の下流側における通路長さを、該通風路3,3,・・の並設方向の一端1c側から他端1d側にかけて連続的に又は段階的に減少変化するように上記被処理空気混合部31の平面形状を設定しているので、上記被処理空気混合部31の上流側の通風路3,3,・・から該被処理空気混合部31に流入し且つここで合流混合された被処理空気Aaは、該被処理空気混合部31の下流側の通風路3,3,・・に対してその流通抵抗の大きさに対応して、通路長さの短い通風路3ほど被処理空気Aaの流量が多くなるように、偏流状態で流入する。この結果、被処理空気Aaの流量が多い部位ほどその水分除去作用が促進され、上記吸着用素子1の上記被処理空気混合部31の下流側部位においては、上記通風路3,3,・・の並設方向において水分吸着除去作用に差異を生じることになる。
【0034】
従って、この吸着用素子1に冷却用素子を相対させて除湿素子を構成する場合に、該吸着用素子1の水分吸着除去作用の高い側が上記冷却用素子における冷却用空気の下流側に対応するように該吸着用素子1と冷却用素子とを組付ることで、該吸着用素子1の水分吸着除去作用の高い側(即ち、被処理空気Aaの偏流がなければ水分吸着除去作用が低くなる部位)が水分吸着除去に対して有効に機能し、それだけ上記吸着用素子1全体としての有効吸着領域が拡大され、その吸着能力の向上が図れるものである。
【0035】
(e) 本願の第5の発明にかかる吸着用素子によれば、上記(a),(b),(c)または(d)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明の吸着用素子によれば、上記第1,第2,第3又は第4の発明にかかる吸着用素子において、上記被処理空気混合部31を上記通風路3,3,・・の流路方向に適宜間隔をもって複数個設けているので、上記被処理空気混合部31での被処理空気Aaの合流混合による温度及び湿度の均一化作用が複数回繰り返されるため、上記吸着用素子の吸着除去効率の均等化がより一層促進され、吸着能力の更なる向上が期待できることになる。
【0036】
(f) 本願の第6の発明にかかる除湿素子では、平板状形態を有し且つその面方向に沿って被処理空気Aaを通す多数の通風路3,3,・・を並設してなる吸着用素子1と、平板状形態を有し且つその面方向に沿って冷却用空気Abを通す多数の通風路4,4,・・を並設してなる冷却用素子2とを、平面視において上記吸着用素子1側の通風路3,3,・・と上記冷却用素子2側の通風路4,4,・・とが略直交するように交互に積層して構成される除湿素子において、上記吸着用素子1は上記各通風路3,3,・・の流路途中に該各通風路3,3,・・内をそれぞれ流れる被処理空気Aaを合流させて混合する被処理空気混合部31を備える一方、上記冷却用素子2には、上記冷却用空気Abを、上記吸着用素子1の上記被処理空気混合部31よりも上流側部位に相対する第1領域25Aにおける流量が下流側部位に相対する第2冷却領域25Bにおける流量よりも少なくなるように偏流させる偏流手段23を設けている。
【0037】
従って、この発明にかかる除湿素子によれば、上記吸着用素子1側においては上記被処理空気混合部31を設けることで該被処理空気混合部31の下流側の各通風路3,3,・・を流れる被処理空気Aaの温度及び湿度の均一化が図られ、該下流側部位における水分吸着除去作用が促進される一方、上記冷却用素子においては上記偏流手段23による冷却用空気Abの偏流作用によって上記吸着用素子1の下流側部位に対応する第2領域25B側の冷却作用が促進される。従って、上記吸着用素子1の上記被処理空気混合部31の下流側部位においては、上記冷却用素子2によって効率良く冷却されその吸着熱の放熱が促進され、より高い吸着能力を発揮することになる。
【0038】
この結果、この発明の除湿素子においては、例えば従来構造の除湿素子の吸着用素子において除湿作用にほとんど寄与していなかった部位、即ち、該吸着用素子の下流側で且つ冷却用素子の冷却用空気の下流側に対応する部位が、有効に除湿作用を行うこととなり、それだけ除湿素子の除湿能力の向上が図れることになる。
【0039】
さらに、この発明の除湿素子においては、上記吸着用素子1に上記被処理空気混合部31を設けることで、該被処理空気混合部31の形成部分だけ該吸着用素子1の軽量化と低廉化が図れるとともに、比較的高価な吸着剤の使用量を少なくすることができ、これらの相乗効果として上記除湿素子をより安価に提供でき、また、かかる効果は上記除湿素子が大型大容量であるほど顕著となる。
【0040】
(g) 本願の第7の発明にかかる除湿素子では、平板状形態を有し且つその面方向に沿って被処理空気Aaを通す多数の通風路3,3,・・を並設してなる吸着用素子1と、平板状形態を有し且つその面方向に沿って冷却用空気Abを通す多数の通風路4,4,・・を並設してなる冷却用素子2とを、平面視において上記吸着用素子1側の通風路3,3),・・と上記冷却用素子2側の通風路4,4,・・とが略直交するように交互に積層して構成される除湿素子において、上記吸着用素子1は上記各通風路3,3,・・の流路途中に該各通風路3,3,・・内をそれぞれ流れる被処理空気Aaを合流させて混合する被処理空気混合部31を備える一方、上記冷却用素子2はこれを上記吸着用素子1における上記被処理空気混合部31よりも上流側部位と下流側部位にそれぞれ相対する第1領域25Aと第2冷却領域25Bのみに冷却用空気Abを流すように構成している。
【0041】
従って、この発明にかかる除湿素子によれば、上記吸着用素子1側においては上記被処理空気混合部31を設けることで該被処理空気混合部31の下流側の各通風路3,3,・・を流れる被処理空気Aaの温度及び湿度の均一化が図られ、該下流側部位における水分吸着除去作用が促進される一方、上記冷却用素子2においては上記吸着用素子1の上記被処理空気混合部31よりも上流側部位と下流側部位にそれぞれ相対する第1領域25Aと第2冷却領域25Bのみに(換言すれば、吸着剤が担持されておりその吸着熱の放熱のために冷却が必要である部位のみに)冷却用空気Abが流され、この部位のみが集中的に冷却されるとともに、上記被処理空気混合部31に相対する部位には冷却用空気Abを流さないことでその分だけ上記第1領域25Aと第2冷却領域25Bへの冷却用空気Abの流量を増加させることができることから、該第1領域25Aと第2冷却領域25Bの冷却能力をより一層高めることが可能となる。従って、上記吸着用素子1の上記被処理空気混合部31の下流側部位においては、上記冷却用素子2によって効率良く冷却されその吸着熱の放熱が促進され、より高い吸着能力を発揮することになる。
【0042】
この結果、この発明の除湿素子においては、例えば従来構造の除湿素子の吸着用素子において除湿作用にほとんど寄与していなかった部位、即ち、該吸着用素子の下流側で且つ冷却用素子の冷却用空気の下流側に対応する部位が、有効に除湿作用を行うこととなり、それだけ除湿素子の除湿能力の向上が図れることになる。
【0043】
さらに、この発明の除湿素子においては、上記吸着用素子1に上記被処理空気混合部31を設けることで、該被処理空気混合部31の形成部分だけ該吸着用素子1の軽量化と低廉化が図れるとともに、比較的高価な吸着剤の使用量を少なくすることができ、これらの相乗効果として上記除湿素子をより安価に提供でき、また、かかる効果は上記除湿素子が大型大容量であるほど顕著となる。
【0044】
(h) 本願の第8の発明にかかる除湿素子によれば、上記(g)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明の除湿素子によれば、上記第7の発明にかかる除湿素子において、上記冷却用空気Abの流量を、上記第1領域25A側の流量が上記第2領域25B側の流量よりも少なくなるように設定しているので、上記吸着用素子1における冷却能力は上記第1領域25A側の方が第2領域25B側よりも低くなり、これに対応して上記吸着用素子1の上記被処理空気混合部31の下流側部位における吸着能力が向上し、それだけ該吸着用素子1の有効吸着領域の拡大によって上記除湿素子の除湿能力の更なる向上が期待できるものである。
【発明の実施の形態】
【0045】
以下、本願発明を好適な実施形態に基づいて具体的に説明する。
【0046】
I:第1の実施形態
図1には、本願発明の第1の実施形態にかかる吸着用素子1及びこれを備えて構成される除湿素子Z1を示している。この除湿素子Z1は、上記吸着用素子1と後述する冷却用素子2とを交互に積層し且つこれらを一体化して構成されるものであって、該吸着用素子1の構成に本願発明が適用されたものである。
【0047】
上記吸着用素子1は、例えばガラス繊維でなる一対の平板材11,11の内側に、同じくガラス繊維でなる波板材12を挟着支持し、且つこれら両者を接合固定して一体化してなる両面段ボール状形態を有するものであって、上記一対の平板材11,11と上記波板材12との間に平行に延びる多数の通風路3,3,・・を形成するとともに、上記通風路3,3,・・の流路方向の中段位置には、例えば打ち抜き加工によって、該流路方向に所定幅をもち且つその幅方向の一側部1cから他側部1dにかけて延びる横長矩形の開口部13を設けている。さらに、この吸着用素子1の表面全域には、例えばゼオライト等の水分を吸着する性状をもつ吸着剤が担持されており、この吸着剤の担持によって該吸着用素子1には所要の吸着能力が付与されている。そして、この吸着用素子1においては、上記通風路3,3,・・の一端がそれぞれ開口する上流部1a側から該通風路3,3,・・の他端がそれぞれ開口する下流部2bに向けて被処理空気Aa(即ち、湿り空気)が流される。
【0048】
一方、上記冷却用素子2は、上下一対の平板材21,21とこれら両者間に挟持された一枚の波板材22とを接合固定してなる両面段ボール状形態をもち、該波板材22とその両面側にそれぞれ対向する上記一対の平板材21,21との間には多数の通風路4,4,・・が形成されている。この場合、この実施形態の冷却用素子2においては、上記通風路4,4,・・の配置ピッチを一定に設定し、該各通風路4,4,・・間において、その通路面積、即ち、流通抵抗が一定となるようにしている。そして、この冷却用素子2においては、上記通風路4,4,・・の一端が開口する上流部2a側から該通風路4,4,・・の他端が開口する下流部2bに向けて冷却用空気Abが流される。
【0049】
以上のように構成された上記吸着用素子1と冷却用素子2とを、平面視において、上記吸着用素子1の通風路3,3,・・の通路方向と上記冷却用素子2の通風路4,4,・・の通路方向とが直交するように90°の平面位相をもって、順次交互に積層し、且つこれらを一体化することで、上記除湿素子Z1が構成される。
【0050】
この除湿素子Z1においては、上記各吸着用素子1,1,・・に対してその上流部1aから下流部1bに向けて上記各通風路3,3,・・を通して被処理空気Aaを流すとともに、上記各冷却用素子2,2,・・に対してその上流部2aから下流部2bに向けて上記通風路4,4,・・を通して冷却用空気Abを流すことで、上記各吸着用素子1,1,・・側においてはこれに担持された吸着剤によって上記被処理空気Aaに含まれていた水分が吸着除去され、該被処理空気Aaの除湿作用が行われる一方、上記各冷却用素子2,2,・・側においては冷却用空気Abによって上記各吸着用素子1,1,・・の冷却、即ち、該各吸着用素子1,1,・・に発生する吸着熱の放熱が行われる。この結果、上記各吸着用素子1,1,・・における吸着能力が長期に亙って高水準に維持され、延いては上記除湿素子Z1の除湿能力の向上が図れるものである。
【0051】
ここで、上記除湿素子Z1の除湿能力は、既述のように、上記各吸着用素子1,1,・・における水分の吸着除去作用が、該吸着用素子1の可及的に広い範囲において、究極的にはその全域において、高効率で行われること、換言すれば、上記吸着用素子1における有効吸着領域が拡大されることによって達成されるものである。
【0052】
この場合、この実施形態の吸着用素子1においては、上述のように上記各通風路3,3,・・の流路途中に上記開口部13を設けているので、該吸着用素子1を上記冷却用素子2とともに積層させて上記除湿素子Z1を構成した状態においては、該開口部13がその両面に相対された一対の冷却用素子2,2によって閉塞され、所定の容積をもつ被処理空気混合部31が形成される。
【0053】
このように、上記吸着用素子1の通風路3,3,・・の流路途中に上記被処理空気混合部31が形成されることで、該各通風路3,3,・・にそれぞれ分流して流入する被処理空気Aaは、該被処理空気混合部31に流入し、ここで合流し且つ混合される。このため、例え該被処理空気混合部31の上流側の通風路3,3,・・から該被処理空気混合部31への流入時に既に各通風路3,3,・・相互間において被処理空気Aaの温度及び湿度が不均一となっていたとしても、該被処理空気混合部31での混合作用によって、その温度及び湿度が可及的に均一化される(即ち、各通風路3,3,・・相互間における被処理空気Aaの温度勾配及び湿度勾配が解消される)。そして、上記被処理空気混合部31の下流側の各通風路3,3,・・には、該被処理空気混合部31において温度及び湿度が可及的に均一化された被処理空気Aaが流入され、該各通風路3,3,・・において該被処理空気Aaの水分の吸着除去作用が行われることになる。この結果、上記吸着用素子1の上記被処理空気混合部31よりも下流側領域においては、該領域の全域に温度及び湿度が均一化された冷却用空気Abが流れることで吸着能力が可及的に均等化され、その全域が有効に吸着作用を為すことになる。
【0054】
従って、この実施形態の吸着用素子1においては、例えば従来の除湿素子の吸着用素子のように、被処理空気Aaと冷却用空気Abとが直交流であることに起因して、該吸着用素子の上流側で且つ冷却用空気Abの上流側に対応する部分で吸着能力が最大となり、ここから被処理空気Aaの下流側及び冷却用空気Abの下流側へ移行するに伴って次第に吸着能力が低下し、該吸着用素子の下流側で且つ冷却用空気Abの下流側に対応する部位において吸着能力が最小となるような吸着能力勾配をもつ場合に比して、上記吸着用素子1における有効吸着領域がその全域に可及的に拡大され、該吸着用素子1はより高い吸着能力を発揮することになり、延いては、この吸着用素子1を備えて構成される上記除湿素子Z1はより高い除湿能力を発揮することになる。
【0055】
II:第2の実施形態
図2には、本願発明の第2の実施形態にかかる吸着用素子1及びこれを備えて構成される除湿素子Z2を示している。この除湿素子Z2は、上記第1の実施形態の除湿素子Z1と同様に、吸着用素子1と冷却用素子2とを平面視において90°の位相角をもって交互に積層一体化して構成されるものであって、上記吸着用素子1の構造を改善することで、該第1の実施形態の除湿素子Z1の奏する上記効果をさらに増進させることを狙ったものである。
【0056】
即ち、上記第1の実施形態の除湿素子Z1における上記吸着用素子1は、その通風路3,3,・・の流路途中に長矩形の開口部13を形成し、該開口部13によって上記被処理空気混合部31を構成することで、冷却用空気Abの温度及び湿度の均一化を実現し、これによって該吸着用素子1の吸着能力の向上を図っているのに対して、この実施形態の除湿素子Z2の吸着用素子1においては、上記被処理空気混合部31による冷却用空気Abの温度及び湿度の均一化に加えて、該被処理空気混合部31からその下流側の通風路3,3,・・に流入する冷却用空気Abに偏流作用を付与し、これら両者の相乗作用によって上記吸着用素子1の吸着能力の更なる向上を図ったものである。
【0057】
即ち、この実施形態の除湿素子Z2に用いられる上記吸着用素子1においては、その通風路3,3,・・の流路途中に設けられる上記開口部13の平面形状を、通風路3の流路方向における寸法が該吸着用素子1の一側部1c側から他側部1d側にかけて連続的に増大変化する台形状に設定している。このように上記開口部13の平面形状を設定することで、該開口部13の下流側に位置する通風路3,3,・・においては、その流路長さが、該吸着用素子1の一側部1c側から他側部1d側にかけて連続的に減少し、これに対応して該各通風路3,3,・・の流通抵抗も同様に変化する。
【0058】
このため、上記吸着用素子1を上記冷却用素子2と共に積層して上記除湿素子を構成し、該吸着用素子1の上流部1a側から上記各通風路3,3,・・に被処理空気Aaを流す場合、該被処理空気Aaは上記開口部13で構成される上記被処理空気混合部31にその上流側の通風路3,3,・・からそれぞれ流入し、ここで混合されることでその温度及び湿度が可及的に均一化されるとともに、この温度及び湿度が均一化された被処理空気Aaがさらに該被処理空気混合部31からその下流側の通風路3,3,・・に流入する場合、該下流側の各通風路3,3,・・相互間の流通抵抗の相違に対応して、該流通抵抗の低い側の通風路3、即ち上記吸着用素子1の他側部1d寄りの通風路3に偏って流れ、該他側部1dより側の流量が一側部1c寄り側の流量よりも多くなる偏流状態が実現される。
【0059】
この結果、上記吸着用素子1においては、上記被処理空気混合部31の下流側で且つ冷却用空気Abの下流側に位置する領域、即ち、吸着用素子1の下流部1b寄りで且つ他側部1d寄りの隅領域における吸着能力がより一層高められ、該吸着用素子1の有効吸着領域の更なる拡大によって該吸着用素子1は全体としてより高い吸着能力を発揮することになり、延いてはこの吸着用素子1を備えて構成される除湿素子Z2の除湿能力の更なる向上が期待できるものである。
【0060】
尚、上記冷却用素子2の構成等は、全て上記第1の実施形態の場合と同様であるので、ここでの説明は省略する。
【0061】
III:第3の実施形態
図3には、本願発明の第3の実施形態にかかる吸着用素子1及びこれを備えて構成される除湿素子Z3を示している。この除湿素子Z3は、上記第1の実施形態の除湿素子Z1の発展例として位置付けられるものであって、上記第1の実施形態の除湿素子Z1においては上記吸着用素子1に開口部13を一つ形成していたのに対して、この実施形態の除湿素子Z3の吸着用素子1においては該開口部13を通風路3の流路方向に所定間隔をもって前後に二つ配置したものである。
【0062】
従って、この実施形態の吸着用素子1においては、上記開口部13で構成される上記被処理空気混合部31による冷却用空気Abの温度及び湿度の均一化作用が前後二段階で行われることから、冷却用空気Abの温度及び湿度の均一化に基づく吸着用素子1の吸着能力の向上効果が倍増され、延いてはこの吸着用素子1を備えて構成される除湿素子Z3の除湿能力の倍増が可能となるものである。
【0063】
尚、この実施形態においては、上記開口部13を上記第1の実施形態の吸着用素子1における開口部13と同様に長矩形状に形成しているが、他の実施形態においては、例えば該開口部13を上記第2の実施形態の開口部13のように台形状に形成することもできるものである。
【0064】
また、この実施形態においては、上記吸着用素子1に開口部13を二つ形成した場合を示しているが、この開口部13の形成個数には制限はなく、必要に応じて適宜設定できるものである。
【0065】
IV:第4の実施形態
図4には、本願発明の第4の実施形態にかかる吸着用素子1及びこれを備えて構成される除湿素子Z4を示している。この除湿素子Z4は、上記吸着用素子1の吸着能力の向上を、上記第1〜第3の実施形態の除湿素子Z1〜Z3のように、吸着用素子1そのものの構造のみによって図るのではなく、これに上記冷却用素子2側の冷却特性を加味し、これら両者の相乗効果によって実現するようにしたものである。
【0066】
即ち、この実施形態の除湿素子Z4は、上記第1〜第3の実施形態の除湿素子Z1〜Z3と同様に、上記吸着用素子1と冷却用素子2とによって構成される。
【0067】
上記吸着用素子1は、上下一対の平板材11,11とこれらの間に挟着される一枚の波板材12とで構成されるが、この場合、この吸着用素子1に上記開口部13を形成するに際して、上記一対の平板材11,11は打ち抜きの無い平板体のまま使用し、上記波板材12のみに打ち抜きによって長矩形の13を形成している。従って、この吸着用素子1においては、これ単体で、上記開口部13によって上記被処理空気混合部31が構成され、該吸着用素子1に並設される多数の通風路3,3,・・は上記被処理空気混合部31によってその上流側部分と下流側部分とに分割された状態となっている。
【0068】
このため、上記吸着用素子1にその上流部1a側から下流部1b側に向けて上記各通風路3,3,・・を通って被処理空気Aaが流れる場合、上記被処理空気混合部31の上流側の通風路3,3,・・からそれぞれ該被処理空気混合部31に流入する被処理空気Aaは該被処理空気混合部31において混合されその温度及び湿度が均一化され、かかる均一化状態のまま該被処理空気混合部31からその下流側の通風路3,3,・・にそれぞれ流入する。これによって、上記吸着用素子1の上記被処理空気混合部31の下流側部位における吸着能力が可及的に均等化されることになる。
【0069】
一方、上記冷却用素子2は、上下一対の平板材21,21とこれらの間に挟着される一枚の波板材22とで構成され、これら相互間に多数の通風路4,4,・・が並設されている。そして、この冷却用素子2の上記通風路4の流路方向に適宜離間した二位置には、該流路方向に直交する方向に延びる開口部23,23をそれぞれ形成し、該各開口部23,23によって冷却空気混合部33,33を構成している。また、この場合、上記開口部23の平面形状は、流路方向の寸法が上記冷却用素子2の一側部2c寄りで広く、他側部2d寄りで狭くなるような略台形状に設定している。従って、上記各被処理空気混合部32,32の下流側の通風路4,4,・・においては、その流路長さが、該冷却用素子2の一側部2c寄りで長く、他側部2d寄りで短くなり、これに対応して該各通風路4,4,・・の流通抵抗もその流路方向に直交する方向(即ち、通風路4,4,・・の並設方向)において勾配をもち、上記一側部2c寄りで大きく、他側部2d寄りで小さくなっている。
【0070】
このため、上記冷却用素子2にその上流部2a側から下流部2b側に向けて上記通風路4,4,・・を通して冷却用空気Abが流れる場合、この冷却用空気Abは前後一対の冷却空気混合部33,33においてそれぞれ混合されその温度の均一化が図られるとともに、該各被処理空気混合部32,32の下流側の通風路4,4,・・の流通抵抗の相違に対応して、該流通抵抗の小さい側、即ち、上記冷却用素子2の他側部2d寄りに偏って流れる。この冷却用空気Abの上記被処理空気混合部32,32における混合による温度の均一化と、該被処理空気混合部32,32における偏流作用との相乗効果によって、上記冷却用素子2の冷却能力は、その一側部2c寄りにおいて低く、他側部2d寄りにおいて高くなるように、上記通風路4,4,・・の並設方向において勾配をもつことになる。
【0071】
従って、上記吸着用素子1と冷却用素子2とを交互に積層して除湿素子Z4を構成した場合、上記吸着用素子1の上記被処理空気混合部31よりも下流側領域と上流側領域とを比較した場合、下流側領域は上記冷却用素子2による冷却作用が大きい(即ち、吸着熱の放熱作用が高い)ことから、上記被処理空気混合部31の上流側領域(即ち、元々、吸着能力の高い領域)に匹敵する吸着能力を発揮し、該吸着用素子1全体としてより高い吸着能力をもつことになり、延いては上記除湿素子Z4の除湿能力がさらに向上することになるものである。
【0072】
尚、この実施形態においては、上記吸着用素子1側の通風路3,3,・・と上記冷却用素子2側の通風路4,4,・・とを完全に隔離して、被処理空気Aaと上記冷却用素子2側の冷却用空気Abとの混合を防止するために、上記吸着用素子1を両面段ボール状形態とし且つ波板材12のみに開口部13を形成(即ち、内部形成)したものであるが、かかる構成に限定されるものではなく、例えば上記吸着用素子1と冷却用素子2の構造を反転させて、上記吸着用素子1側の開口部13を貫通形成し、上記冷却用素子2側の開口部23を内部形成とすることもできるものである。
【0073】
また、この実施形態のものにおいては、上記開口部23が特許請求の範囲中の「偏流手段」に該当するが、この「偏流手段」の具体例としては、上記開口部23を設けてその下流側の通風路4,4,・・の長さを変化させてその流通抵抗に差を持たせる構成の外に、例えば通風路4,4,・・の通路面積を異ならせて流通抵抗に差を持たせるように構成したり、上記開口部23内に偏流板を配置して該偏流板によって冷却用空気Abを機械的に偏流させる構成等、種々の構成を採用することができるものである。
【0074】
V:第5の実施形態
図5には、本願発明の第5の実施形態にかかる吸着用素子1及びこれを備えて構成される除湿素子Z5を示している。この除湿素子Z5は、上記吸着用素子1に長矩形の開口部13を形成し、該開口部13によって被処理空気混合部31を構成したものを対象とし、かかる構成をもつ吸着用素子1に相対される冷却用素子2においてその冷却効率を高め、これによって上記吸着用素子1の吸着能力の更なる向上を図るようにしたものである。
【0075】
即ち、この実施形態の冷却用素子2は、上記第1の実施形態の吸着用素子1と同様に、上下一対の平板材21,21とこれらの間に挟着される一枚の波板材22とによって構成された両面段ボール状形態をもち、且つ該波板材22とその両側の各平板材21,21の間に多数の通風路4,4,・・を形成したものを基本形態としている。そして、かかる基本形態の吸着用素子1において、その平面領域を、上記通風路4,4,・・の流路方向に直交する方向において三つの領域に分け、その一側部2c寄りに位置する領域を第1領域25A、その他側部2d寄りに位置する領域を第2領域25B、該第1領域25Aと第2領域25Bの中間にあって上記吸着用素子1の被処理空気混合部31(即ち、吸着能力をもたない部位)に対応する領域を第3領域25Cとしている。そして、この三つの領域25A,25B,25Cのうち、中央に位置する上記第3領域25Cにおいては、この領域に属する通風路4,4,・・の上下両端をそれぞれ閉塞材24,24によって閉塞し、冷却用空気Abの流通を阻止するようにしている。
【0076】
従って、上記冷却用素子2に対してその上流部2a側から冷却用空気Abを流す場合、上記第1領域25Aと第2領域25Bの二つの領域にそれぞれ属する通風路4,4,・・には冷却用空気Abがそれぞれ流れるものの、上記第3領域25Cに属する通風路4,4,・・には冷却用空気Abは流れない。このため、この冷却用素子2において、その幅方向の両側にそれぞれ位置する上記第1領域25Aと第2領域25Bにおいては冷却作用が為されるものの、中央に位置する第3領域25Cにおいて冷却作用は為されない。また、冷却用空気Abの全流量を一定とした場合には、例えば上記三つの領域25A,25B,25Cの全てに均等に冷却用空気Abを流す場合に比して、上記第3領域25Cに冷却用空気Abが流れない分だけ、上記第1領域25Aと第2領域25Bにおける流量が増加し、これら二つの領域ではより高い冷却作用が発揮されることになる。
【0077】
従って、この冷却用素子2を備えて構成される除湿素子Z5においては、上記吸着用素子1側における上記被処理空気混合部31での被処理空気Aaの温度及び湿度の均一化による吸着能力の向上効果と、上記冷却用素子2側における冷却能力の向上効果との相乗作用によって、より高い除湿能力を発揮することになる。
【0078】
VI:第6の実施形態
図6には、本願発明の第6の実施形態にかかる吸着用素子1及びこれを備えて構成される除湿素子Z6を示している。この除湿素子Z6は、上記第5の実施形態にかかる除湿素子Z5の除湿能力を、上記冷却用素子2側において上記第1領域25Aと第2領域25B相互間の冷却能力に差をもたせて上記吸着用素子1の上記被処理空気混合部31の下流側領域に対する冷却作用を促進させることで、より一層高めることを狙ったものである。
【0079】
即ち、この実施形態の除湿素子Z6における上記冷却用素子2においては、上記第5の実施形態の冷却用素子2と同様に両面段ボール状形態をもつとともに、その三つの領域25A,25B,25Cのうち、中央の第2領域25Bを閉塞材24によって閉塞してこれを冷却作用上無効としたものにおいて、さらに上記第1領域25Aに属する各通風路4,4,・・の通路面積を上記第2領域25Bに属する各通風路4,4,・・の通路面積よりも小さくし、これら両領域25A,25B相互間において冷却用空気Abの流量に差をもたせることで、その冷却能力を、上記第1領域25A側において小さく、上記第2領域25B側において大きくなるように設定したものである。
【0080】
従って、かかる構造の冷却用素子2を備えて構成される除湿素子Z6においては、上記吸着用素子1側における上記被処理空気混合部31での被処理空気Aaの温度及び湿度の均一化による吸着能力の向上効果と、上記冷却用素子2側における上記第3領域25Cを閉塞してその分だけ第1領域25A及び第2領域25B側の流量を増やしたことによる冷却能力の向上効果に加えて、該冷却用素子2の第1領域25A側と第2領域25B側とで冷却能力に差をもたせたことによる効果(即ち、上記第2領域25B側の冷却用空気Abの流量をさらに増加させてその冷却能力を高めることで、上記吸着用素子1の被処理空気混合部31の下流側領域をより効果的に冷却してその吸着能力の向上を図る効果)が相乗的に作用し、これによって上記除湿素子Z6の除湿能力がより一層高められる。
【図面の簡単な説明】
【0081】
【図1】本願発明の第1の実施形態に係る吸着用素子及びこれを備えた除湿素子を示す斜視図で
ある。
【図2】本願発明の第2の実施形態に係る吸着用素子及びこれを備えた除湿素子を示す斜視図で
ある。
【図3】本願発明の第3の実施形態に係る吸着用素子及びこれを備えた除湿素子を示す斜視図で
ある。
【図4】本願発明の第4の実施形態に係る吸着用素子及びこれを備えた除湿素子を示す斜視図で
ある。
【図5】本願発明の第5の実施形態に係る吸着用素子及びこれを備えた除湿素子を示す斜視図で
ある。
【図6】本願発明の第6の実施形態に係る吸着用素子及びこれを備えた除湿素子を示す斜視図で
ある。
【図7】従来の吸着用素子及びこれを備えた除湿素子を示す斜視図である。
【符号の説明】
【0082】
1は吸着用素子、2は冷却用素子、3及び4は通風路、11は平板材、12は波板材、13は開口部、21は平板材、22は波板材、23は開口部、24は閉塞材、25A〜25Cは領域、31及び32は被処理空気混合部、33は冷却空気混合部、34は拡大混合部、Aaは被処理空気、Abは冷却用空気、Z1〜Z7は除湿素子である。
[0002]
BACKGROUND OF THE INVENTION
[0003]
The present invention relates to an adsorbing element and a structure of a dehumidifying element including the same.
[Prior art]
[0004]
As shown in FIG. 7, the conventional dehumidifying element Z0 has a flat plate shape and a large number of air passages 3, 3,... In the plane direction through which the air to be treated Aa (that is, humid air) passes. An adsorbing element 1 which is arranged side by side and carries an adsorbent for adsorbing moisture in the ventilation passages 3, 3,... And a ventilation passage 4, 4, which has a flat plate shape and passes cooling air Ab. .. The cooling element 2 provided with... Are alternately stacked in multiple stages so that the ventilation path 3 of the adsorption element 1 and the ventilation path 4 of the cooling element 2 are orthogonal to each other in plan view. Are integrated.
[0005]
In the dehumidifying element Z0, the air to be treated Aa is caused to flow through the ventilation passages 3, 3,... Of the adsorption element 1, and the moisture is adsorbed and removed by the adsorbent. The adsorption heat generated on the adsorption element 1 side by the adsorption of the air is sequentially cooled by the cooling air Ab flowing through the ventilation passages 4, 4,. The adsorption capacity of 1 is maintained well over a long period of time.
[0006]
Therefore, from the viewpoint of improving the dehumidifying capacity of the entire dehumidifying element Z0, the moisture removing action is performed as uniformly as possible in the entire area of the adsorption element 1, in other words, the cooling It can be said that the cooling action of the adsorption element 2 on the adsorption element 1 needs to be performed as evenly as possible over the entire area of the adsorption element 2.
[Problems to be solved by the invention]
[0007]
However, as described above, in the dehumidifying element Z0, in the state where the adsorption element 1 and the cooling element 2 are laminated, the ventilation paths 3, 3,. The so-called “orthogonal flow” in which the ventilation paths 4, 4,... Are orthogonal to each other and the air to be treated Aa flowing on the adsorption element 1 side and the cooling air Ab flowing on the cooling element 2 side flow in the orthogonal direction. Therefore, as described below, the adsorption removal efficiency of the adsorption element 1 is biased, and the dehumidification ability of the entire dehumidification element Z0 is reduced (that is, the dehumidification ability as originally expected cannot be obtained). ).
[0008]
That is, generally, the adsorbent carried on the adsorption element 1 has a higher moisture adsorption / removal efficiency as the moisture content of the air Aa in contact with the adsorbent increases, and the adsorption / removal efficiency decreases as the moisture content decreases. Accordingly, the wall temperature of the adsorption element 1 corresponds to the adsorption / removal efficiency, and the portion with higher adsorption / removal efficiency generates more heat of adsorption, and the wall temperature increases accordingly.
[0009]
On the other hand, the cooling efficiency for the adsorption element 1 by the cooling element 2 is that the temperature of the cooling air Ab flowing on the cooling element 2 side and the adsorption element 1 that receives the cooling action by the cooling air Ab are as follows. The greater the temperature difference from the wall temperature, the higher the efficiency.
[0010]
Accordingly, when the dehumidifying element Z0 is viewed from such a viewpoint, the air to be treated Aa is introduced into each of the ventilation paths 3, 3,... Of the adsorption element 1 substantially evenly and this is upstream of the adsorption element 1. While the air flows from the portion 1a toward the downstream portion 1b, the cooling air Ab is introduced substantially uniformly into each of the ventilation paths 4, 4,... Of the cooling element 2, and this is upstream of the cooling element 2. When flowing from the portion 2a toward the downstream portion 2b, the dehumidifying ability obtained as a synergistic effect of the adsorption removal efficiency and the cooling efficiency is closer to the upstream portion 1a of the adsorption element 1 (that is, the moisture adsorption removal efficiency is high). And the highest in the upstream portion 2a of the cooling element 2 (that is, the part where the water temperature of the cooling air Ab is the lowest and the temperature difference from the wall temperature of the adsorption element 1 is the largest). The adsorbing element from the portion Dehumidifying capacity according to each transition a characteristic as to decrease to the downstream portion 1b side and the downstream portion 2b side of the cooling element 2.
[0011]
This is because, with respect to the adsorption element 1, the moisture adsorption / removal action is concentrated in a partial area of the adsorption element 1, and the other areas hardly contribute to the moisture adsorption / removal action. In other words, the effective adsorption area of the adsorption element 1 is small, and as a result, the dehumidification capacity of the dehumidification element Z0 as a whole is lowered.
[0012]
From the above, in order to increase the dehumidifying capacity of the dehumidifying element Z0 as a whole, the effective adsorption region of the adsorption element 1 is expanded, and the cooling efficiency of the cooling element 2 with respect to the adsorption element 1 is increased. Must be fully considered. However, the actual situation is that no effective technology that can meet such demands has been proposed yet.
[0013]
Accordingly, the present invention has been made with the object of providing an adsorption element suitable for obtaining a dehumidifying element having a high dehumidifying ability and a dehumidifying element having the same.
[Means for Solving the Problems]
[0014]
In the present invention, the following configuration is adopted as a specific means for solving such a problem.
[0015]
In the first invention of the present application, in each of the adsorption elements having a flat plate shape and a plurality of ventilation passages 3, 3,... Passing the air to be treated Aa along the surface direction, In the middle of the flow path of the ventilation passages 3, 3,..., A to-be-treated air mixing unit 31 is provided for mixing and mixing the to-be-treated air Aa flowing through the ventilation passages 3, 3,. It is said.
[0016]
In the second invention of the present application, in the adsorbing element according to the first invention, the to-be-treated air mixing part 31 is configured by cutting out the middle of the flow path of each of the ventilation paths 3, 3,. It is characterized by.
[0017]
In the third invention of the present application, in the adsorption element according to the first invention, the passage lengths on the downstream side of the air to be treated 31 of the air passages 3, 3,. In this way, the planar shape of the air to be treated 31 is set.
[0018]
In the fourth invention of the present application, in the adsorbing element according to the first invention, the length of the passage on the downstream side of the air to be treated 31 of each of the air passages 3, 3,. The planar shape of the to-be-processed air mixing portion 31 is set so as to decrease continuously or stepwise from one end 1c side to the other end 1d side in the juxtaposed direction of 3, 3,. .
[0019]
In the fifth invention of the present application, in the adsorbing element according to the first, second, third or fourth invention, the air to be treated 31 is arranged in the flow direction of the ventilation passages 3, 3,. It is characterized in that a plurality of them are provided at appropriate intervals.
[0020]
In the sixth invention of the present application, an adsorption element 1 having a flat plate shape and a plurality of ventilation passages 3, 3,. A cooling element 2 having a shape and having a large number of ventilation passages 4, 4,... Passing through the cooling air Ab along the surface direction, in the plan view, In the dehumidifying element constructed by alternately laminating the ventilation paths 4, 4,... On the cooling element 2 side so as to be substantially orthogonal to each other, While including the to-be-processed air mixing section 31 that mixes and mixes the to-be-processed air Aa flowing through each of the ventilation paths 3, 3,. In the cooling element 2, the cooling air Ab is placed upstream of the air to be treated 31 of the adsorption element 1. It is characterized in that the flow rate in the opposite first region 25A is provided with a drift means 23 for drift to be less than the flow rate in the opposite second cooling region 25B on the downstream side portion.
[0021]
In the seventh invention of the present application, an adsorption element 1 having a flat plate shape and a plurality of ventilation passages 3, 3,. A cooling element 2 having a shape and having a large number of ventilation passages 4, 4,... Passing through the cooling air Ab along the surface direction, in the plan view, In the dehumidifying element constructed by alternately stacking the ventilation paths 4, 4,... On the cooling element 2 side so as to be substantially orthogonal to each other. Is provided with a to-be-processed air mixing section 31 that joins and mixes the to-be-processed air Aa flowing in each of the above-described ventilation paths 3, 3,. The cooling element 2 is arranged on the upstream side and the downstream side of the to-be-treated air mixing unit 31 in the adsorption element 1. It is characterized in that only the respective opposite first region 25A and the second cooling region 25B and configured to flow cooling air Ab.
[0022]
In the eighth invention of the present application, in the dehumidifying element according to the seventh invention, the flow rate of the cooling air Ab is set so that the flow rate on the first region 25A side is smaller than the flow rate on the second region 25B side. It is characterized by being set to.
【The invention's effect】
[0023]
In the present invention, the following effects can be obtained by adopting such a configuration.
[0024]
(A) In the adsorption element according to the first invention of the present application, a large number of ventilation paths 3, 3,... Having a flat plate shape and passing the air to be treated Aa along the surface direction are arranged in parallel. In the adsorbing element, the air to be treated is mixed by mixing the air to be treated Aa flowing through the air passages 3, 3,. A portion 31 is provided.
[0025]
Therefore, according to the adsorption element of the present invention, the air to be treated Aa is introduced into each ventilation path 3, 3,... Of the adsorption element, and this air passes through each ventilation path 3, 3,. When flowing downstream, the moisture contained in the air to be treated Aa is sequentially removed by the adsorbent carried on the inner surface of each of the ventilation paths 3, 3,..., And the dehumidification of the air to be treated Aa is executed. Is done.
[0026]
In this case, if each of the ventilation paths 3, 3,... Is a series of passages from the upstream side to the downstream side of the adsorption element, the air to be treated Aa flowing through the ventilation paths 3, 3,. Since the air is isolated from each other, the temperature and humidity are not uniform between the air to be treated Aa corresponding to the arrangement positions of the air passages 3, 3,. It becomes. That is, normally, since the cooling air flows in a direction substantially orthogonal to the flow direction of the air to be treated Aa flowing through the adsorption element, the ventilation path of the adsorption element corresponding to the upstream side (that is, the low temperature side) of the cooling air. 3 and the air flow path 3 of the adsorption element corresponding to the downstream side of the cooling air (that is, the high temperature side), the heat radiation action of the adsorption heat is different, so there is naturally a difference in the temperature of the air to be treated Aa. In addition, the adsorption / removal efficiency varies with the difference in cooling performance, and as a result, the humidity also varies).
[0027]
The non-uniformity in temperature and humidity between the air to be treated Aa flowing through the air passages 3, 3,... Appears as a difference in the moisture adsorption / removal efficiency of the adsorption element, and the adsorption element removes the adsorption / removal efficiency. A site with high efficiency and a site with low efficiency are mixed, and as a result, the adsorption capacity of the entire adsorption element is reduced.
[0028]
However, in the adsorption element according to the present invention, since the air to be treated 31 is provided in the middle of the flow path of each of the ventilation paths 3, 3,. The air to be treated Aa that has flowed into and separated from each other flows into the air to be treated mixing unit 31 where it merges and is mixed so that, for example, each air flow already flows into the air to be treated mixing unit 31 Even if the temperature and humidity of the air to be treated Aa are not uniform between the paths 3, 3,..., They are made uniform by the merging and mixing in the air to be treated mixing unit 31. Then, the air to be treated Aa whose temperature and humidity are uniformed in the air to be treated 31 flows into the ventilation paths 3, 3,... On the downstream side of the air to be treated 31, respectively. In each ventilation path 3, 3,..., Moisture is absorbed and removed.
[0029]
For this reason, for example, as in the prior art, the air to be treated Aa that has flowed into each of the ventilation passages 3, 3,... Remains mixed without being mixed in the middle (that is, the temperature and humidity are not uniform). As compared with the case of flowing), the adsorption removal efficiency between the ventilation passages 3, 3,... Is made as uniform as possible, and the effective adsorption area of the adsorption element is expanded. As a result, the adsorption capacity of the adsorption element as a whole is improved, and as a result, the dehumidification ability of the dehumidification element can be expected to improve when the dehumidification element is configured using the adsorption element. .
[0030]
Furthermore, in the adsorption element of the present invention, by providing the treated air mixing section 31, only the formation portion of the treated air mixing section 31 can reduce the weight and cost of the adsorption element, and relatively The amount of the expensive adsorbent used can be reduced, and as a synergistic effect thereof, the adsorbing element can be provided at a lower cost, and the effect becomes more prominent as the adsorbing element has a larger capacity.
[0031]
(B) According to the adsorption element according to the second invention of the present application, in addition to the effect described in the above (a), the following specific effect can be obtained. That is, in the adsorbing element of the present invention, the air mixing portion 31 to be treated is formed by cutting out the middle of the flow path of each of the ventilation paths 3, 3,. In addition, it is possible to provide an adsorption element having a high adsorption capacity at a lower cost, which can contribute to a reduction in the cost of a dehumidifying element including the adsorption element.
[0032]
(C) According to the adsorption element according to the third invention of the present application, in addition to the effect described in (a) above, the following specific effect is obtained. That is, according to the adsorbing element of the present invention, in the adsorbing element according to the first aspect of the present invention, the passage length on the downstream side of the air to be treated 31 of each of the ventilation paths 3, 3,. Since the planar shape of the to-be-treated air mixing section 31 is set so as to be substantially the same, the flow resistance in the downstream portion of the to-be-treated air mixing section 31 in each of the ventilation paths 3, 3,. Each of the air passages 3, 3,... Is made as uniform as possible between the respective air passages 3, 3... As a result, the adsorption and removal efficiency in the entire region on the downstream side of the air to be treated 31 is equalized. Expansion of the effective adsorption area of the element is promoted.
[0033]
(D) According to the adsorption element according to the fourth invention of the present application, in addition to the effect described in the above (a), the following specific effect is obtained. That is, according to the adsorbing element of the present invention, in the adsorbing element according to the first aspect of the present invention, the passage length on the downstream side of the air to be treated 31 of each of the ventilation paths 3, 3,. The planar shape of the to-be-processed air mixing unit 31 is set so as to decrease continuously or stepwise from one end 1c side to the other end 1d side in the direction in which the ventilation paths 3, 3,. Therefore, the air to be treated Aa flowing into the air mixture 31 to be treated from the ventilation passages 3, 3,... On the upstream side of the air mixture 31 to be treated and mixed and mixed here is the air to be treated. Corresponding to the magnitude of the flow resistance with respect to the air passages 3, 3,... Downstream of the mixing unit 31, the flow rate of the air Aa to be treated increases as the air passage 3 has a shorter passage length. It flows in in a drift state. As a result, the portion where the flow rate of the air to be treated Aa is larger is promoted to remove moisture, and the air passages 3, 3,. A difference is caused in the moisture adsorption and removal action in the parallel arrangement direction.
[0034]
Therefore, when the dehumidifying element is configured by making the cooling element relative to the adsorption element 1, the side with the higher moisture adsorption removing action of the adsorption element 1 corresponds to the downstream side of the cooling air in the cooling element. By assembling the adsorption element 1 and the cooling element in this way, the adsorption element 1 has a high moisture adsorption removal action (that is, the moisture adsorption removal action is low if there is no drift of the air to be treated Aa). This part functions effectively with respect to moisture adsorption and removal, and the effective adsorption area of the adsorption element 1 as a whole is expanded accordingly, and the adsorption capacity can be improved.
[0035]
(E) According to the adsorption element according to the fifth invention of the present application, in addition to the effect described in the above (a), (b), (c) or (d), the following specific effect is obtained. It is done. That is, according to the adsorbing element of the present invention, in the adsorbing element according to the first, second, third or fourth invention, the air mixing section 31 is connected to the ventilation passages 3, 3,. Since the plurality of air gaps are provided at appropriate intervals in the flow path direction, the equalizing action of temperature and humidity by the combined mixing of the air to be processed Aa in the air to be processed 31 is repeated a plurality of times. It is possible to further promote the equalization of the adsorption / removal efficiency and further improve the adsorption capacity.
[0036]
(F) In the dehumidifying element according to the sixth invention of the present application, a plurality of ventilation paths 3, 3,... Having a flat plate shape and passing the air to be treated Aa along the surface direction are arranged in parallel. A plan view of the adsorption element 1 and the cooling element 2 having a flat plate shape and a plurality of ventilation paths 4, 4,.. In the dehumidifying element constituted by alternately stacking the ventilation paths 3, 3,... On the adsorption element 1 side and the ventilation paths 4, 4,. The adsorbing element 1 mixes the air to be treated Aa flowing in the air passages 3, 3,... In the middle of the air passages 3, 3,. On the other hand, the cooling element 2 is provided with the cooling air Ab and the air to be treated of the adsorption element 1 is mixed. Diffusion means 23 is provided for drifting so that the flow rate in the first region 25A facing the upstream side part of the part 31 is smaller than the flow rate in the second cooling region 25B facing the downstream side part.
[0037]
Therefore, according to the dehumidifying element in accordance with the present invention, by providing the treated air mixing section 31 on the adsorption element 1 side, the ventilation passages 3, 3,. The temperature and humidity of the air to be treated Aa flowing through the chamber are made uniform, and the moisture adsorption and removal action at the downstream portion is promoted. On the other hand, in the cooling element, the drift of the cooling air Ab by the drift means 23 By the action, the cooling action on the second region 25B side corresponding to the downstream part of the adsorption element 1 is promoted. Therefore, in the downstream part of the to-be-processed air mixing part 31 of the adsorption element 1, the cooling element 2 is efficiently cooled, and the heat release of the adsorption heat is promoted, so that higher adsorption ability is exhibited. Become.
[0038]
As a result, in the dehumidifying element of the present invention, for example, a portion that has hardly contributed to the dehumidifying action in the adsorption element of the dehumidifying element having the conventional structure, that is, the downstream side of the adsorption element and for cooling the cooling element. The part corresponding to the downstream side of the air effectively performs the dehumidifying action, and the dehumidifying ability of the dehumidifying element can be improved accordingly.
[0039]
Furthermore, in the dehumidifying element of the present invention, the adsorption element 1 is provided with the treated air mixing section 31, so that the adsorption element 1 is reduced in weight and cost only at the portion where the treated air mixing section 31 is formed. The amount of the relatively expensive adsorbent used can be reduced, and the dehumidifying element can be provided at a lower cost as a synergistic effect of these, and the larger the dehumidifying element is, the larger the capacity is. Become prominent.
[0040]
(G) In the dehumidifying element according to the seventh invention of the present application, a plurality of ventilation passages 3, 3,... Having a flat plate shape and passing the air to be treated Aa along the surface direction are arranged in parallel. A plan view of the adsorption element 1 and the cooling element 2 having a flat plate shape and a plurality of ventilation paths 4, 4,.. Dehumidifying element constructed by alternately laminating the ventilation paths 3, 3),... On the adsorption element 1 side and the ventilation paths 4, 4,. , The adsorption element 1 joins the air to be treated Aa flowing through the air passages 3, 3,... In the middle of the air passages 3, 3,. While providing the mixing part 31, the said element 2 for cooling is this rather than the said to-be-processed air mixing part 31 in the said element 1 for adsorption | suction. The cooling air Ab is configured to flow only in the first region 25A and the second cooling region 25B that face the upstream side portion and the downstream side portion, respectively.
[0041]
Therefore, according to the dehumidifying element in accordance with the present invention, by providing the treated air mixing section 31 on the adsorption element 1 side, the ventilation passages 3, 3,. The temperature and humidity of the air to be treated Aa flowing through the air are made uniform, and the moisture adsorption and removal action at the downstream side portion is promoted, while the air to be treated of the adsorption element 1 is used in the cooling element 2. Only in the first region 25A and the second cooling region 25B facing the upstream portion and the downstream portion from the mixing portion 31 (in other words, the adsorbent is supported and cooling is performed for the heat radiation of the adsorption heat). The cooling air Ab is flowed only to the necessary part), and only this part is cooled intensively, and the cooling air Ab is not flowed to the part opposite to the treated air mixing unit 31 to 1st minute Since it is possible to increase the flow rate of the cooling air Ab to pass 25A and the second cooling region 25B, the more can be further enhanced cooling capacity of the first region 25A and the second cooling region 25B. Therefore, in the downstream part of the to-be-processed air mixing part 31 of the adsorption element 1, the cooling element 2 is efficiently cooled, and the heat release of the adsorption heat is promoted, so that higher adsorption ability is exhibited. Become.
[0042]
As a result, in the dehumidifying element of the present invention, for example, a portion that has hardly contributed to the dehumidifying action in the adsorption element of the dehumidifying element having the conventional structure, that is, the downstream side of the adsorption element and for cooling the cooling element. The part corresponding to the downstream side of the air effectively performs the dehumidifying action, and the dehumidifying ability of the dehumidifying element can be improved accordingly.
[0043]
Furthermore, in the dehumidifying element of the present invention, the adsorption element 1 is provided with the treated air mixing section 31, so that the adsorption element 1 is reduced in weight and cost only at the portion where the treated air mixing section 31 is formed. The amount of the relatively expensive adsorbent used can be reduced, and the dehumidifying element can be provided at a lower cost as a synergistic effect of these, and the larger the dehumidifying element is, the larger the capacity is. Become prominent.
[0044]
(H) According to the dehumidifying element according to the eighth aspect of the present invention, the following specific effects can be obtained in addition to the effects described in the above (g). That is, according to the dehumidifying element of the present invention, in the dehumidifying element according to the seventh aspect of the invention, the flow rate of the cooling air Ab is set so that the flow rate on the first region 25A side is higher than the flow rate on the second region 25B side. Since the amount of cooling is set to be smaller, the cooling capacity of the adsorption element 1 is lower on the first area 25A side than on the second area 25B side, and correspondingly, the adsorption element 1 has the above-mentioned value. The adsorption capability in the downstream part of the to-be-processed air mixing part 31 is improved, and further improvement in the dehumidification capability of the dehumidifying element can be expected by expanding the effective adsorption area of the adsorption element 1.
DETAILED DESCRIPTION OF THE INVENTION
[0045]
Hereinafter, the present invention will be specifically described based on preferred embodiments.
[0046]
I: First embodiment
FIG. 1 shows a suction element 1 according to a first embodiment of the present invention and a dehumidifying element Z1 configured with the same. The dehumidifying element Z1 is configured by alternately stacking the adsorption element 1 and a cooling element 2 described later and integrating them, and the present invention is applied to the configuration of the adsorption element 1. It has been done.
[0047]
The adsorbing element 1 is a double-sided surface in which a corrugated sheet material 12 also made of glass fiber is sandwiched and supported inside a pair of flat plate materials 11 and 11 made of glass fiber, for example, and both are bonded and fixed together. A plurality of ventilation paths 3, 3,... Extending in parallel between the pair of flat plate materials 11, 11 and the corrugated sheet material 12 are formed, and the ventilation paths 3, At the middle position in the flow path direction 3,..., A horizontally long rectangular opening 13 having a predetermined width in the flow path direction and extending from one side 1c to the other side 1d in the width direction, for example, by punching. Is provided. Further, an adsorbent having a property of adsorbing moisture, such as zeolite, is supported on the entire surface of the adsorption element 1, and the adsorption element 1 has a required adsorption capacity due to the adsorption of the adsorbent. Has been granted. And in this adsorption | suction element 1, from the upstream part 1a side to which the one end of the said ventilation path 3,3, ... opens, the downstream part 2b to which the other end of this ventilation path 3,3, ... opens, respectively To-be-processed air Aa (namely, humid air) is flowed.
[0048]
On the other hand, the cooling element 2 has a double-sided corrugated board shape formed by bonding and fixing a pair of upper and lower flat plate materials 21 and 21 and a single corrugated plate material 22 sandwiched therebetween, A large number of ventilation paths 4, 4,... Are formed between the pair of flat plates 21, 21 facing the both surface sides. In this case, in the cooling element 2 of this embodiment, the arrangement pitch of the ventilation paths 4, 4,... Is set constant, and the passage area between the ventilation paths 4, 4,. The distribution resistance is constant. And in this cooling element 2, from the upstream part 2a side where the one end of the said ventilation path 4,4, ... opens, it goes to the downstream part 2b where the other end of this ventilation path 4,4, ... opens. Cooling air Ab is flowed.
[0049]
When the adsorption element 1 and the cooling element 2 configured as described above are viewed in a plan view, the direction of the air passages 3, 3,... Of the adsorption element 1 and the air passage of the cooling element 2 in plan view The dehumidifying element Z1 is configured by sequentially laminating and integrating them with a plane phase of 90 ° so that the passage directions of 4, 4,.
[0050]
In the dehumidifying element Z1, the air to be treated Aa flows through the ventilation passages 3, 3,... From the upstream portion 1a toward the downstream portion 1b with respect to the adsorption elements 1, 1,. The cooling elements Ab are caused to flow through the ventilation passages 4, 4,... From the upstream part 2a toward the downstream part 2b with respect to the cooling elements 2, 2,. On the 1, 1,... Side, the moisture contained in the air to be treated Aa is adsorbed and removed by the adsorbent carried thereon, and the dehumidifying action of the air to be treated Aa is performed. On the element 2, 2,... Side, the cooling air Ab cools each of the adsorption elements 1, 1,..., That is, releases heat of the adsorption heat generated in each of the adsorption elements 1, 1,. Done. As a result, the adsorption capability of each of the adsorption elements 1, 1,... Is maintained at a high level for a long time, and as a result, the dehumidification capability of the dehumidification element Z1 can be improved.
[0051]
Here, as described above, the dehumidifying ability of the dehumidifying element Z1 is such that the adsorption / removal action of moisture in each of the adsorption elements 1, 1,. Ultimately, it is achieved with high efficiency in the entire region, in other words, it is achieved by expanding the effective adsorption region in the adsorption element 1.
[0052]
In this case, in the adsorption element 1 of this embodiment, the opening 13 is provided in the middle of the flow path of each of the ventilation paths 3, 3,. In a state where the dehumidifying element Z1 is configured by being laminated together with the cooling element 2, the opening 13 is closed by a pair of cooling elements 2 and 2 opposed to both surfaces thereof, and air to be treated having a predetermined volume. A mixing unit 31 is formed.
[0053]
As described above, the air to be treated 31 is formed in the middle of the flow path of the ventilation path 3, 3,... Of the adsorption element 1, so that each of the ventilation paths 3, 3,. The to-be-processed air Aa that flows and flows in flows into the to-be-processed air mixing unit 31, where it merges and is mixed. For this reason, for example, at the time of inflow from the ventilation passages 3, 3,... Upstream of the treated air mixing section 31 to the treated air mixing section 31, the treatment is already performed between the ventilation paths 3, 3,. Even if the temperature and humidity of the air Aa are not uniform, the temperature and humidity are made as uniform as possible by the mixing action in the air to be treated 31 (that is, each air passage 3, 3,... The temperature gradient and humidity gradient of the air to be treated Aa are eliminated. And in each ventilation path 3,3, ... downstream of the said to-be-processed air mixing part 31, the to-be-processed air Aa in which temperature and humidity were equalized as much as possible in this to-be-processed air mixing part 31 is carried out. Then, the moisture removal and removal action of the air to be treated Aa is performed in the ventilation passages 3, 3,. As a result, in the region downstream of the air to be treated 31 of the adsorption element 1, the adsorption capacity is made possible by the flow of cooling air Ab having a uniform temperature and humidity throughout the region. The entire area is effectively adsorbed.
[0054]
Therefore, in the adsorption element 1 of this embodiment, for example, as in the conventional dehumidification element adsorption element, the air to be treated Aa and the cooling air Ab are cross-flowed, and thus the adsorption element 1 The adsorption capacity is maximized at a portion corresponding to the upstream side of the element and the upstream side of the cooling air Ab, and the adsorption capacity is gradually increased from here to the downstream side of the air to be treated Aa and the downstream side of the cooling air Ab. In the adsorption element 1 as compared with the case where the adsorption capacity gradient is such that the adsorption capacity is minimized at a site corresponding to the downstream side of the adsorption element and the downstream side of the cooling air Ab. The effective adsorption region is expanded as much as possible to the entire area, and the adsorption element 1 exhibits a higher adsorption capability. As a result, the dehumidification element Z1 configured to include the adsorption element 1 is provided. Exhibits higher dehumidifying capacity It becomes Rukoto.
[0055]
II: Second embodiment
In FIG. 2, the adsorption | suction element 1 concerning 2nd Embodiment of this invention and the dehumidification element Z2 comprised by including this are shown. The dehumidifying element Z2 is configured by alternately stacking and integrating the adsorption element 1 and the cooling element 2 with a phase angle of 90 ° in a plan view, similarly to the dehumidifying element Z1 of the first embodiment. However, by improving the structure of the adsorption element 1, it is intended to further enhance the above-described effect produced by the dehumidifying element Z <b> 1 of the first embodiment.
[0056]
That is, the adsorption element 1 in the dehumidifying element Z1 of the first embodiment forms a long rectangular opening 13 in the middle of the flow path of the ventilation passages 3, 3,. By configuring the air mixing section 31 to be treated, the temperature and humidity of the cooling air Ab are made uniform, thereby improving the adsorption capacity of the adsorption element 1. In the adsorption element 1 of the dehumidifying element Z2 of the embodiment, in addition to the temperature and humidity of the cooling air Ab made uniform by the air to be treated mixing unit 31, the air flow path downstream from the air to be treated mixing unit 31 3. A drifting action is imparted to the cooling air Ab flowing into 3, 3,..., And the adsorption capacity of the adsorption element 1 is further improved by a synergistic action of both.
[0057]
That is, in the adsorption element 1 used for the dehumidifying element Z2 of this embodiment, the planar shape of the opening 13 provided in the middle of the flow path of the ventilation paths 3, 3,. The dimension in the road direction is set to a trapezoidal shape that continuously increases and changes from the one side 1c side to the other side 1d side of the adsorption element 1. By setting the planar shape of the opening 13 in this way, the flow path length of the ventilation passages 3, 3,. It decreases continuously from the one side 1c side to the other side 1d side, and correspondingly, the flow resistance of each of the ventilation paths 3, 3,.
[0058]
For this reason, the adsorption element 1 is laminated with the cooling element 2 to constitute the dehumidification element, and the air to be treated is passed from the upstream portion 1a side of the adsorption element 1 to the ventilation paths 3, 3,. In the case of flowing Aa, the air to be treated Aa flows into the air to be treated mixing portion 31 constituted by the opening 13 from the upstream air passages 3, 3,. The temperature and humidity of the air to be treated are made uniform as much as possible, and the air to be treated Aa having the uniform temperature and humidity is further passed from the air to be treated 31 to the downstream air passages 3, 3,. In the case of flowing into the air flow path 3, 3 on the downstream side, corresponding to the difference in the flow resistance between them, the air flow path 3 on the low flow resistance side, that is, the other of the adsorption element 1 The air flow is biased toward the ventilation path 3 near the side portion 1d, and the flow rate on the side of the other side portion 1d is one side portion 1. Many becomes uneven flow state is realized than the flow rate of lateral shift side.
[0059]
As a result, in the adsorption element 1, a region located downstream of the air to be treated 31 and downstream of the cooling air Ab, that is, near the downstream part 1b of the adsorption element 1 and the other side. The adsorption capacity in the corner region near the portion 1d is further enhanced, and further expansion of the effective adsorption area of the adsorption element 1 causes the adsorption element 1 to exhibit a higher adsorption capacity as a whole. Can be expected to further improve the dehumidifying ability of the dehumidifying element Z2 including the adsorption element 1.
[0060]
The configuration and the like of the cooling element 2 are all the same as those in the first embodiment, and a description thereof is omitted here.
[0061]
III: Third embodiment
FIG. 3 shows an adsorption element 1 according to a third embodiment of the present invention and a dehumidifying element Z3 configured with the same. The dehumidifying element Z3 is positioned as a development example of the dehumidifying element Z1 of the first embodiment. In the dehumidifying element Z1 of the first embodiment, an opening 13 is provided in the adsorption element 1. On the other hand, in the adsorption element 1 of the dehumidifying element Z3 of this embodiment, two openings 13 are arranged at the front and rear with a predetermined interval in the flow path direction of the air passage 3.
[0062]
Therefore, in the adsorption element 1 of this embodiment, the temperature and humidity equalizing action of the cooling air Ab by the air to be treated 31 constituted by the opening 13 is performed in two stages before and after. The effect of improving the adsorption capacity of the adsorption element 1 based on the uniform temperature and humidity of the cooling air Ab is doubled. As a result, the dehumidification capacity of the dehumidification element Z3 including the adsorption element 1 is doubled. Is possible.
[0063]
In this embodiment, the opening 13 is formed in an oblong shape like the opening 13 in the adsorption element 1 of the first embodiment. In other embodiments, for example, the opening 13 The part 13 can also be formed in a trapezoidal shape like the opening 13 of the second embodiment.
[0064]
Further, in this embodiment, the case where two openings 13 are formed in the adsorption element 1 is shown, but the number of openings 13 formed is not limited and can be appropriately set as necessary. It is.
[0065]
IV: Fourth embodiment
FIG. 4 shows an adsorption element 1 according to a fourth embodiment of the present invention and a dehumidifying element Z4 configured by including the adsorption element 1. The dehumidifying element Z4 is not intended to improve the adsorption capability of the adsorption element 1 only by the structure of the adsorption element 1 itself, like the dehumidifying elements Z1 to Z3 of the first to third embodiments. In addition to this, the cooling characteristics on the cooling element 2 side are added to achieve the synergistic effect of both.
[0066]
That is, the dehumidifying element Z4 of this embodiment is configured by the adsorption element 1 and the cooling element 2 similarly to the dehumidifying elements Z1 to Z3 of the first to third embodiments.
[0067]
The adsorbing element 1 is composed of a pair of upper and lower flat plates 11, 11 and a single corrugated sheet 12 sandwiched between them. In this case, the adsorbing element 1 has the opening 13. The pair of flat plate materials 11, 11 are used as they are without punching, and only the corrugated plate material 12 is formed into a long rectangular shape 13 by punching. Therefore, in the adsorption element 1, the air-to-be-processed air mixing unit 31 is constituted by the opening 13 alone, and a large number of ventilation paths 3, 3,. Is divided into an upstream portion and a downstream portion by the air to be treated 31.
[0068]
For this reason, when the to-be-treated air Aa flows to the adsorption element 1 from the upstream portion 1a side toward the downstream portion 1b side through the ventilation passages 3, 3,. The air to be treated Aa flowing into the air to be treated mixing unit 31 from the upstream air passages 3, 3,... Is mixed in the air to be treated mixing unit 31, and the temperature and humidity are made uniform. The air flows from the air to be treated 31 into the ventilation passages 3, 3,. As a result, the adsorption capacity of the adsorption element 1 at the downstream portion of the air mixing section 31 to be treated is made as uniform as possible.
[0069]
On the other hand, the cooling element 2 is composed of a pair of upper and lower flat plates 21 and 21 and a single corrugated plate member 22 sandwiched between them, and a large number of ventilation paths 4, 4,.・ Are arranged side by side. And the opening part 23 extended in the direction orthogonal to this flow path direction is each formed in two positions where this cooling element 2 was spaced apart suitably in the flow path direction of the said ventilation path 4, and each said opening part 23 , 23 constitute cooling air mixing sections 33, 33. In this case, the planar shape of the opening 23 is set to a substantially trapezoidal shape such that the dimension in the flow path direction is wide toward the one side 2c of the cooling element 2 and narrows toward the other side 2d. ing. Accordingly, in the ventilation passages 4, 4,... On the downstream side of the air to be treated mixing sections 32, 32, the flow path length is long near the one side portion 2c of the cooling element 2, and the other side Corresponding to this, the flow resistance of each of the ventilation paths 4, 4,... Is also perpendicular to the flow path direction (that is, the direction in which the ventilation paths 4, 4, .. are arranged in parallel). Has a gradient, and is larger near the one side 2c and smaller near the other side 2d.
[0070]
For this reason, when the cooling air Ab flows through the ventilation passages 4, 4,... From the upstream portion 2a side to the downstream portion 2b side of the cooling element 2, the cooling air Ab is a pair of front and rear cooling air. Each of the air mixing sections 33, 33 is mixed and the temperature thereof is made uniform, and it corresponds to the difference in the flow resistance of the ventilation passages 4, 4,. Thus, the flow is biased toward the side with the smaller flow resistance, that is, toward the other side 2d of the cooling element 2. The cooling capacity of the cooling element 2 is obtained by the synergistic effect of the temperature uniformity due to the mixing of the cooling air Ab in the air to be treated mixing portions 32 and 32 and the drifting action in the air to be treated mixing portions 32 and 32. Has a gradient in the direction in which the ventilation paths 4, 4,... Are arranged so as to be low near the one side 2c and high near the other side 2d.
[0071]
Therefore, when the dehumidifying element Z4 is configured by alternately stacking the adsorption element 1 and the cooling element 2, the downstream area and the upstream area of the adsorption element 1 with respect to the treated air mixing unit 31 Since the cooling effect of the cooling element 2 is large in the downstream region (that is, the heat dissipation effect of the adsorption heat is high), the upstream region of the air to be treated 31 (that is, the adsorption region is originally adsorbed). The adsorbing ability comparable to that of the high-capacity area), the adsorbing element 1 as a whole has a higher adsorbing capacity, and the dehumidifying ability of the dehumidifying element Z4 is further improved. is there.
[0072]
In this embodiment, the air passages 3, 3,... On the adsorption element 1 side and the air passages 4, 4,. In order to prevent mixing of Aa and the cooling air Ab on the cooling element 2 side, the adsorption element 1 has a double-sided corrugated form, and an opening 13 is formed only in the corrugated sheet material 12 (ie, internal formation). However, the present invention is not limited to such a configuration. For example, the structure of the adsorption element 1 and the cooling element 2 is inverted to form the opening 13 on the adsorption element 1 side so as to penetrate the structure. The opening 23 on the cooling element 2 side can also be formed internally.
[0073]
Further, in this embodiment, the opening 23 corresponds to the “drifting means” in the claims. As a specific example of the “drifting means”, the opening 23 is provided and the downstream thereof. In addition to the configuration in which the length of the side ventilation passages 4, 4,... Is changed to give a difference in the circulation resistance, for example, the passage area of the ventilation passages 4, 4,. Various configurations such as a configuration in which a drift plate is disposed in the opening 23 and the cooling air Ab is mechanically drifted by the drift plate can be employed. .
[0074]
V: Fifth embodiment
FIG. 5 shows an adsorption element 1 according to a fifth embodiment of the present invention and a dehumidifying element Z5 configured with the same. The dehumidifying element Z5 is intended for an adsorption element 1 having such a configuration, in which an oblong opening 13 is formed in the adsorption element 1 and the air mixing section 31 is formed by the opening 13. The cooling efficiency of the opposed cooling element 2 is increased, thereby further improving the adsorption capacity of the adsorption element 1.
[0075]
That is, the cooling element 2 of this embodiment is similar to the adsorption element 1 of the first embodiment, and a pair of upper and lower flat plates 21 and 21 and a single corrugated plate 22 sandwiched therebetween. And having a plurality of ventilation paths 4, 4,... Formed between the corrugated sheet material 22 and the flat plate materials 21, 21 on both sides thereof. And in the element 1 for adsorption | suction of this basic form, the plane area | region is divided into three area | regions in the direction orthogonal to the flow-path direction of the said ventilation path 4, 4, ..., and it is located near the one side part 2c. The region is located in the first region 25A, the region located closer to the other side portion 2d is the second region 25B, and is located between the first region 25A and the second region 25B, and is the air mixing unit 31 to be treated of the adsorption element 1 (that is, , A region corresponding to a portion having no adsorption capability) is a third region 25C. Of the three regions 25A, 25B, 25C, in the third region 25C located in the center, the upper and lower ends of the ventilation paths 4, 4,. Then, the circulation of the cooling air Ab is prevented.
[0076]
Accordingly, when the cooling air Ab flows from the upstream portion 2a side to the cooling element 2, the ventilation paths 4, 4,... Belonging to the two areas of the first area 25A and the second area 25B, respectively. Although the cooling air Ab flows, the cooling air Ab does not flow through the ventilation paths 4, 4,... Belonging to the third region 25C. For this reason, in the cooling element 2, the first region 25A and the second region 25B located on both sides in the width direction are cooled, but the third region 25C located in the center is cooled. Is not done. In addition, when the total flow rate of the cooling air Ab is constant, for example, compared with the case where the cooling air Ab is allowed to flow evenly in all the three regions 25A, 25B, 25C, the third region 25C is supplied to the third region 25C. As the cooling air Ab does not flow, the flow rates in the first region 25A and the second region 25B increase, and a higher cooling effect is exhibited in these two regions.
[0077]
Therefore, in the dehumidifying element Z5 configured to include the cooling element 2, the adsorption capacity by the temperature and humidity of the air to be treated Aa in the air to be treated mixing unit 31 on the adsorption element 1 side is made uniform. A higher dehumidifying ability is exhibited by the synergistic effect of the improving effect and the improving effect of the cooling capacity on the cooling element 2 side.
[0078]
VI: Sixth embodiment
In FIG. 6, the adsorption | suction element 1 concerning 6th Embodiment of this invention and the dehumidification element Z6 provided with this are shown. The dehumidifying element Z6 is different from the dehumidifying capacity of the dehumidifying element Z5 according to the fifth embodiment in the cooling capacity between the first region 25A and the second region 25B on the cooling element 2 side. This is intended to further enhance the cooling effect of the adsorption element 1 on the downstream side region of the air mixing section 31 to be treated.
[0079]
That is, the cooling element 2 in the dehumidifying element Z6 of this embodiment has a double-sided corrugated cardboard shape similar to the cooling element 2 of the fifth embodiment, and the three regions 25A, 25B, and 25C. Among them, the central second region 25B is closed by the plugging material 24 to make it ineffective for cooling, and the passage area of each of the ventilation passages 4, 4,. By making the passage area of each of the ventilation paths 4, 4,... Belonging to the two regions 25B smaller, and making the flow rate of the cooling air Ab between these two regions 25A, 25B different, the cooling capacity is It is set to be small on the first area 25A side and large on the second area 25B side.
[0080]
Therefore, in the dehumidifying element Z6 configured to include the cooling element 2 having such a structure, the adsorption by uniformizing the temperature and humidity of the air to be treated A in the air to be treated mixing unit 31 on the adsorption element 1 side. In addition to the effect of improving the capacity and the effect of improving the cooling capacity by closing the third region 25C on the cooling element 2 side and increasing the flow rate on the first region 25A and second region 25B side accordingly. The effect of providing a difference in cooling capacity between the first region 25A side and the second region 25B side of the cooling element 2 (that is, further increasing the flow rate of the cooling air Ab on the second region 25B side). By increasing the cooling capacity, the downstream area of the treated air mixing part 31 of the adsorption element 1 is more effectively cooled and the adsorption capacity is improved). By above Dehumidification capacity of the dampening element Z6 is further improved.
[Brief description of the drawings]
[0081]
FIG. 1 is a perspective view showing an adsorption element and a dehumidifying element including the adsorption element according to a first embodiment of the present invention.
is there.
FIG. 2 is a perspective view showing an adsorption element and a dehumidifying element including the adsorption element according to a second embodiment of the present invention.
is there.
FIG. 3 is a perspective view showing an adsorption element and a dehumidifying element including the adsorption element according to a third embodiment of the present invention.
is there.
FIG. 4 is a perspective view showing an adsorption element and a dehumidifying element including the adsorption element according to a fourth embodiment of the present invention.
is there.
FIG. 5 is a perspective view showing an adsorption element and a dehumidifying element including the adsorption element according to a fifth embodiment of the present invention.
is there.
FIG. 6 is a perspective view showing an adsorption element and a dehumidifying element including the adsorption element according to a sixth embodiment of the present invention.
is there.
FIG. 7 is a perspective view showing a conventional adsorption element and a dehumidifying element including the same.
[Explanation of symbols]
[0082]
1 is an adsorption element, 2 is a cooling element, 3 and 4 are ventilation paths, 11 is a flat plate material, 12 is a corrugated plate material, 13 is an opening portion, 21 is a flat plate material, 22 is a corrugated plate material, 23 is an opening portion, 24 Is a blocking material, 25A to 25C are regions, 31 and 32 are air mixing units, 33 is a cooling air mixing unit, 34 is an expansion mixing unit, Aa is air to be processed, Ab is cooling air, and Z1 to Z7 are dehumidified It is an element.

Claims (8)

平板状形態を有し且つその面方向に沿って被処理空気(Aa)を通す多数の通風路(3),(3),・・を並設してなる吸着用素子であって、
上記各通風路(3),(3),・・の流路途中に、該各通風路(3),(3),・・内をそれぞれ流れる被処理空気(Aa)を合流させて混合する被処理空気混合部(31)が設けられていることを特徴とする吸着用素子。
An adsorbing element having a flat plate shape and a plurality of air passages (3), (3),... That pass air to be treated (Aa) along the surface direction,
The air to be treated (Aa) flowing through each of the ventilation paths (3), (3),... Is joined and mixed in the middle of the flow path of each of the ventilation paths (3), (3),. An adsorption element, characterized in that a to-be-treated air mixing part (31) is provided.
請求項1において、
上記被処理空気混合部(31)が、上記各通風路(3),(3),・・の流路途中を切り欠いて構成されていることを特徴とする吸着用素子。
In claim 1,
The adsorbing element, wherein the air mixing section (31) to be treated is formed by cutting out the middle of the flow path of each of the ventilation paths (3), (3),.
請求項1において、
上記各通風路(3),(3),・・の上記被処理空気混合部(31)の下流側における通路長さが略同一となるように該被処理空気混合部(31)の平面形状が設定されていることを特徴とする吸着用素子。
In claim 1,
The planar shape of the air mixing section (31) so that the passage lengths of the air passages (3), (3),... On the downstream side of the air mixing section (31) are substantially the same. An adsorption element, characterized in that is set.
請求項1において、
上記各通風路(3),(3),・・の上記被処理空気混合部(31)の下流側における通路長さが、該通風路(3),(3),・・の並設方向の一端(1c)側から他端(1d)側にかけて連続的に又は段階的に減少変化するように上記被処理空気混合部(31)の平面形状が設定されていることを特徴とする吸着用素子。
In claim 1,
The passage length of each of the ventilation paths (3), (3),... On the downstream side of the treated air mixing section (31) is the direction in which the ventilation paths (3), (3),. The planar shape of the air to be treated (31) is set so as to decrease continuously or stepwise from one end (1c) to the other end (1d). element.
請求項1,2,3又は4において、
上記被処理空気混合部(31)が上記通風路(3),(3),・・の流路方向に適宜間隔をもって複数個設けられていることを特徴とする吸着用素子。
In claim 1, 2, 3 or 4,
An adsorbing element, wherein a plurality of the air mixing sections (31) to be treated are provided at appropriate intervals in the flow path direction of the ventilation paths (3), (3),.
平板状形態を有し且つその面方向に沿って被処理空気(Aa)を通す多数の通風路(3),(3),・・を並設してなる吸着用素子(1)と、平板状形態を有し且つその面方向に沿って冷却用空気(Ab)を通す多数の通風路(4),(4),・・を並設してなる冷却用素子(2)とを、平面視において上記吸着用素子(1)側の通風路(3),(3),・・と上記冷却用素子(2)側の通風路(4),(4),・・とが略直交するように交互に積層して構成される除湿素子であって、
上記吸着用素子(1)は上記各通風路(3),(3),・・の流路途中に該各通風路(3),(3),・・内をそれぞれ流れる被処理空気(Aa)を合流させて混合する被処理空気混合部(31)を備える一方、
上記冷却用素子(2)には、上記冷却用空気(Ab)を、上記吸着用素子(1)の上記被処理空気混合部(31)よりも上流側部位に相対する第1領域(25A)における流量が下流側部位に相対する第2冷却領域(25B)における流量よりも少なくなるように偏流させる偏流手段(23)が設けられていることを特徴とする除湿素子。
An adsorbing element (1) having a flat plate shape and a plurality of air passages (3), (3),... That pass air to be treated (Aa) along the surface direction, and a flat plate A cooling element (2) having a shape and having a large number of ventilation passages (4), (4),... Passing through the cooling air (Ab) along the surface direction. In view, the ventilation paths (3), (3),... On the adsorption element (1) side and the ventilation paths (4), (4),. A dehumidifying element configured by alternately stacking,
The adsorbing element (1) includes air to be treated (Aa) flowing in the air passages (3), (3),... In the middle of the air passages (3), (3),. While being provided with a to-be-processed air mixing section (31) for mixing and mixing)
In the cooling element (2), the cooling air (Ab) is supplied to the first region (25A) facing the upstream portion of the adsorption element (1) with respect to the air to be treated (31). The dehumidifying element is characterized in that a drifting means (23) for drifting is provided so that the flow rate in the flow is less than the flow rate in the second cooling region (25B) facing the downstream portion.
平板状形態を有し且つその面方向に沿って被処理空気(Aa)を通す多数の通風路(3),(3),・・を並設してなる吸着用素子(1)と、平板状形態を有し且つその面方向に沿って冷却用空気(Ab)を通す多数の通風路(4),(4),・・を並設してなる冷却用素子(2)とを、平面視において上記吸着用素子(1)側の通風路(3),(3),・・と上記冷却用素子(2)側の通風路(4),(4),・・とが略直交するように交互に積層して構成される除湿素子であって、
上記吸着用素子(1)は上記各通風路(3),(3),・・の流路途中に該各通風路(3),(3),・・内をそれぞれ流れる被処理空気(Aa)を合流させて混合する被処理空気混合部(31)を備える一方、
上記冷却用素子(2)は上記吸着用素子(1)における上記被処理空気混合部(31)よりも上流側部位と下流側部位にそれぞれ相対する第1領域(25A)と第2冷却領域(25B)のみに冷却用空気(Ab)を流すように構成されていることを特徴とする除湿素子。
An adsorbing element (1) having a flat plate shape and a plurality of air passages (3), (3),... That pass air to be treated (Aa) along the surface direction, and a flat plate A cooling element (2) having a shape and having a large number of ventilation passages (4), (4),... Passing through the cooling air (Ab) along the surface direction. In view, the ventilation paths (3), (3),... On the adsorption element (1) side and the ventilation paths (4), (4),. A dehumidifying element configured by alternately stacking,
The adsorbing element (1) includes air to be treated (Aa) flowing in the air passages (3), (3),... In the middle of the air passages (3), (3),. While being provided with a to-be-processed air mixing section (31) for mixing and mixing)
The cooling element (2) includes a first region (25A) and a second cooling region (opposite to the upstream portion and the downstream portion, respectively, of the to-be-treated air mixing unit (31) in the adsorption element (1). 25B), a dehumidifying element configured to flow cooling air (Ab) only.
請求項7において、
上記冷却用空気(Ab)の流量を、上記第1領域(25A)側の流量が上記第2領域(25B)側の流量よりも少なくなるように設定したことを特徴とする除湿素子。
In claim 7,
The dehumidifying element, wherein the flow rate of the cooling air (Ab) is set so that the flow rate on the first region (25A) side is smaller than the flow rate on the second region (25B) side.
JP2001292692A 2001-09-26 2001-09-26 Adsorption element and dehumidifying element provided with the same Expired - Fee Related JP3632128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292692A JP3632128B2 (en) 2001-09-26 2001-09-26 Adsorption element and dehumidifying element provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292692A JP3632128B2 (en) 2001-09-26 2001-09-26 Adsorption element and dehumidifying element provided with the same

Publications (2)

Publication Number Publication Date
JP2003093831A JP2003093831A (en) 2003-04-02
JP3632128B2 true JP3632128B2 (en) 2005-03-23

Family

ID=19114606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292692A Expired - Fee Related JP3632128B2 (en) 2001-09-26 2001-09-26 Adsorption element and dehumidifying element provided with the same

Country Status (1)

Country Link
JP (1) JP3632128B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767611B2 (en) * 2004-04-28 2006-04-19 ダイキン工業株式会社 Adsorption heat exchanger
JP6415277B2 (en) * 2014-11-28 2018-10-31 カルソニックカンセイ株式会社 Air conditioner for vehicles
JP6078668B1 (en) * 2016-02-11 2017-02-08 株式会社アースクリーン東北 Indirect vaporization air conditioner

Also Published As

Publication number Publication date
JP2003093831A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
AU2002318754B2 (en) Adsorption element and air conditioning device
JP2002130985A (en) Heat exchanger
JP3632128B2 (en) Adsorption element and dehumidifying element provided with the same
WO2004010056A1 (en) Dehumidifying element
JP2001263729A (en) Adsorption/desorption device and moisture adjusting system using same
JPH08291990A (en) Heat-exchanger element
JP2004095599A (en) Stacked cooler
JP2003262487A (en) Heat exchange element
JP3861639B2 (en) Dehumidifying element
JP3840571B2 (en) Dehumidifying element
JP2003071237A (en) Cooling element and dehumidification element equipped therewith
JPH11108580A (en) Heat exchange element
JPH05152475A (en) Semiconductor device
JP3835223B2 (en) Cooling adsorption element
JP3761377B2 (en) Heat exchange element
JPH08128794A (en) Heat exchange element
JP2003060145A (en) Cooling plate
WO2022224878A1 (en) Air treatment device
WO2021106719A1 (en) Heat exchanger
JPH03236565A (en) Heat exchanger for air conditioning device
JP2003144834A (en) Cooling adsorption element
JPS61243280A (en) Heat exchanger
CN112303775A (en) Plate-type gas humidifier
JPH09152291A (en) Heat exchange element
JP2695270B2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees