JP3631328B2 - Temperature detection element - Google Patents

Temperature detection element Download PDF

Info

Publication number
JP3631328B2
JP3631328B2 JP19986296A JP19986296A JP3631328B2 JP 3631328 B2 JP3631328 B2 JP 3631328B2 JP 19986296 A JP19986296 A JP 19986296A JP 19986296 A JP19986296 A JP 19986296A JP 3631328 B2 JP3631328 B2 JP 3631328B2
Authority
JP
Japan
Prior art keywords
resistance
platinum
thin film
temperature
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19986296A
Other languages
Japanese (ja)
Other versions
JPH1026559A (en
Inventor
雅彦 三橋
誠志郎 大屋
志郎 唐澤
小太郎 篠原
幸香 盤若
久男 大澤
由太郎 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP19986296A priority Critical patent/JP3631328B2/en
Publication of JPH1026559A publication Critical patent/JPH1026559A/en
Application granted granted Critical
Publication of JP3631328B2 publication Critical patent/JP3631328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は温度検出の技術分野にかかり、特に、白金薄膜を使用した小型の温度検出素子に関する。
【0002】
【従来の技術】
従来より、温度による抵抗値の変化を検出し、温度測定を行う測温素子には、白金薄膜を利用した温度検出素子が用いられている。図4の符号102に、従来技術の温度検出素子を示す。
【0003】
この温度検出素子102は、アルミナや酸化マグネシウムから成る絶縁基板104上に白金薄膜が全面成膜され、次いで、エッチングによって、その白金薄膜がパターニングされ、白金測温抵抗体が形成されている。そのパターニングによって形成された白金測温抵抗体のうち、幅狭に形成され、絶縁基板104上を引き回された部分によって主抵抗部115が形成されている。
【0004】
また、白金薄膜が幅広で四角形状にパターニングされた部分によって電極パッド119、119が形成されており、各電極パッド119、119は、主抵抗部115の両端に接続され、金属ワイヤーをワイヤーボンディングによって接続すると、外部電源から金属ワイヤーを介して主抵抗部115に電流を流せるように構成されている。
【0005】
白金は正の抵抗温度係数を有しており、温度が上昇すると抵抗値が増大する。従って、このように構成された温度検出素子102では、主抵抗部115に一定の大きさの電流を流し、そのときに生じる電圧ドロップを測定することで、温度検出素子102の温度を知ることが可能となる。
【0006】
電圧検出精度上、そのような電圧ドロップの測定には、小さくても100Ω程度の抵抗値、望ましくは1000Ω程度の抵抗値が必要であると言われているが、温度検出素子は小型であることが求められているため、白金測温抵抗体の抵抗値を大きくすることにも限界がある。
【0007】
そこで従来より、主抵抗部と電極パッドとを2mm程度の面積にし、小型の温度検出素子を得るために、白金薄膜の膜厚をより一層薄くし、微細パターンを形成して抵抗値を増加させようとする努力が成されている。
【0008】
しかしながら膜上に形成された白金では、その抵抗温度係数(TCR)は成膜条件によって異なる他、膜厚によっても異なるという事実があり、バルク状態では3850ppm/℃の値をとるのに対し、薄膜状態ではそれより小さな値になってしまうことが知られている。特に、1.0μm未満の膜厚にした場合、従来得られている白金薄膜では、3500ppm/℃〜3780ppm/℃程度の低い抵抗温度係数のものしか得られていない。
【0009】
TCRについては、JIS規格で定められている3850ppm/℃の値に近い白金測温抵抗体が求められており、そのような高いTCRの値を得るためには、白金膜の膜厚を厚くせざるを得ず、そのため、微細パターンが形成できず、現状では1kΩで8mm、100Ωでは2.4mmより小さいチップ部品としての温度検出素子は得られていない。
【0010】
ところで、一般に、スパッタリング等によって成膜される白金膜は、微小な白金粒子の成長によって形成されることが知られており、その白金粒子の成長過程において、白金膜中に各種の転位や格子欠陥が生じたり、結晶粒界に構造欠陥が生じることが多い。そのような転移や欠陥は、白金膜の膜質を悪化させ、その結果、白金測温抵抗体のTCRの値が低下すると考えられている。
【0011】
このような白金膜に対しては、密着性を向上させようとする試みの中で、非晶質であるアルミナ基板等の表面を改質して密着還元層を設け、その密着還元層上に白金膜を形成することで、結果的に結晶性の良い白金薄膜を得ているものがある(特開平3−133101号公報)。
【0012】
また、より直接的には、ジルコニア上に白金膜を形成した場合、メカニズムは明らかにされていないものの、そのX線回折解析結果の一例から、結晶性が良く、高い抵抗温度係数の白金膜が得られたとする報告(特開平2−58304)がある。
【0013】
しかしながら、単に非晶質絶縁基板表面を改質して密着還元層を設ける場合には、白金膜の密着性と結晶性は向上するものの、必ずしも抵抗温度係数が向上するとは限らない。
【0014】
また、ジルコニア上に形成された従来の白金膜では、その表面をX線回折分析した場合、(111)面方位しか観察できない。(111)面方位のX線強度が強く、結晶性が良いと考えられる白金膜では、膜厚が小さくなり、薄膜化するに連れて抵抗温度係数が急速に低下してしまい、薄膜で高いTCRの白金測温抵抗体を再現性良く得ることができなかった。
【0015】
【発明が解決しようとする課題】
本発明は上記従来技術の不都合を解決するために創作されたもので、その目的は、小型で高い抵抗温度係数(TCR)の温度検出素子が得られる技術を提供することにある。
【0016】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、絶縁物上に形成された白金薄膜がパターニングされ、幅狭に成形された部分によって白金測温抵抗体が構成された温度検出素子であって、前記白金測温抵抗体表面のX線回折パターンは、(100)面方位の強度が(111)面方位の強度に対し0.81以上の値であることを特徴とする。
【0017】
この場合、請求項2記載の発明のように、前記白金測温抵抗体は0.18μm以上の膜厚にしておくことが望ましい。
【0018】
そのような請求項1又は請求項2のいずれか1項記載の発明については、請求項3記載の発明のように、結晶系が立方晶系の絶縁物上に白金薄膜を形成して白金測温抵抗体を構成することが望ましい。
【0019】
その立方晶系の絶縁物については、請求項4記載の発明のように、MgOを用いることができる。
【0020】
また、前記絶縁物については、請求項5記載の発明のように、基板上に形成された薄膜で構成することも可能である。
【0021】
以上の請求項1乃至請求項5のいずれか1項記載の温度検出素子については、請求項6記載の発明のように、前記白金測温抵抗体から成る主抵抗部と、前記白金測温抵抗体が電気的に並列接続されて成る第1の抵抗調節部とを設け、前記主抵抗部と前記第1の抵抗調節部とを直列接続させ、前記第1の抵抗調節部を構成する白金測温抵抗体の一部を切断すると、全体の抵抗値を調節できるように構成することが好ましい。
【0022】
また、請求項1乃至請求項6のいずれか1項記載の温度検出素子については、請求項7記載の発明のように、前記白金薄膜の幅広に成形された部分から成る第2の抵抗調節部を設け、前記第2の抵抗調節部を前記主抵抗部と直列接続させ、前記第2の抵抗調節部の一部に切れ込みを入れて幅を調節すると、全体の抵抗値を調節できるように構成することが好ましい。
【0023】
更に、請求項1乃至請求項7のいずれか1項記載の温度検出素子については、請求項8記載の発明のように、前記白金薄膜で構成された電極パッドであって、金属ワイヤーが接続されるべきものを設け、その電極パッドを介して前記白金測温抵抗体に通電できるように構成し、各電極パッドに対し、電気的に近接させて電圧測定用の電極パッドを接続することが望ましい。
【0024】
上述した本発明の構成は、本発明の発明者等が、白金薄膜で構成した白金測温抵抗体の表面をX線回折法により分析し、その結果と抵抗温度係数(TCR)の値との関連を検討したところ、(111)面方位の強度に対する(100)面方位の強度比が大きい場合に、TCRの値が高いことを見出したことにより創作されたものである。
【0025】
具体的に実験結果を説明すると、マグネトロンスパッタリング法によって絶縁物上に白金薄膜を成膜する際、スパッタリング中の絶縁物の温度を変え、同じ膜厚(0.12μm)で、(100)面方位と(111)面方位の強度が異なる白金測温抵抗体を作成し、TCRを測定した。その測定結果を下記表1に示す。
【0026】
【表1】

Figure 0003631328
【0027】
この表1の通り、膜厚が同じ場合でも、(100)面方位/(111)面方位の強度比が高い白金測温抵抗体の方がTCRの値が高い。即ち、同じ膜厚であれば(100)面方位/(111)面方位の値が高いほどTCRの値を高くすることができると予想される。
【0028】
但し、絶縁基板表面近傍の白金薄膜は結晶性が乱れ易いので、0.1μm程度の膜厚まで薄くなると、TCRの値は界面近傍の影響を強く受けてしまい、(100)面方位/(111)面方位の強度比が高い場合でも、膜厚が厚い白金測温抵抗体に比べるとTCRの値は低くなる傾向にある。
【0029】
他方、白金測温抵抗体の膜厚が0.2μm程度まで厚くなると、界面近傍の影響は小さくなる。従って、例えば膜厚0.18μmの白金薄膜では、(100)面方位/(111)面方位の強度比が0.81のもので、3840ppm/℃と高いTCRの値が得られている。
【0030】
ところで、白金の結晶系は立方晶系なので、白金薄膜を絶縁物上に成膜して構成する白金測温抵抗体では、その(100)面方位の強度は、絶縁物の結晶系が白金と同じ立方晶系である場合に強くなると考えられる。下記表2に、白金薄膜の結晶系と絶縁物の結晶系の一例を示す。
【0031】
【表2】
Figure 0003631328
【0032】
更に、格子のミスマッチを生じさせず、白金測温抵抗体の(100)面方位の強度を強くするためには、格子定数の値が白金の格子定数に近いものを用いればよいと予想される。
【0033】
【発明の実施の形態】
本発明の実施の形態を図面を用いて説明する。
図2の符号2は、本発明の一例の温度検出素子を示しており、表面が(100)面方位のMgO結晶基板で構成された絶縁物4を有しており、その表面に白金薄膜で構成された白金測温抵抗体5が形成されている。
【0034】
その白金測温抵抗体5の形成方法を説明すると、まず、絶縁物4をスパッタリング装置内に搬入し、高真空状態に置いた後、1.0×10−2Torrの圧力までアルゴンガスを導入し、200Wの投入電力で白金ターゲットを高周波マグネトロンスパッタリングし、絶縁物4表面に膜厚0.18μmの白金薄膜を全面成膜した。
【0035】
次いで、その絶縁基板4をスパッタリング装置内から取り出し、フォトリソグラフィとプラズマエッチングによってパターニングし、白金薄膜が幅狭に成形された部分によって、断面図の図1(a)に示すような白金測温抵抗体5を構成した。
【0036】
そのパターニングの際、絶縁物4上で白金測温抵抗体5を折れ曲げ、一定面積内でできるだけ抵抗値が大きくなるように引き回して主抵抗部15、15を構成し、また、白金測温抵抗体5を電気的に並列接続して第1の抵抗調節部17、17を構成し、更に、白金薄膜が幅広に成形された部分によって、第2の抵抗調節部16を構成した。
【0037】
また、白金薄膜のパターニングの際、主抵抗部15、15と、第1の抵抗調節部17、17と、第2の抵抗調節部16とはこの順で直列接続されるようにした。そして、その直列接続された抵抗回路の両端に電極パッド19、19が接続されるようにし、各電極パッド19、19に金属ワイヤーをワイヤーボンディングして外部電源に接続できるように構成した。
【0038】
この電極パッド19、19と白金測温抵抗体5とが接続されたところに、電気的に近接して電極パッド18、18がそれぞれ接続されるようにし、電極パッド19、19の間に電圧を印加し、主抵抗部15、15と第1、第2の抵抗調節部17、17、16に電流を流したときに生じる電圧ドロップを、電極パッド18、18の間の電位を測定することで検出できるように構成した。
【0039】
このような構成によれば、第1、第2の抵抗調節部17、17、16にスポット状のレーザー光を照射し、第1の抵抗調節部17、17の並列接続された白金測温抵抗体5の所望のものを切断したり、第2の抵抗調節部16に切れ込みを入れたりすれば全体の抵抗値を調節できるので、所望抵抗値の温度検出素子2を得ることが可能となる。
【0040】
この温度検出素子2に形成した白金測温抵抗体5の特性を測定したところ、厚みは、0.18μm、抵抗温度係数(TCR)は、JIS規格で定められている3850ppm/℃に近い値の3840ppm/℃(平均値)が得られた。
【0041】
この実施例と同じ成膜条件で、高い(100)面方位強度で膜厚が異なる白金薄膜をMgO上に成膜し、パターニングによって白金測温抵抗体を構成し、TCRの値を測定した。その結果を下記表3に示す。
【0042】
【表3】
Figure 0003631328
【0043】
いずれの膜厚のものでも、(100)面方位/(111)面方位の強度比が高く、高い値のTCRが得られている。
【0044】
比較例として、絶縁物にサファイア基板とアルミナ基板とを用い、上述のマグネトロンスパッタリングの条件と同じ条件で白金薄膜を成膜し、パターニングによって白金測温抵抗体を形成してTCRの値を測定した。その結果を下記表4、表5に示す。
【0045】
【表4】
Figure 0003631328
【0046】
【表5】
Figure 0003631328
【0047】
サファイア基板、アルミナ基板とも、その表面に形成された白金測温抵抗体の(100)面方位/(111)面方位の強度比は小さく、TCRの値は低い。
【0048】
これらの結果を図3のグラフにまとめて示す。MgO上に白金測温抵抗体5を形成した場合には小さい膜厚まで高いTCRの値を維持できることが分かる。
【0049】
以上説明した実施例は、基板状のMgOから成る絶縁物4表面に白金薄膜を成膜し、白金測温抵抗体5を形成した場合であるが、図1(b)に示すように、シリコン基板7表面に、エキシマレーザ蒸着法によって、温度300〜600℃、成長速度0.3Å/秒〜0.5Å/秒にてMgOから成る薄膜を形成して絶縁物6とし、その絶縁物6表面に白金薄膜を成膜し、パターニングにして白金測温抵抗体5’を形成したところ、表1と同様に(100)面方位/(111)面方位の強度比が高く、高いTCRの値が得られた。
【0050】
なお、薄膜で構成した絶縁物6’については、図1(c)に示すように、白金測温抵抗体5’と同じ形状にパターニングすることができる。
【0051】
【発明の効果】
本発明によれば、膜厚が薄くても高い抵抗温度係数(TCR)の白金測温抵抗体を得ることができる。
【0052】
白金薄膜によって白金測温抵抗体を構成したので、微細なパターニングによって小型で抵抗値が大きい温度検出素子を得ることができる。小型であれば、一つの基板から多数の温度検出素子を得ることができるので、低コストになるばかりでなく、小型であるために熱容量が小さくなり、応答速度を向上させることができる。
【0053】
特に、基板上に絶縁物の薄膜を形成し、その表面に白金膜を成膜して温度検出素子を構成する場合には、測定物の熱容量や比熱を考慮して基板を選択すると、温度検出素子の特性を比測定物の特性に対応させることができるので、正確な測定を行うことが可能となる。
【図面の簡単な説明】
【図1】(a):本発明の温度検出素子の一例の断面図
(b):他の例の断面図
(c):更に他の例の断面図
【図2】本発明の温度検出素子の一例の平面図
【図3】MgO、サファイア、アルミナ上に形成した白金測温抵抗体のTCRの値を示すグラフ
【図4】従来技術の温度検出素子を説明するための平面図
【符号の説明】
2、2’、2”……温度検出素子 4、6、6’……絶縁物
5、5’……白金測温抵抗体 7、7’……基板
15、15……主抵抗部 16……第2の抵抗調節部
17、17……第1の抵抗調節部
18、18、19、19……電極パッド[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the technical field of temperature detection, and particularly relates to a small temperature detection element using a platinum thin film.
[0002]
[Prior art]
Conventionally, a temperature detecting element using a platinum thin film is used as a temperature measuring element that detects a change in resistance value due to temperature and measures temperature. Reference numeral 102 in FIG. 4 shows a temperature detection element of the prior art.
[0003]
In this temperature detecting element 102, a platinum thin film is entirely formed on an insulating substrate 104 made of alumina or magnesium oxide, and then the platinum thin film is patterned by etching to form a platinum resistance temperature detector. Of the platinum resistance thermometer formed by the patterning, the main resistance portion 115 is formed by a portion that is formed narrow and is routed on the insulating substrate 104.
[0004]
In addition, electrode pads 119 1 and 119 2 are formed by a wide and square-patterned portion of the platinum thin film, and the electrode pads 119 1 and 119 2 are connected to both ends of the main resistor 115 and are connected to metal wires. Are connected by wire bonding, an electric current can be passed from the external power source to the main resistor 115 via the metal wire.
[0005]
Platinum has a positive resistance temperature coefficient, and the resistance value increases as the temperature rises. Therefore, in the temperature detection element 102 configured as described above, the temperature of the temperature detection element 102 can be known by flowing a constant current through the main resistor 115 and measuring a voltage drop generated at that time. It becomes possible.
[0006]
In terms of voltage detection accuracy, it is said that such a voltage drop measurement requires a resistance value of at least about 100Ω, preferably about 1000Ω, but the temperature detection element is small. Therefore, there is a limit to increasing the resistance value of the platinum resistance thermometer.
[0007]
Therefore, in order to obtain a small temperature detection element by making the main resistance part and the electrode pad about 2 mm 2 in the past, the thickness of the platinum thin film is further reduced, and the resistance value is increased by forming a fine pattern. Efforts to make it happen.
[0008]
However, platinum formed on the film has the fact that its temperature coefficient of resistance (TCR) varies depending on the film forming conditions and also on the film thickness. In the bulk state, the value is 3850 ppm / ° C. It is known that the value will be smaller in that state. In particular, when the film thickness is less than 1.0 μm, conventionally obtained platinum thin films have only a low resistance temperature coefficient of about 3500 ppm / ° C. to 3780 ppm / ° C.
[0009]
For TCR, a platinum resistance thermometer that is close to the value of 3850 ppm / ° C. stipulated in the JIS standard is required, and in order to obtain such a high TCR value, the thickness of the platinum film must be increased. forced to not give, therefore, it can not be fine pattern formation, 8 mm 2, the temperature sensing element as 2.4 mm 2 smaller than the chip component at 100Ω has not been obtained in 1kΩ at present.
[0010]
By the way, it is generally known that a platinum film formed by sputtering or the like is formed by the growth of minute platinum particles. During the growth process of the platinum particles, various dislocations and lattice defects are formed in the platinum film. And structural defects often occur at the grain boundaries. Such dislocations and defects are thought to deteriorate the quality of the platinum film, resulting in a decrease in the TCR value of the platinum resistance thermometer.
[0011]
For such a platinum film, in an attempt to improve adhesion, the surface of an amorphous alumina substrate or the like is modified to provide an adhesion reduction layer, and the adhesion reduction layer is formed on the adhesion reduction layer. As a result, there is a film obtained by forming a platinum thin film with good crystallinity by forming a platinum film (JP-A-3-133101).
[0012]
More directly, when a platinum film is formed on zirconia, the mechanism has not been clarified, but from an example of the X-ray diffraction analysis result, a platinum film with good crystallinity and a high resistance temperature coefficient is obtained. There is a report (JP-A-2-58304) that it was obtained.
[0013]
However, when the surface of the amorphous insulating substrate is simply modified to provide the adhesion reduction layer, although the adhesion and crystallinity of the platinum film are improved, the temperature coefficient of resistance is not necessarily improved.
[0014]
Further, in the conventional platinum film formed on zirconia, when the surface is subjected to X-ray diffraction analysis, only the (111) plane orientation can be observed. A platinum film that has a strong (111) plane X-ray intensity and good crystallinity has a small film thickness, and the temperature coefficient of resistance rapidly decreases as the film is thinned. The platinum resistance temperature detector could not be obtained with good reproducibility.
[0015]
[Problems to be solved by the invention]
The present invention was created to solve the above-described disadvantages of the prior art, and an object of the present invention is to provide a technique capable of obtaining a small-sized and high resistance temperature coefficient (TCR) temperature detecting element.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is a temperature detecting element in which a platinum thin film formed on an insulator is patterned and a platinum resistance thermometer is constituted by a narrowly formed portion. In the X-ray diffraction pattern on the surface of the platinum resistance thermometer, the intensity of (100) plane orientation is 0.81 or more with respect to the intensity of (111) plane orientation.
[0017]
In this case, it is desirable that the platinum resistance thermometer has a film thickness of 0.18 μm or more as in the invention described in claim 2.
[0018]
With regard to the invention according to any one of claims 1 and 2, as in the invention according to claim 3, a platinum thin film is formed on an insulator whose crystal system is a cubic system and platinum measurement is performed. It is desirable to construct a temperature resistor.
[0019]
As for the cubic insulator, MgO can be used as in the fourth aspect of the invention.
[0020]
In addition, the insulator can be constituted by a thin film formed on a substrate as in the invention described in claim 5.
[0021]
The temperature detecting element according to any one of claims 1 to 5, as in the invention according to claim 6, includes a main resistance portion made of the platinum resistance thermometer and the platinum resistance thermometer. A first resistance adjusting unit having a body electrically connected in parallel, and connecting the main resistance unit and the first resistance adjusting unit in series to form a platinum measuring device constituting the first resistance adjusting unit. It is preferable that the entire resistance value be adjusted by cutting a part of the temperature resistor.
[0022]
The temperature detection element according to any one of claims 1 to 6, as in the invention according to claim 7, is a second resistance adjusting portion comprising a wide-shaped portion of the platinum thin film. And the second resistance adjusting unit is connected in series with the main resistance unit, and the overall resistance value can be adjusted by adjusting the width by cutting a part of the second resistance adjusting unit. It is preferable to do.
[0023]
Further, the temperature detection element according to any one of claims 1 to 7 is an electrode pad configured by the platinum thin film as in the invention according to claim 8, and a metal wire is connected thereto. It is desirable that the platinum resistance thermometer element is energized through the electrode pads, and the electrode pads for voltage measurement are connected to each electrode pad in electrical proximity. .
[0024]
In the configuration of the present invention described above, the inventors of the present invention analyze the surface of a platinum resistance temperature detector composed of a platinum thin film by an X-ray diffraction method, and the result and the value of the resistance temperature coefficient (TCR) As a result of examining the relationship, it was created by finding that the TCR value is high when the intensity ratio of the (100) plane orientation to the intensity of the (111) plane orientation is large.
[0025]
Specifically, the experimental results will be described. When a platinum thin film is formed on an insulator by a magnetron sputtering method, the temperature of the insulator during sputtering is changed, and the (100) plane orientation with the same film thickness (0.12 μm). Platinum resistance thermometers having different intensities in the (111) plane orientation were prepared, and TCR was measured. The measurement results are shown in Table 1 below.
[0026]
[Table 1]
Figure 0003631328
[0027]
As shown in Table 1, even when the film thickness is the same, the platinum resistance thermometer having a higher intensity ratio of (100) plane orientation / (111) plane orientation has a higher TCR value. That is, it is expected that the TCR value can be increased as the value of the (100) plane orientation / (111) plane orientation is higher for the same film thickness.
[0028]
However, since the platinum thin film near the surface of the insulating substrate is easily disturbed in crystallinity, when the film thickness is reduced to about 0.1 μm, the TCR value is strongly influenced by the vicinity of the interface, and the (100) plane orientation / (111 ) Even when the intensity ratio of the plane orientation is high, the TCR value tends to be lower than that of a platinum resistance thermometer having a large film thickness.
[0029]
On the other hand, when the thickness of the platinum resistance thermometer increases to about 0.2 μm, the influence in the vicinity of the interface is reduced. Therefore, for example, a platinum thin film having a film thickness of 0.18 μm has an intensity ratio of (100) plane orientation / (111) plane orientation of 0.81, and a high TCR value of 3840 ppm / ° C. is obtained.
[0030]
By the way, since the crystal system of platinum is a cubic system, in the platinum resistance thermometer configured by forming a platinum thin film on an insulator, the strength of the (100) plane orientation is the same as that of the insulator crystal system. It is thought that it becomes strong when they are the same cubic system. Table 2 below shows an example of the crystal system of the platinum thin film and the crystal system of the insulator.
[0031]
[Table 2]
Figure 0003631328
[0032]
Furthermore, in order to increase the strength of the (100) plane orientation of the platinum resistance thermometer without causing lattice mismatch, it is expected that a lattice constant value close to that of platinum should be used. .
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
Reference numeral 2 in FIG. 2 shows a temperature detecting element of an example of the present invention, which has an insulator 4 whose surface is composed of an MgO crystal substrate having a (100) plane orientation, and a platinum thin film on the surface. The platinum resistance temperature detector 5 comprised is formed.
[0034]
The formation method of the platinum resistance temperature detector 5 will be described. First, the insulator 4 is carried into a sputtering apparatus and placed in a high vacuum state, and then argon gas is introduced to a pressure of 1.0 × 10 −2 Torr. Then, a platinum target was subjected to high-frequency magnetron sputtering with an input power of 200 W, and a platinum thin film having a thickness of 0.18 μm was formed on the entire surface of the insulator 4.
[0035]
Next, the insulating substrate 4 is taken out from the sputtering apparatus, patterned by photolithography and plasma etching, and a platinum resistance thermometer as shown in FIG. Body 5 was constructed.
[0036]
At the time of patterning, the platinum resistance thermometer 5 is bent on the insulator 4 and drawn so that the resistance value becomes as large as possible within a certain area to form the main resistance portions 15 1 and 15 2. The first resistance adjusting portions 17 1 and 17 2 are configured by electrically connecting the temperature resistors 5 in parallel, and the second resistance adjusting portion 16 is configured by a portion in which the platinum thin film is formed wide. .
[0037]
Further, when patterning the platinum thin film, the main resistance portions 15 1 and 15 2 , the first resistance adjustment portions 17 1 and 17 2 , and the second resistance adjustment portion 16 are connected in series in this order. did. The electrode pads 19 1 and 19 2 are connected to both ends of the resistance circuit connected in series, and a metal wire is wire-bonded to the electrode pads 19 1 and 19 2 so as to be connected to an external power source. did.
[0038]
The electrode pads 19 1 , 19 2 and the platinum resistance thermometer 5 are connected to each other so that the electrode pads 18 1 , 18 2 are connected in electrical proximity to each other, so that the electrode pads 19 1 , 19 2 are connected. a voltage is applied between the two, the main resistor portion 15 1, 15 2 and the first, a voltage drop occurring when current flows in the second resistance controlling portion 17 1, 17 2, 16, the electrode pads 18 1 It was constructed as can be detected by measuring the potential between 18 2.
[0039]
According to such a configuration, the first and second resistance adjusting units 17 1 , 17 2 , and 16 are irradiated with spot-shaped laser light, and the first resistance adjusting units 17 1 and 17 2 are connected in parallel. Since the entire resistance value can be adjusted by cutting a desired one of the platinum resistance thermometer 5 or making a notch in the second resistance adjusting section 16, it is possible to obtain the temperature detecting element 2 having a desired resistance value. It becomes possible.
[0040]
When the characteristics of the platinum resistance thermometer 5 formed on the temperature detecting element 2 were measured, the thickness was 0.18 μm, and the resistance temperature coefficient (TCR) was a value close to 3850 ppm / ° C. defined by the JIS standard. 3840 ppm / ° C. (average value) was obtained.
[0041]
Under the same film forming conditions as in this example, platinum thin films having different (100) plane orientation strengths and different film thicknesses were formed on MgO, a platinum resistance thermometer was formed by patterning, and the TCR value was measured. The results are shown in Table 3 below.
[0042]
[Table 3]
Figure 0003631328
[0043]
In any film thickness, the intensity ratio of (100) plane orientation / (111) plane orientation is high, and a high value of TCR is obtained.
[0044]
As a comparative example, a sapphire substrate and an alumina substrate were used as insulators, a platinum thin film was formed under the same conditions as the above-described magnetron sputtering, a platinum resistance temperature detector was formed by patterning, and a TCR value was measured. . The results are shown in Tables 4 and 5 below.
[0045]
[Table 4]
Figure 0003631328
[0046]
[Table 5]
Figure 0003631328
[0047]
In both the sapphire substrate and the alumina substrate, the platinum resistance thermometer formed on the surface has a small (100) plane / (111) plane intensity ratio and a low TCR value.
[0048]
These results are summarized in the graph of FIG. It can be seen that when the platinum resistance thermometer 5 is formed on MgO, a high TCR value can be maintained up to a small film thickness.
[0049]
The embodiment described above is a case where a platinum thin film is formed on the surface of the substrate-like insulator 4 made of MgO, and the platinum resistance thermometer 5 is formed. As shown in FIG. A thin film made of MgO is formed on the surface of the substrate 7 by an excimer laser deposition method at a temperature of 300 to 600 ° C. and a growth rate of 0.3 to 0.5 to 0.5 tons / second. A platinum thin film RTD 5 ′ was formed by patterning and forming a platinum resistance temperature detector 5 ′. As in Table 1, the intensity ratio of (100) plane orientation / (111) plane orientation was high, and a high TCR value was obtained. Obtained.
[0050]
In addition, about the insulator 6 'comprised by the thin film, as shown in FIG.1 (c), it can pattern to the same shape as platinum resistance temperature detector 5'.
[0051]
【The invention's effect】
According to the present invention, a platinum resistance temperature detector having a high temperature coefficient of resistance (TCR) can be obtained even if the film thickness is small.
[0052]
Since the platinum resistance temperature detector is constituted by the platinum thin film, a small temperature detection element having a large resistance value can be obtained by fine patterning. If the size is small, a large number of temperature detection elements can be obtained from one substrate, so that not only the cost is reduced, but also the heat capacity is reduced because of the small size, and the response speed can be improved.
[0053]
In particular, when a thin film of an insulator is formed on a substrate and a platinum film is formed on the surface to form a temperature detection element, the temperature can be detected by selecting the substrate in consideration of the heat capacity and specific heat of the measurement object. Since the characteristics of the element can correspond to the characteristics of the specific measurement object, it is possible to perform accurate measurement.
[Brief description of the drawings]
1A is a cross-sectional view of an example of a temperature detection element of the present invention, FIG. 1B is a cross-sectional view of another example, and FIG. 2C is a cross-sectional view of still another example. FIG. FIG. 3 is a graph showing the TCR value of a platinum resistance thermometer formed on MgO, sapphire, and alumina. FIG. 4 is a plan view for explaining a conventional temperature detecting element. Description】
2, 2 ', 2 "... Temperature detection element 4, 6, 6' ... Insulator 5, 5 '... Platinum resistance temperature detector 7,7' ... Substrate 15 1 , 15 2 ... Main resistance part 16... Second resistance adjuster 17 1 , 17 2 ... First resistance adjuster 18 1 , 18 2 , 19 1 , 19 2.

Claims (8)

絶縁物上に形成された白金薄膜がパターニングされ、幅狭に成形された部分によって白金測温抵抗体が構成された温度検出素子であって、
前記白金測温抵抗体表面のX線回折パターンは、(100)面方位の強度が(111)面方位の強度に対し0.81以上の値であることを特徴とする温度検出素子。
A platinum thin film formed on an insulator is patterned, and a temperature sensing element in which a platinum resistance thermometer is configured by a narrowly shaped portion,
The X-ray diffraction pattern on the surface of the platinum resistance temperature detector has a (100) plane orientation strength of 0.81 or more with respect to the (111) plane orientation strength.
前記白金測温抵抗体は0.18μm以上の膜厚にされていることを特徴とする請求項1記載の温度検出素子。2. The temperature detecting element according to claim 1, wherein the platinum resistance thermometer has a thickness of 0.18 [mu] m or more. 前記絶縁物の結晶系は立方晶系であることを特徴とする請求項1又は請求項2のいずれか1項記載の温度検出素子。The temperature detection element according to claim 1, wherein a crystal system of the insulator is a cubic system. 前記絶縁物はMgOであることを特徴とする請求項3記載の温度検出素子。4. The temperature detecting element according to claim 3, wherein the insulator is MgO. 前記絶縁物は、基板上に形成された薄膜で構成されたことを特徴とする請求項1乃至請求項4のいずれか1項記載の温度検出素子。The temperature detecting element according to claim 1, wherein the insulator is formed of a thin film formed on a substrate. 前記白金測温抵抗体から成る主抵抗部と、
前記白金測温抵抗体が電気的に並列接続されて成る第1の抵抗調節部とを有し、
前記主抵抗部と前記第1の抵抗調節部とが直列接続され、
前記第1の抵抗調節部を構成する一部の白金測温抵抗体を切断すると、全体の抵抗値を調節できるように構成されたことを特徴とする請求項1乃至請求項5のいずれか1項記載の温度検出素子。
A main resistance portion comprising the platinum resistance thermometer;
A platinum resistance thermometer having a first resistance adjusting unit electrically connected in parallel;
The main resistance unit and the first resistance adjustment unit are connected in series,
6. The structure according to claim 1, wherein the entire resistance value can be adjusted by cutting a part of the platinum resistance thermometer constituting the first resistance adjusting unit. The temperature detecting element according to the item.
前記白金薄膜の幅広に成形された部分から成る第2の抵抗調節部が設けられ、
前記第2の抵抗調節部は前記主抵抗部と直列接続され、
前記第2の抵抗調節部の一部に切れ込みを入れて幅を調節すると、全体の抵抗値を調節できるように構成されたことを特徴とする請求項1乃至請求項6のいずれか1項記載の温度検出素子。
A second resistance adjusting portion comprising a wide portion of the platinum thin film is provided;
The second resistance adjustment unit is connected in series with the main resistance unit,
7. The structure according to claim 1, wherein when the width is adjusted by cutting a part of the second resistance adjusting portion, the entire resistance value can be adjusted. Temperature sensing element.
前記白金薄膜で構成され、金属ワイヤーが接続されるべき電極パッドが設けられ、
前記電極パッドを介して前記白金測温抵抗体に通電できるように構成された温度検出素子であって、
前記白金測温抵抗体に通電する電極パッドに電気的に近接して電圧測定用の電極パッドが接続されたことを特徴とする請求項1乃至請求項7のいずれか1項記載の温度検出素子。
It is composed of the platinum thin film, provided with an electrode pad to which a metal wire is to be connected,
A temperature detecting element configured to be able to energize the platinum resistance thermometer through the electrode pad,
8. The temperature detecting element according to claim 1, wherein an electrode pad for voltage measurement is connected in close proximity to an electrode pad for energizing the platinum resistance thermometer. .
JP19986296A 1996-07-10 1996-07-10 Temperature detection element Expired - Fee Related JP3631328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19986296A JP3631328B2 (en) 1996-07-10 1996-07-10 Temperature detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19986296A JP3631328B2 (en) 1996-07-10 1996-07-10 Temperature detection element

Publications (2)

Publication Number Publication Date
JPH1026559A JPH1026559A (en) 1998-01-27
JP3631328B2 true JP3631328B2 (en) 2005-03-23

Family

ID=16414891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19986296A Expired - Fee Related JP3631328B2 (en) 1996-07-10 1996-07-10 Temperature detection element

Country Status (1)

Country Link
JP (1) JP3631328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395246B1 (en) * 2001-04-06 2003-08-21 정귀상 Resistance thermometer device for micro thermal sensors and its fabrication method
DE102014225897B3 (en) * 2014-12-15 2016-03-17 Ust Umweltsensortechnik Gmbh Hysteresis-free high-temperature sensor
DE102016106675B3 (en) * 2016-04-12 2017-08-24 Innovative Sensor Technology Ist Ag Thin-film sensor element for a resistance thermometer

Also Published As

Publication number Publication date
JPH1026559A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
US4805296A (en) Method of manufacturing platinum resistance thermometer
EP0001707B1 (en) A thermally isolated monolithic semiconductor die and a process for producing such a die
JP6717846B2 (en) Copper thermal resistance thin film temperature sensor chip and manufacturing method thereof
KR102027626B1 (en) Temperature sensor
US11467126B2 (en) BAW biosensor including heater and temperature sensor and methods for using the same
US5363084A (en) Film resistors having trimmable electrodes
EP1616172B1 (en) A thin semiconductor film gas sensor device
EP2009647A1 (en) Method for fabricating thin film sensor, thin film sensor and thin film sensor module
JP3631328B2 (en) Temperature detection element
US4853671A (en) Electric laminar resistor and method of making same
JP6052614B2 (en) Temperature sensor
JPH0590011A (en) Thermosensitive resistor and its manufacture
JP6108156B2 (en) Temperature sensor
JP2014182085A (en) Temperature sensor
JP2011089859A (en) Temperature sensor
JPH07209032A (en) Element and its manufacture
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
US4649365A (en) Platinum resistor for the measurement of temperatures
JPH06104494A (en) Thin film thermocouple element and manufacture thereof
JP2007294870A (en) Thin-film sensor, thin-film sensor module, and method for manufacturing the thin-film sensor
JP2002250655A (en) Infrared detection element and its manufacturing method
JP6015517B2 (en) Temperature sensor
JP2007066924A (en) Thin-film thermistor
JP6011285B2 (en) Temperature sensor
JPH07320907A (en) Method of manufacturing floor sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees