JP3632090B2 - Sample cooling method for sample driving device - Google Patents

Sample cooling method for sample driving device Download PDF

Info

Publication number
JP3632090B2
JP3632090B2 JP2002259799A JP2002259799A JP3632090B2 JP 3632090 B2 JP3632090 B2 JP 3632090B2 JP 2002259799 A JP2002259799 A JP 2002259799A JP 2002259799 A JP2002259799 A JP 2002259799A JP 3632090 B2 JP3632090 B2 JP 3632090B2
Authority
JP
Japan
Prior art keywords
sample
cooling
low temperature
heat radiation
goniometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002259799A
Other languages
Japanese (ja)
Other versions
JP2004103274A (en
Inventor
義弘 相浦
寛 阪東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002259799A priority Critical patent/JP3632090B2/en
Publication of JP2004103274A publication Critical patent/JP2004103274A/en
Application granted granted Critical
Publication of JP3632090B2 publication Critical patent/JP3632090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、試料マニピュレータおよび試料ゴニオメータのような試料駆動装置において、試料を極低温まで効率的に冷却を行うための試料駆動装置の試料冷却方法に関する。
【0002】
【従来の技術】
従来における、この種の試料の位置や方位制御を行う試料駆動装置(以下、単に駆動装置と略記することがある)における試料冷却方法の概念図を図1の(a)および(b)に示す。1は冷却を行う試料、2は試料1を固定するための試料ホルダ、3は試料ホルダ2と後述の低温維持装置間4の自在冷却用ジョイントである。4は試料を冷却するための低温維持装置、6は駆動装置の先端部の構造体、7は熱放射シールド、8は駆動装置の先端部の構造体の保持ための支柱である。図1およびその他の図において、ハッチング部分は同じ温度であることを示す。
【0003】
図1(a)に示すような従来の技術において、試料1および試料ホルダ2は低温維持装置4により自在冷却用ジョイント3を介して冷却が行われる。この場合、試料ホルダ2に隣接する駆動装置の先端の構造体6の冷却は行われておらず、この常温の構造体6から試料1および試料ホルダ2への熱伝導や熱放射により極低温まで効率的に冷却を行うことが困難である。さらに、外部から試料1への熱放射や熱伝導の影響により低温維持装置4の寒剤の消費量が多く、最低到達温度まで長時間必要とし、効率的な冷却が出来ない。
【0004】
一部の従来の装置において放射の影響を軽減させるために図1(b)に示すように、試料ホルダ2および構造体6の外部に放射シールド7が取り付けられたものがある。この熱放射シールド7により冷却効率が多少改善されるようであるが、しかし常温の構造体6も一緒にこの熱放射シールド7に組み込まれ、この構造体6からの熱放射の影響により効果的に極低温を達成するのは依然として困難である。更に、この手法の欠点は、構造体6の外部に熱放射シールド7を取り付けるため、装置の大型化の問題が生じるため現実的な使用に多くの制約を受ける点にある。
【0005】
図1(a)の例としては、特開平2−107767号公報により開示されている真空蒸着用基板ホルダ装置、Rev. Sci. Instrum. 57巻3号 pp. 487−489 (1986年3月)に報告された6軸マニピュレータ、Meas. Sci. Technol. 8巻3号 pp. 253−261 (1997年3月)に報告された3軸ゴニオメータ、Thermo Vacuum Generators社(英国)の主な試料マニピュレータ、Thermionics社(米国)のGB−16 試料ゴニオメータである。
【0006】
図1(b)の例としては、Thermo Vacuum Generators社(英国)のCryoax IIがある。この装置はマニピュレータに使用されている面内回転のみの1軸ゴニオメータは、ゴニオメータの外側に取り付けられた熱放射シールドを液体窒素により冷却を行い、試料を液体ヘリウムにより冷却を行う装置である。
【特許文献1】
特開平2−107767号公報
【非特許文献1】
Thomas Engel, Donald Braid, and Edward H.Conrad; Three−axis sample manipulator with XYZ translation for use in UHV; Review of Scientific Instruments; 米国 American Institute of Physics; 1986年3月 57巻3号 P487−489
【非特許文献2】
A Raukema, A P de Jongh, H P Alberda, R Boddenberg, F G Giskes, Ede Haas, A W Kleyn, H Neerings, R Schaafsma and H Veerman; A three−axis goniometer in an UHV molecular beam experiment; Measurement Science and Technology; 英国 Institute of Physics; 1997年3月 8巻3号 P253−261
【0007】
【発明が解決しようとする課題】
この種の位置や方位制御を行う試料を極低温まで冷却を行うには、試料を保持している試料ホルダへの熱伝導や熱放射の影響を改善する必要がある。
【0008】
試料を効率的に極低温まで冷却する基本的手法は、試料ホルダの外部に熱放射シールドを組み込み、その熱放射シールドを冷却することにより試料ホルダへの熱放射の影響を軽減することにより効率的に極低温を達成することができる。この際、低温維持装置と試料ホルダとの間の自在冷却用ジョイントへの熱放射の影響も熱放射シールドにより軽減されなければならない。熱放射シールドを組み込だ試料ホルダおよび自在冷却用ジョイントを駆動させる手法は、装置の大型化や駆動制御範囲の制約等の問題が生じるため現実的には不可能である。
【0009】
そこで、本発明の目的は、試料駆動装置の大型化や制御範囲の制約を受けることなく、試料ホルダおよび自在冷却用構造材を熱放射の影響を軽減し効率的に極低温まで冷却を可能にする試料駆動装置の試料冷却方法を提供することにある。
【0010】
【課題を解決するための手段】
このような目的を達成するために、本発明は、試料の位置や方位制御を行う駆動装置の先端の構造体を第1段目の低温維持装置により冷却を行い、前記駆動装置の本体を試料に対する熱放射シールドとなるように配置し、前記試料は前記第1段目の低温維持装置とは別の第2段目の低温維持装置により冷却を行うことにより前記試料を極低温まで冷却することを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。
【0012】
本発明を適用した、試料の位置や方位制御を行う駆動装置における試料冷却方法の概念図を図1の(c)に示す。従来の問題点を解決するために、駆動装置の先端部の構造体6を別の低温維持装置(第1段目)5により冷却を行い、この構造体6から試料1、試料ホルダ2、自在冷却用ジョイント3への熱伝導の影響を改善するとともに構造体6自身を熱放射シールドとして配置し、これにより試料1および試料ホルダ2への熱放射の影響を軽減する。試料1および試料ホルダ2は、試料用の低温維持装置(第2段目)4により試料1、試料ホルダ2、自在冷却用ジョイント3を極低温まで冷却を行う。構造体6自身を放射シールドとしての役割を果たすため、冷却機構を含めた駆動装置の寸法は従来の物と同程度であり、更に試料の位置や方位の制御範囲に制約を受けない。
【0013】
このような実施形態では、駆動装置先端部の構造体6の冷却を行うため、構造体6の材料は熱伝導の良い物質で構成する。この構造体6は、常温の外界と熱伝導の悪い支柱8により保持される。構造体6は第1段目の低温維持装置5により冷却を行い、試料1、試料ホルダ2および自在冷却用ジョイント3への熱放射シールドとして用いる。構造体6に組み込まれた試料ホルダ2および自在冷却用ジョイント3を別の第2段低温維持装置4により冷却して試料1を効率的に極低温まで冷却を行う。
【0014】
(実施例1)
試料用冷却ゴニオメータ
従来における、試料用冷却ゴニオメータを図2(a)、(b)に示す。11は冷却すべき試料、12は試料11を固定するための試料ホルダ、13は試料ホルダ12と低温維持装置間14の自在冷却用ジョイント、14は低温維持装置である。常温のゴニオメータの構造体から試料ホルダ12および自在冷却用ジョイント13への熱伝導および熱放射の影響により、効率的に極低温まで冷却を行うことが出来ない。
【0015】
本発明を適用した試料用ゴニオメータの冷却手法を図3(a)、(b)に示す。図2と同じ個所には同様の符号を付しているので、詳細な説明を省略する。ゴニオメータ本体を冷却するための(本発明の1段目の)低温維持装置15を組み込んだ点が本願発明の新規特徴の1つである。ゴニオメータを冷却するために構造材として熱伝導の良い無酸素銅等を用いて製作を行う。第1段目の低温維持装置15によりゴニオメータ本体の冷却を行い、試料ホルダ12および自在冷却用ジョイント13を別の第2段目の冷却維持装置14により冷却することにより、試料11を効率的に極低温まで冷却することが可能となる。
【0016】
図4に従来の技術および本発明によるゴニオメータに取り付けられた試料の温度変化を示す。従来の技術による試料冷却用低温維持装置の寒剤として液体ヘリウムを用いた。本発明によるゴニオメータ構造体冷却用(第1段)低温維持装置の寒剤として液体窒素、試料冷却用(第2段)低温維持装置の寒剤として液体ヘリウムを用いた。第2段低温維持装置を用いて試料の冷却を開始する30分前に、第1段低温維持装置でゴニオメータ構造体の予備冷却を行った。その際、構造体から試料への熱放射および熱伝導により試料は約−20℃まで冷却した。従来の技術による最低到達温度は約−233℃、本技術による最低到達温度は約−253℃であった。従来の手法と比較した場合、本発明による手法の液体ヘリウムの消費量は約半分であった。
【0017】
この試料冷却ゴニオメータは、試料の位置や方位制御および効率的な極低温までの温度制御が求められる種々の試料作製・評価装置に用いることができる。
【0018】
(実施例2)
回転アーム等に取り付けられた検出器等の冷却を行うためには、アームの先端内部に検出器等を組み込み、アーム本体を第1段冷却装置により冷却を行い、更に第2段低温維持装置によりアーム内部の自在冷却構造体および検出器等の冷却を行う。この冷却アームは、方位制御および極低温までの温度制御が求められる検出器等が組み込まれた分析装置に用いることができる。
【0019】
【発明の効果】
以上,説明したように、前記第1段目の低温維持装置を用いて構造体自身の冷却を行うことにより、構造体から試料への熱放射や熱伝導の影響が軽減される。
【0020】
また、これにより試料冷却用第2段目の低温維持装置に用いられる寒剤の消費量を抑えることが可能となる。
【図面の簡単な説明】
【図1】(a)および(b)は従来の真空駆動装置における試料冷却方法を説明するための概念図である。(c)は本発明による試料冷却法を説明するための概念図である。
【図2】(a)は従来の技術によるゴニオメータに取り付けられた試料冷却法を説明するための正面図である。(b)は(a)の縦断側面図である。
【図3】(a)本発明によるゴニオメータに取り付けられた試料冷却法を説明するための正面図である。(b)は(a)の縦断側面図である。
【図4】従来の技術および本発明によるゴニオメータに取り付けられた試料の温度変化を示す特性図である。
【符号の説明】
1、11 試料
2、12 試料ホルダ
3、13 自在冷却用ジョイント
4、5、14、15 低温維持装置
6 構造体
7 放射シールド
8 支柱
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sample cooling method for a sample driving device for efficiently cooling a sample to an extremely low temperature in a sample driving device such as a sample manipulator and a sample goniometer.
[0002]
[Prior art]
FIGS. 1A and 1B are conceptual diagrams of a conventional sample cooling method in a sample driving apparatus (hereinafter, simply referred to as a driving apparatus) that controls the position and orientation of this type of sample. . Reference numeral 1 denotes a sample to be cooled, 2 a sample holder for fixing the sample 1, and 3 a universal cooling joint 4 between the sample holder 2 and a low-temperature maintenance device described later. Reference numeral 4 denotes a low-temperature maintaining device for cooling the sample, 6 denotes a structure at the tip of the driving device, 7 denotes a heat radiation shield, and 8 denotes a support for holding the structure at the tip of the driving device. In FIG. 1 and other figures, the hatched portions indicate the same temperature.
[0003]
In the conventional technique as shown in FIG. 1A, the sample 1 and the sample holder 2 are cooled by the low temperature maintaining device 4 via the universal cooling joint 3. In this case, the structure 6 at the tip of the driving apparatus adjacent to the sample holder 2 is not cooled, and the structure 6 at room temperature is transferred to the sample 1 and the sample holder 2 to the extremely low temperature by heat conduction and heat radiation. It is difficult to cool efficiently. Furthermore, the amount of cryogen consumed by the low temperature maintenance device 4 is large due to the influence of heat radiation and heat conduction to the sample 1 from the outside, and it takes a long time to reach the lowest temperature, and efficient cooling cannot be performed.
[0004]
In order to reduce the influence of radiation in some conventional devices, there is a device in which a radiation shield 7 is attached to the outside of the sample holder 2 and the structure 6 as shown in FIG. Although it seems that the cooling efficiency is somewhat improved by the heat radiation shield 7, the structure 6 at room temperature is also incorporated together in the heat radiation shield 7, and is more effective due to the influence of heat radiation from the structure 6. Achieving cryogenic temperatures is still difficult. Furthermore, a disadvantage of this method is that since the heat radiation shield 7 is attached to the outside of the structure 6, there is a problem of an increase in the size of the apparatus, so that there are many restrictions on practical use.
[0005]
As an example of FIG. 1 (a), a substrate holder device for vacuum deposition disclosed in Japanese Patent Laid-Open No. 2-107767, Rev. Sci. Instrum. Vol.57 No.3 pp. 487-489 (March 1986), a 6-axis manipulator, Meas. Sci. Technol. Vol.8 No.3 pp. 25-261 (March 1997), a 3-axis goniometer, the main sample manipulator of Thermo Vacuum Generators (UK), and the GB-16 sample goniometer of Thermonics (USA).
[0006]
An example of FIG. 1 (b) is Cryoax II from Thermo Vacuum Generators (UK). This apparatus is a single-axis goniometer used only for in-plane rotation used in a manipulator, which cools a heat radiation shield attached to the outside of the goniometer with liquid nitrogen and cools a sample with liquid helium.
[Patent Document 1]
JP-A-2-107767 [Non-Patent Document 1]
Thomas Engel, Donald Braid, and Edward H .; Conrad; Three-axis sample manipulator with XYZ translation for use in UHV; Review of Scientific Instruments, Vol. 3, American Institute of Phar.
[Non-Patent Document 2]
A Raukema, A P de Jongh, H P Alberda, R Boddenberg, F G Giskes, Ede Haas, A W Kleyn, H Neerings, R Schaafsma and H Veerman; A three-axis goniometer in an UHV molecular beam experiment; Measurement Science and Technology; UK Institute of Physics; March 1997, Vol. 8, No. 3, P253-261
[0007]
[Problems to be solved by the invention]
In order to cool a sample subjected to this type of position and orientation control to an extremely low temperature, it is necessary to improve the influence of heat conduction and heat radiation on the sample holder holding the sample.
[0008]
The basic method for efficiently cooling the sample to extremely low temperature is efficient by reducing the influence of heat radiation on the sample holder by incorporating a heat radiation shield outside the sample holder and cooling the heat radiation shield. Cryogenic temperatures can be achieved. At this time, the influence of heat radiation on the universal cooling joint between the cryostat and the sample holder must also be reduced by the heat radiation shield. The method of driving the sample holder incorporating the heat radiation shield and the universal cooling joint is practically impossible because of problems such as an increase in the size of the apparatus and a restriction on the drive control range.
[0009]
Therefore, the object of the present invention is to reduce the influence of thermal radiation and efficiently cool the specimen holder and the structural material for free cooling to the cryogenic temperature without being restricted by the size of the specimen drive device or the control range. Another object of the present invention is to provide a sample cooling method for a sample driving device.
[0010]
[Means for Solving the Problems]
In order to achieve such an object, according to the present invention, the structure at the tip of the driving device that controls the position and orientation of the sample is cooled by the first-stage low temperature maintaining device, and the main body of the driving device is sampled And the sample is cooled to a very low temperature by cooling the sample with a second-stage low temperature maintaining device different from the first-stage low temperature maintaining device. It is characterized by.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1C shows a conceptual diagram of a sample cooling method in a driving apparatus that controls the position and orientation of a sample to which the present invention is applied. In order to solve the conventional problems, the structure 6 at the front end of the driving device is cooled by another low temperature maintaining device (first stage) 5, and the sample 1, sample holder 2, free from this structure 6 The influence of heat conduction on the cooling joint 3 is improved and the structure 6 itself is arranged as a heat radiation shield, thereby reducing the influence of heat radiation on the sample 1 and the sample holder 2. The sample 1 and the sample holder 2 cool the sample 1, the sample holder 2, and the universal cooling joint 3 to a very low temperature by using a low-temperature maintenance device (second stage) 4 for the sample. Since the structure 6 itself serves as a radiation shield, the size of the driving device including the cooling mechanism is comparable to that of the conventional device, and is not restricted by the control range of the position and orientation of the sample.
[0013]
In such an embodiment, in order to cool the structure 6 at the tip of the driving device, the material of the structure 6 is made of a material having good heat conduction. This structure 6 is held by a support column 8 having a normal temperature external environment and poor heat conduction. The structure 6 is cooled by the first-stage low-temperature maintenance device 5 and used as a heat radiation shield for the sample 1, the sample holder 2, and the universal cooling joint 3. The sample holder 2 and the universal cooling joint 3 incorporated in the structure 6 are cooled by another second stage low temperature maintaining device 4 to efficiently cool the sample 1 to a very low temperature.
[0014]
(Example 1)
Sample Cooling Goniometer A conventional sample cooling goniometer is shown in FIGS. 2 (a) and 2 (b). 11 is a sample to be cooled, 12 is a sample holder for fixing the sample 11, 13 is a universal cooling joint 14 between the sample holder 12 and the low temperature maintaining device, and 14 is a low temperature maintaining device. Due to the influence of heat conduction and heat radiation from the goniometer structure at room temperature to the sample holder 12 and the universal cooling joint 13, it is not possible to efficiently cool to a very low temperature.
[0015]
FIGS. 3A and 3B show a cooling method for the sample goniometer to which the present invention is applied. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. One of the novel features of the present invention is that a low temperature maintaining device 15 (first stage of the present invention) for cooling the goniometer body is incorporated. In order to cool the goniometer, it is manufactured using oxygen-free copper or the like having a good thermal conductivity as a structural material. The goniometer body is cooled by the first-stage low-temperature maintenance device 15, and the sample holder 12 and the universal cooling joint 13 are cooled by another second-stage cooling maintenance device 14, thereby efficiently It becomes possible to cool to a very low temperature.
[0016]
FIG. 4 shows the temperature change of the sample attached to the prior art and the goniometer according to the present invention. Liquid helium was used as a cryogen in a conventional cryogenic maintenance device for sample cooling. Liquid nitrogen was used as the cryogen for the cryogenic cooling device for the goniometer structure (first stage) according to the present invention, and liquid helium was used as the cryogen for the sample cooling (second stage) cryostat. Thirty minutes before starting the cooling of the sample using the second stage cryostat, the goniometer structure was precooled using the first stage cryostat. At that time, the sample was cooled to about −20 ° C. by heat radiation and heat conduction from the structure to the sample. The minimum temperature achieved by the prior art was about −233 ° C., and the minimum temperature achieved by the present technology was about −253 ° C. Compared with the conventional technique, the liquid helium consumption of the technique according to the present invention was about half.
[0017]
This sample cooling goniometer can be used for various sample preparation / evaluation apparatuses that require control of the position and orientation of the sample and efficient temperature control up to extremely low temperatures.
[0018]
(Example 2)
In order to cool the detector attached to the rotating arm, etc., the detector is built in the tip of the arm, the arm body is cooled by the first stage cooling device, and further, the second stage low temperature maintenance device is used. Cools the free cooling structure and detectors inside the arm. This cooling arm can be used in an analyzer incorporating a detector or the like that requires azimuth control and temperature control to extremely low temperatures.
[0019]
【The invention's effect】
As described above, by cooling the structure itself using the first-stage low-temperature maintenance device, the influence of heat radiation and heat conduction from the structure to the sample is reduced.
[0020]
In addition, this makes it possible to reduce the consumption of the cryogen used in the second stage low-temperature maintenance device for sample cooling.
[Brief description of the drawings]
FIGS. 1A and 1B are conceptual diagrams for explaining a sample cooling method in a conventional vacuum driving apparatus. (C) is a conceptual diagram for demonstrating the sample cooling method by this invention.
FIG. 2A is a front view for explaining a sample cooling method attached to a goniometer according to the prior art. (B) is a vertical side view of (a).
FIG. 3A is a front view for explaining a sample cooling method attached to a goniometer according to the present invention. (B) is a vertical side view of (a).
FIG. 4 is a characteristic diagram showing a change in temperature of a sample attached to a conventional technique and a goniometer according to the present invention.
[Explanation of symbols]
1, 11 Sample 2, 12 Sample holder 3, 13 Free cooling joint 4, 5, 14, 15 Low temperature maintenance device 6 Structure 7 Radiation shield 8 Strut

Claims (1)

試料の位置や方位制御を行う駆動装置の先端の構造体を第1段目の低温維持装置により冷却を行い、
前記駆動装置の本体を試料に対する熱放射シールドとなるように配置し、
前記試料は前記第1段目の低温維持装置とは別の第2段目の低温維持装置により冷却を行うことにより前記試料を極低温まで冷却することを特徴とする試料駆動装置の試料冷却方法。
The structure at the tip of the driving device that controls the position and orientation of the sample is cooled by the first stage low temperature maintenance device,
Arrange the body of the drive device to be a heat radiation shield for the sample,
The sample cooling method for a sample driving apparatus, wherein the sample is cooled to a very low temperature by cooling with a second stage low temperature maintaining apparatus different from the first stage low temperature maintaining apparatus. .
JP2002259799A 2002-09-05 2002-09-05 Sample cooling method for sample driving device Expired - Lifetime JP3632090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259799A JP3632090B2 (en) 2002-09-05 2002-09-05 Sample cooling method for sample driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259799A JP3632090B2 (en) 2002-09-05 2002-09-05 Sample cooling method for sample driving device

Publications (2)

Publication Number Publication Date
JP2004103274A JP2004103274A (en) 2004-04-02
JP3632090B2 true JP3632090B2 (en) 2005-03-23

Family

ID=32260690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259799A Expired - Lifetime JP3632090B2 (en) 2002-09-05 2002-09-05 Sample cooling method for sample driving device

Country Status (1)

Country Link
JP (1) JP3632090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104302B1 (en) * 2010-10-04 2012-01-11 한국기초과학지원연구원 Sample stage of scanning electron microscope

Also Published As

Publication number Publication date
JP2004103274A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
Assig et al. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields
US5654546A (en) Variable temperature scanning probe microscope based on a peltier device
Zhang et al. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability
Horiba et al. A high-resolution synchrotron-radiation angle-resolved photoemission spectrometer with in situ oxide thin film growth capability
Lowell et al. Macroscale refrigeration by nanoscale electron transport
CN103901232B (en) A kind of low-temperature scanning tunneling microscope utilizing the refrigeration of closed circuit refrigeration machine
Behler et al. Scanning tunneling microscope with continuous flow cryostat sample cooling
US8604446B2 (en) Devices and methods for cryo lift-out with in situ probe
Hackley et al. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat
JP2000505944A (en) Particle optical device including low temperature sample holder
Roychowdhury et al. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips
Zhang et al. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy
Kamlapure et al. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals
Bott et al. Design principles of a variable temperature scanning tunneling microscope
Kambara et al. Construction of a versatile ultralow temperature scanning tunneling microscope
Naides et al. Trapping ultracold gases near cryogenic materials with rapid reconfigurability
Horch et al. An ultrahigh vacuum scanning tunneling microscope for use at variable temperature from 10 to 400 K
JP2018206596A (en) Sample cooling device
CN104880576A (en) Device for measuring sample with scanning probe microscopy at low temperature
JP3632090B2 (en) Sample cooling method for sample driving device
Aiura et al. Ultrahigh vacuum three-axis cryogenic sample manipulator for angle-resolved photoelectron spectroscopy
Marz et al. A scanning tunneling microscope for a dilution refrigerator
Schulz et al. Beetle‐like scanning tunneling microscope for ultrahigh vacuum and low‐temperature applications
Esmaeilzadeh et al. Atomic resolution imaging using a novel, compact and stiff scanning tunnelling microscope in cryogen‐free superconducting magnet
Salazar et al. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Ref document number: 3632090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term