JPH06104494A - Thin film thermocouple element and manufacture thereof - Google Patents

Thin film thermocouple element and manufacture thereof

Info

Publication number
JPH06104494A
JPH06104494A JP4250228A JP25022892A JPH06104494A JP H06104494 A JPH06104494 A JP H06104494A JP 4250228 A JP4250228 A JP 4250228A JP 25022892 A JP25022892 A JP 25022892A JP H06104494 A JPH06104494 A JP H06104494A
Authority
JP
Japan
Prior art keywords
conductor
thin film
thermocouple element
insulating substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4250228A
Other languages
Japanese (ja)
Inventor
Junko Kurokawa
順子 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4250228A priority Critical patent/JPH06104494A/en
Publication of JPH06104494A publication Critical patent/JPH06104494A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/028Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples using microstructures, e.g. made of silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To reduce the size and enhance temperature sensing accuracy of a thermocouple element by producing a further thin-filmed metal wire of a prior art thermocouple as for thermocouple elements. CONSTITUTION:The present invention covers a thermocouple element which is designed to detect a temperature sensing area or the temperature on a heat generation element inside equipment and comprises a thin film-shaped first conductor 32 which provides an outside connection electrode 32a on one side and which is pattern-formed in a specified single area of an insulation board and a thin film-shaped second conductor 34 whose one end is connected to the other end of the first conductor 32 and which provides an outside connection electrode 34a on the other end and which is pattern-formed where the materials of the two conductors are different from each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば電子機器装置内部
の温度制御等に使用する熱電対素子に係り、特に従来の
熱電対における金属線を薄膜化することで熱電対素子と
しての小型化と温度感知精度向上とを実現した薄膜熱電
対素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermocouple element used, for example, for controlling the temperature inside an electronic device, and more particularly, to reduce the size of the thermocouple element by thinning the metal wire in a conventional thermocouple. The present invention relates to a thin film thermocouple element that realizes improved temperature sensing accuracy and a manufacturing method thereof.

【0002】最近の電子機器分野ではIC等電子デバイ
スの集積度アップや遣り取りする情報量の増大等に伴っ
て電子デバイス単体や電子機器装置内部の温度が上昇し
易くなっているので、該装置内の発熱体自体の温度やそ
の周辺温度等を検出し制御しなければならない場合が多
くなってきている。
In the field of electronic equipment in recent years, the temperature inside the electronic device itself or inside the electronic equipment tends to rise as the degree of integration of electronic devices such as ICs increases and the amount of information to be exchanged increases. In many cases, it is necessary to detect and control the temperature of the heating element itself and its surrounding temperature.

【0003】そしてかかる温度制御等には価格的に安く
且つ扱いが容易なものとして熱電対が多く使用されてい
る。
Thermocouples are often used for such temperature control because they are inexpensive and easy to handle.

【0004】[0004]

【従来の技術】従来の熱電対素子を原理的に示す図4で
熱電対素子1は、2種類の異なる材料からなる線状導電
体11,12 をそれぞれの一端Pで接合して構成されている
ものであり、該接合部Pに生じる起電力(ゼーベック効
果)をそれぞれの他端に位置する電極部11a,12a の間に
接続した例えば電圧計13等で測定することで該接合部P
近傍の温度が検出し得るように構成されているものであ
る。
2. Description of the Related Art In FIG. 4, which shows the principle of a conventional thermocouple element, a thermocouple element 1 is constructed by joining linear conductors 11 and 12 made of two different materials at one end P of each. And the electromotive force (Seebeck effect) generated at the junction P is measured by, for example, a voltmeter 13 connected between the electrode portions 11a and 12a located at the other ends of the junction P.
It is configured so that the temperature in the vicinity can be detected.

【0005】なお、上記線状導電体11,12 の各材質に
は、例えばロジウム(Rh)30%を含む白金(Pt)合金とロジ
ウム6%を含む白金合金, ロジウム13%を含む白金合金
と白金, の如く白金系金属同志の組合せや、ニッケル(N
i)・クローム(Cr)を主とした合金とニッケルを主とした
合金の如くニッケル系金属同志の組合せの如く、検出す
る温度範囲にそれぞれ適した組合せが予め設定されてい
る。
The materials of the linear conductors 11 and 12 are, for example, a platinum (Pt) alloy containing 30% rhodium (Rh), a platinum alloy containing 6% rhodium, and a platinum alloy containing 13% rhodium. A combination of platinum-based metals such as platinum, nickel (N
i) A combination suitable for each temperature range to be detected is preset such as a combination of nickel-based metals such as an alloy mainly containing chrome (Cr) and an alloy mainly containing nickel.

【0006】従って、例えば発熱体自体の表面温度は該
熱電対1の接合部Pをその表面に接してまたは近接させ
ることで測定することができるし、また雰囲気等の温度
は該接合部Pを測定所要位置近傍に配置することで測定
することができる。
Therefore, for example, the surface temperature of the heating element itself can be measured by bringing the joint P of the thermocouple 1 into contact with or close to the surface thereof, and the temperature of the atmosphere or the like can be measured by the joint P. It can be measured by arranging it near the required measurement position.

【0007】かかる従来の熱電対素子では、その接合部
Pが電極11a,12a に対して自在に撓ませられるので扱い
が容易であると共に価格的に安価なことから各方面に広
く利用されている。
Such a conventional thermocouple element is widely used in various fields because its joint P can be freely bent with respect to the electrodes 11a, 12a, so that it is easy to handle and inexpensive. .

【0008】[0008]

【発明が解決しようとする課題】しかしかかる構成にな
る従来の熱電対素子では、線状導電体接合部の接合強度
が低下したり該接合部が剥離し易いこととあいまって温
度感知精度にバラツキが生ずることがあると言う問題が
あり、また例えば回路基板上の微細パターンの如く狭小
領域での温度を検出するにはスペース的な面から確実な
温度検知を行なうことに難点があると言う問題があっ
た。
However, in the conventional thermocouple element having such a structure, the bonding strength of the linear conductor bonding portion is lowered and the bonding portion is easily peeled off. There is a problem that there is a problem that it may occur, and that there is a problem in performing reliable temperature detection from a space aspect in detecting a temperature in a narrow area such as a fine pattern on a circuit board. was there.

【0009】[0009]

【課題を解決するための手段】上記課題は、機器装置内
部における温度感知所要域や発熱体表面の温度を検出す
る熱電対素子であって、絶縁基板の片面所定領域に、外
部接続用の電極を一端に具えてパターニング形成された
薄膜状の第1の導体と該第1の導体と異なる材料からな
り一端が上記第1の導体の他端部で接すると共に他端に
外部接続用の電極を具えてパターニング形成された薄膜
状の第2の導体とが少なくとも形成されて構成されてい
る薄膜熱電対素子によって達成される。
SUMMARY OF THE INVENTION The above-mentioned problem is a thermocouple element for detecting a temperature sensing required area inside a device and a temperature of a surface of a heating element, wherein an electrode for external connection is provided in a predetermined area on one side of an insulating substrate. A thin-film-shaped first conductor formed by patterning at one end and a material different from that of the first conductor, and one end is in contact with the other end of the first conductor and an electrode for external connection is provided at the other end. This is achieved by a thin-film thermocouple element configured by at least a thin-film second conductor that is patterned and formed.

【0010】また、機器装置内部における温度感知所要
域や発熱体表面の温度を検出する熱電対素子の製造方法
であって、絶縁基板の片面所定領域に、外部接続用の電
極を一端に具えた薄膜状の第1の導体をパターニング形
成した後、該第1の導体と異なる材料からなり一端が上
記第1の導体の他端部で接すると共に他端に外部接続用
の電極を具えた薄膜状の第2の導体をパターニング形成
する薄膜熱電対素子の製造方法によって達成される。
A method of manufacturing a thermocouple element for detecting a temperature sensing required area inside a device and a temperature of a heating element surface, wherein an electrode for external connection is provided at one end on a predetermined area on one side of an insulating substrate. After patterning the thin film-shaped first conductor, one end made of a material different from that of the first conductor is in contact with the other end of the first conductor, and the other end is provided with an electrode for external connection. Of the thin film thermocouple element, in which the second conductor is patterned.

【0011】[0011]

【作用】線状導電体を接合して構成した熱電対素子を薄
膜パターンで形成した薄膜熱電対素子に置き換えると、
従来の線状導電体接合部がなくせるので温度感知精度の
バラツキが抑制できると共に例えば回路基板上の狭小領
域での温度を検出するときには該薄膜熱電対素子をその
回路基板上の温度感知所要域に直接形成することで該所
要領域での温度検出を容易に行なうことができる。
[Function] When a thermocouple element formed by joining linear conductors is replaced with a thin film thermocouple element formed by a thin film pattern,
Since the conventional linear conductor joint can be eliminated, variations in temperature sensing accuracy can be suppressed, and when detecting the temperature in a narrow area on a circuit board, for example, the thin film thermocouple element can be mounted on the circuit board in a temperature sensing required area. By directly forming on the substrate, the temperature can be easily detected in the required area.

【0012】そこで本発明では、専用の絶縁基板上に二
種類の導電性薄膜パターンを一箇所でのみ導通するよう
に積層して薄膜熱電対素子を構成し、または温度感知所
要域を持つ回路基板上の該温度感知所要域に同様の手段
で薄膜熱電対素子を構成するようにしている。
Therefore, according to the present invention, a thin film thermocouple element is formed by laminating two kinds of conductive thin film patterns on a dedicated insulating substrate so as to conduct only at one place, or a circuit board having a temperature sensing required area. A thin film thermocouple element is constructed in the above temperature sensing required region by the same means.

【0013】このことは、従来の熱電対素子よりも小型
化された薄膜熱電対素子を温度感知所要箇所またはその
近傍領域に添着等の手段で位置せしめることで如何なる
場所でもその表面や雰囲気の温度が検出し得ると共に、
回路基板上の狭小領域が温度感知所要域である場合には
該回路基板の当該箇所に薄膜熱電対素子を形成し更に該
回路基板の余白領域に例えば該薄膜熱電対素子に繋がる
制御IC等を実装することで回路基板単体で該温度感知
所要域の温度検出や温度制御が実現し得ることを意味す
る。
This is because the thin film thermocouple element, which is smaller than the conventional thermocouple element, is placed at a temperature sensing required portion or a region in the vicinity thereof by means such as attachment, so that the temperature of the surface or the atmosphere can be changed at any place. Can be detected by
When a narrow area on the circuit board is a temperature sensing required area, a thin film thermocouple element is formed at the location of the circuit board, and a control IC or the like connected to the thin film thermocouple element is further provided in a blank area of the circuit board. By mounting, it means that temperature detection and temperature control in the temperature sensing required region can be realized by the circuit board alone.

【0014】従って、如何なる温度感知所要域にも対応
し得る小型で温度感知精度に優れた薄膜熱電対素子を実
現することができる。
Therefore, it is possible to realize a small-sized thin film thermocouple element which can be applied to any temperature sensing required area and is excellent in temperature sensing accuracy.

【0015】[0015]

【実施例】図1は本発明になる薄膜熱電対素子の基本構
成を工程と共に示す図であり、図2は薄膜熱電対素子と
しての構成例を工程と共に説明する図,図3は薄膜熱電
対素子を回路基板上に形成した場合の一例を示した図で
ある。
1 is a view showing the basic structure of a thin film thermocouple element according to the present invention together with steps, FIG. 2 is a view explaining an example structure of a thin film thermocouple element together with steps, and FIG. 3 is a thin film thermocouple. It is the figure which showed an example at the time of forming an element on a circuit board.

【0016】側断面で示した図1で、例えば窒化アルミ
ニウムの如く耐熱性と熱伝導性を持つ絶縁基板21の片側
表面に通常のスパッタリング技術等で第1の導電性皮膜
22′を層形成して(1-1) の状態とした後、該導電性皮膜
22′を熱電対の片側導体としての形状に例えば図示A領
域を残すエッチング技術でパターニングすると、絶縁基
板21上に第1の導体22が形成された(1-2) の状態にする
ことができる。
In FIG. 1 shown in a side cross section, a first conductive film is formed on one surface of an insulating substrate 21 having heat resistance and thermal conductivity, such as aluminum nitride, by a conventional sputtering technique or the like.
22 'is formed into a layer of (1-1), and then the conductive film is formed.
By patterning 22 'into a shape as one-sided conductor of the thermocouple by, for example, an etching technique that leaves the area A in the figure, the first conductor 22 is formed on the insulating substrate 21 to obtain the state (1-2). .

【0017】次いで、該第1の導体22の表面に一箇所の
みにバイアホール23a が形成されるように絶縁膜23をコ
ーティングして(1-3) の状態とした後、該第1の導体22
を含む絶縁基板21の全面に該第1の導電性皮膜22′と異
なる材料からなる第2の導電性皮膜24′を通常のスパッ
タリング技術等で層形成すると、(1-4) で示すように該
第2の導電性皮膜24′と上記第1の導体22とを上記バイ
アホール23a の領域で導通させることができる。
Next, the surface of the first conductor 22 is coated with the insulating film 23 so that the via hole 23a is formed only at one place, and the state of (1-3) is obtained. twenty two
When a second conductive film 24 'made of a material different from that of the first conductive film 22' is formed on the entire surface of the insulating substrate 21 containing The second conductive film 24 'and the first conductor 22 can be electrically connected in the region of the via hole 23a.

【0018】そこで、該第2の導電性皮膜24′を熱電対
の他方側導体としての形状に例えば図示B領域を残すエ
ッチング技術でパターニングすると絶縁膜23上に第2の
導体24が形成されるので、該導体24を含む絶縁基板21の
全面に保護膜25を被覆形成することで(1-5) に示す如き
所要の薄膜熱電対素子2を構成することができる。
Therefore, if the second conductive film 24 'is patterned into a shape as the other conductor of the thermocouple by, for example, an etching technique that leaves the region B in the drawing, the second conductor 24 is formed on the insulating film 23. Therefore, by forming the protective film 25 on the entire surface of the insulating substrate 21 including the conductor 24, the required thin film thermocouple element 2 as shown in (1-5) can be constructed.

【0019】かかる薄膜熱電対素子2では、上述したバ
イアホール23a の領域が第1の導体22と第2の導体24と
の間の接合部を形成するので、各導体22,24 の図示され
ない端部に位置する電極間に例えば図4で示した電圧計
等を接続した後絶縁基板21側を温度感知所要箇所に添着
しまたは温度感知所要箇所近傍に位置せしめることで、
絶縁基板21や保護膜25を介する熱伝導によって該温度感
知所要箇所における温度を検出することができる。
In such a thin film thermocouple element 2, since the above-mentioned region of the via hole 23a forms a joint between the first conductor 22 and the second conductor 24, the ends (not shown) of the conductors 22, 24 are not shown. By connecting, for example, the voltmeter shown in FIG. 4 between the electrodes located in the section, the insulating substrate 21 side is attached to the temperature sensing required portion or positioned near the temperature sensing required portion,
The temperature at the temperature sensing required portion can be detected by heat conduction through the insulating substrate 21 and the protective film 25.

【0020】特にこの場合の薄膜熱電対素子2では導体
22,24 の接合部を含めた全部がチップ化されているの
で、従来の熱電対素子に見られた接合部に起因する温度
感知精度のバラツキが抑制できると同時に絶縁基板21の
厚さや各導体22,24 の形状・大きさ等を適当に設定する
ことで熱電対素子としてのサイズを温度感知所要箇所に
合わせて小型化し得るメリットがある。
In particular, in the thin film thermocouple element 2 in this case, the conductor
Since the entire 22 and 24 joints are made into a chip, it is possible to suppress variations in temperature sensing accuracy due to the joints found in conventional thermocouple elements, and at the same time the thickness of the insulating substrate 21 and each conductor. By appropriately setting the shape and size of 22,24, there is an advantage that the size of the thermocouple element can be reduced according to the required temperature sensing location.

【0021】薄膜熱電対素子としての具体的構成例を示
す図2は、工程ごとの斜視図と各工程における矢印a〜
a′断面図とをそれぞれ対比して表わしたものであり、
図では図1で説明した導体をロジウムと白金で構成する
場合を例として説明する。
FIG. 2 showing an example of a specific structure as a thin film thermocouple element is a perspective view of each step and arrows a to each step.
a 'sectional view is shown in comparison with each other.
In the figure, a case where the conductor described in FIG. 1 is composed of rhodium and platinum will be described as an example.

【0022】図で、アルミナや窒化アルミニウムからな
る厚さ約 0.6〜1.0mm の絶縁基板31の片側表面に厚さ2
〜5μm のロジウム膜を通常のスパッタリング技術等で
第1の導電性皮膜32′として層形成して(イ)の状態と
した後、該皮膜32′を熱電対素子の片側導体としての形
状例えば破線bで示すL形にエッチングしてパターニン
グすると、(ロ)に示すように絶縁基板31上にL形をな
す第1の導体32を形成することができる。
In the figure, a thickness of 2 is formed on one surface of an insulating substrate 31 made of alumina or aluminum nitride and having a thickness of about 0.6 to 1.0 mm.
After forming a rhodium film having a thickness of up to 5 μm as the first conductive film 32 'by a usual sputtering technique or the like to bring it to the state of (a), the film 32' is shaped as one side conductor of the thermocouple element, for example, broken line By etching and patterning into an L shape shown by b, the L-shaped first conductor 32 can be formed on the insulating substrate 31 as shown in (b).

【0023】次いで該第1の導体32の全周囲を厚さ約10
μm の感光性ポリイミド樹脂または二酸化シリコンで被
覆した後、例えば該第1の導体32の長辺側端部の外部接
続用としての電極32a と短辺側端部近傍に位置せしめる
円形部領域32b とを破線cのように通常のフォトエッチ
ング技術で除去することで(ハ)に示すように第1の導
体32をポリイミド樹脂からなる絶縁層33でカバーするこ
とができる。
Then, the entire circumference of the first conductor 32 has a thickness of about 10
After coating with μm photosensitive polyimide resin or silicon dioxide, for example, an electrode 32a for external connection of the long side end of the first conductor 32 and a circular area 32b positioned near the short side end Is removed by a normal photoetching technique as indicated by a broken line c, so that the first conductor 32 can be covered with the insulating layer 33 made of a polyimide resin as shown in FIG.

【0024】なおこの場合の穴33a は図1で説明したバ
イアホール23a に対応するものであり、その底面には上
記第1の導体32が露出している。そこで該第1の導体32
を含む絶縁基板31の全面に厚さ2〜5μm の白金膜を通
常のスパッタリング技術等で層形成した後、熱電対素子
としての他方側導体としての形状例えば上記第1の導体
32と形状的に同等の破線dで示すL形が短辺側の先端部
が重なる対象位置で残るようにエッチングしてパターニ
ングすると、(ニ)に示すように第2の導体34を形成す
ることができる。
The hole 33a in this case corresponds to the via hole 23a described in FIG. 1, and the first conductor 32 is exposed on the bottom surface thereof. Therefore, the first conductor 32
After a platinum film having a thickness of 2 to 5 μm is formed on the entire surface of the insulating substrate 31 including the layers by a normal sputtering technique or the like, the shape as the other side conductor as the thermocouple element, for example, the first conductor described above.
Etching and patterning so that the L-shape indicated by the broken line d, which is equivalent in shape to 32, remains at the target position where the tip end on the short side overlaps, forming the second conductor 34 as shown in (d). You can

【0025】なおこの時点で上記第1の導体32と該第2
の導体34とが穴33a 部分で導通することは図1の場合と
同様である。従って、第1の導体32の電極32a とそれに
対応する第2の導体34の電極34a とを除く全面を破線e
の如く二酸化シリコンまたはポリイミド樹脂からなる保
護膜35で被覆することで、(ホ)に示す所要の薄膜熱電
対素子3を構成することができる。
At this point, the first conductor 32 and the second conductor 32
The conductor 34 is electrically connected to the conductor 33 at the hole 33a as in the case of FIG. Therefore, the entire surface excluding the electrode 32a of the first conductor 32 and the corresponding electrode 34a of the second conductor 34 is indicated by the broken line e.
By covering with the protective film 35 made of silicon dioxide or polyimide resin as described above, the required thin film thermocouple element 3 shown in (e) can be constructed.

【0026】かかる薄膜熱電対素子3では、第1, 第2
の導体32,34 が接合部を含めて保護膜35で被覆されてい
るため図1で説明した温度感知精度のバラツキが抑制で
きるが、更に扱い易い, 熱電対素子としてのサイズが温
度感知所要箇所に合わせ易い等のメリットがある。
In the thin film thermocouple element 3 as described above,
Since the conductors 32 and 34 of the above are covered with the protective film 35 including the joint portion, the variation of the temperature sensing accuracy described in FIG. 1 can be suppressed, but it is easier to handle, and the size of the thermocouple element is the temperature sensing required portion. There are merits such as easy to match.

【0027】なお、第1, 第2の導体32,34 の材質は上
記ロジウム膜と白金膜等との組合せばかりでなく例えば
銅・ニッケル合金としての銅コンスタンタンやニッケル
を主成分とする合金としてのクロメル・アルメルの如く
通常の熱電対に使用されている材料の組合せでも実現す
ることができると共に、各導体32,34 の露出する長辺側
端部32a,34a は、銅, アルミニウム, 金等でボンディン
グパッド化したり半田メッキ化することで測定系や制御
系への接続に適した電極にすることができる。
The material of the first and second conductors 32 and 34 is not only the combination of the rhodium film and the platinum film, but also copper constantan as a copper-nickel alloy or an alloy containing nickel as a main component. It can be realized with a combination of materials commonly used in thermocouples such as chromel and alumel, and the exposed long-side ends 32a, 34a of the conductors 32, 34 are made of copper, aluminum, gold, etc. An electrode suitable for connection to a measurement system or a control system can be obtained by forming a bonding pad or solder plating.

【0028】また上記薄膜熱電対素子3では、素子単体
としてチップ化するために絶縁層33や保護膜35で各導体
32,34 を保護しているので結果的に検出し得る温度範囲
の最高値もこれら絶縁層33や保護膜35の材料によって例
えば二酸化シリコンのときで100℃程度, またポリイミ
ド樹脂のときで 300℃程度までとそれぞれ制約される
が、絶縁層33や保護膜35を必要としない場合すなわち絶
縁基板31上の第1の導体32に第2の導体34を直接被着形
成して薄膜熱電対素子を構成したときには ±1℃位の
精度で 1000 ℃程度まで測定し得ることを実験的に確認
している。
In the thin film thermocouple element 3, each conductor is provided with an insulating layer 33 and a protective film 35 in order to form a chip as a single element.
Since 32 and 34 are protected, the maximum temperature range that can be detected as a result depends on the material of these insulating layer 33 and protective film 35, for example, about 100 ° C for silicon dioxide and 300 ° C for polyimide resin. Although not restricted to a certain extent, when the insulating layer 33 and the protective film 35 are not required, that is, the second conductor 34 is directly formed on the first conductor 32 on the insulating substrate 31 to form a thin film thermocouple element. It has been experimentally confirmed that when configured, it can measure up to about 1000 ° C with an accuracy of ± 1 ° C.

【0029】図2同様に導体がロジウムと白金で構成さ
れる場合を例としたときの他の構成例を示す図3は回路
基板に直接薄膜熱電対素子を構成した場合を示したもの
である。
Similar to FIG. 2, another example of the structure in which the conductor is composed of rhodium and platinum is taken as an example, and FIG. 3 shows a case where the thin film thermocouple element is directly formed on the circuit board. .

【0030】例えば回路基板41の片面(図では下面)に
例えばICの如き発熱体としての電子デバイス42が実装
されているが、かかる電子デバイス42による回路基板41
またはその近傍への熱的影響を検出するには該電子デバ
イス42に接近して熱電対素子を配置することが望まし
い。
For example, an electronic device 42 as a heating element such as an IC is mounted on one surface (lower surface in the figure) of the circuit board 41, and the circuit board 41 by the electronic device 42 is mounted.
Alternatively, it is desirable to dispose a thermocouple element close to the electronic device 42 in order to detect a thermal effect on the vicinity thereof.

【0031】そこで図では回路基板裏面(図では上面)
側の電子デバイス42と対応する領域に薄膜熱電対素子を
形成した場合を例として表わしている。すなわち回路基
板41の裏面側で該電子デバイス42と対応する領域には、
厚さ2〜5μm でL字形にパターン形成されたロジウム
からなる第1の導体51と該導体51の短辺先端部領域でほ
ぼ直交して接するように厚さ2〜5μm で直状にパター
ン形成された白金からなる第2の導体52とで構成される
薄膜熱電対素子5が形成されている。
Therefore, in the figure, the back surface of the circuit board (the upper surface in the figure)
The case where a thin film thermocouple element is formed in a region corresponding to the electronic device 42 on the side is shown as an example. That is, in the area corresponding to the electronic device 42 on the back surface side of the circuit board 41,
A first conductor 51 made of rhodium patterned in an L-shape with a thickness of 2 to 5 μm is directly formed into a pattern with a thickness of 2 to 5 μm so as to be in contact with the first end portion of the short side of the conductor 51 substantially at right angles. The thin-film thermocouple element 5 composed of the second conductor 52 made of platinum is formed.

【0032】そして該各導体51,52 の各長辺自由端領域
は、該回路基板41の余白領域に実装されている図示され
ないICの如き測定系または制御系に繋がる電極51a,52
a に形成されている。
The long-side free end regions of the conductors 51, 52 are connected to electrodes 51a, 52 connected to a measurement system or control system such as an IC (not shown) mounted in the blank area of the circuit board 41.
formed in a.

【0033】かかる薄膜熱電対素子5では、電子デバイ
ス42からの熱で加熱された回路基板41の裏面側温度が該
素子5で検出されるのでそれに繋がる測定系または制御
系でその温度を測定しまたは制御することができる。
In the thin film thermocouple element 5, since the backside temperature of the circuit board 41 heated by the heat from the electronic device 42 is detected by the element 5, the temperature is measured by the measuring system or control system connected to the element 5. Or it can be controlled.

【0034】特にこの場合の薄膜熱電対素子では、各導
体51,52 の交点すなわち接合点を温度感知所要箇所に位
置せしめることが必要であるが、測定系や制御系に繋が
る電極51a,52a の位置には制約がないため該回路基板41
の余白領域まで引き回すことができて、温度感知所要箇
所が狭小な場合でも適用することができる。
In particular, in the thin film thermocouple element in this case, it is necessary to position the intersections of the conductors 51, 52, that is, the junctions at the temperature sensing required locations, but the electrodes 51a, 52a connected to the measurement system and the control system must be located. Since there are no restrictions on the position, the circuit board 41
Since it can be drawn up to the blank area of the above, it can be applied even when the temperature sensing required portion is narrow.

【0035】なお薄膜回路が形成されている絶縁基板の
温度感知所要域の温度を検出する場合には、該絶縁基板
裏面側の温度感知所要域に上述した薄膜熱電対素子5を
形成することで同等の効果が得られることは明らかであ
る。
When detecting the temperature in the temperature sensing required area of the insulating substrate on which the thin film circuit is formed, the thin film thermocouple element 5 is formed in the temperature sensing required area on the back surface of the insulating substrate. It is clear that the same effect can be obtained.

【0036】[0036]

【発明の効果】上述の如く本発明により、従来の熱電対
における金属線を薄膜化することで熱電対素子としての
小型化と温度感知精度向上とを実現した薄膜熱電対素子
とその製造方法を提供することができる。
As described above, according to the present invention, a thin film thermocouple element which realizes miniaturization as a thermocouple element and improvement in temperature sensing accuracy by thinning a metal wire in a conventional thermocouple and a manufacturing method thereof are provided. Can be provided.

【0037】なお本発明の説明では薄膜熱電対素子の外
部接続用としての電極が同じ方向にほぼ平行して形成さ
れている場合を例としているが、該電極を同じ方向に形
成する必要はなく例えば直交する方向等絶縁基板や回路
基板の適当な余白領域まで引き回して各電極を形成して
も同等の効果を得ることができる。
In the description of the present invention, the case where the electrodes for external connection of the thin film thermocouple element are formed substantially parallel to the same direction is shown as an example, but it is not necessary to form the electrodes in the same direction. For example, the same effect can be obtained even if each electrode is formed by drawing the insulating substrate or the circuit board in an orthogonal direction to an appropriate blank area.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる薄膜熱電対素子の基本構成を工
程と共に示す図。
FIG. 1 is a diagram showing the basic configuration of a thin film thermocouple element according to the present invention together with steps.

【図2】 薄膜熱電対素子としての構成例を工程と共に
説明する図。
FIG. 2 is a diagram illustrating a configuration example as a thin film thermocouple element together with steps.

【図3】 薄膜熱電対素子を回路基板上に形成した場合
の一例を示した図。
FIG. 3 is a diagram showing an example in which a thin film thermocouple element is formed on a circuit board.

【図4】 従来の熱電対素子を原理的に示す図。FIG. 4 is a view showing a principle of a conventional thermocouple element.

【符号の説明】[Explanation of symbols]

2,3,5 薄膜熱電対素子 21,31 絶縁基板 22,32,51 第1の導体 22′, 32′
第1の導体皮膜 23,33 絶縁膜 23a バ
イアホール 24,34,52 第2の導体 24′ 第
2の導体皮膜 25,35 保護膜 32a,34a,51a,52a 電極 32b 円
形部領域 33a 穴 41 回路基板 42 電
子デバイス
2,3,5 Thin film thermocouple element 21,31 Insulating substrate 22,32,51 First conductor 22 ', 32'
First conductor film 23,33 Insulation film 23a Via hole 24,34,52 Second conductor 24 'Second conductor film 25,35 Protective film 32a, 34a, 51a, 52a Electrode 32b Circular area 33a Hole 41 Circuit Substrate 42 Electronic device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 機器装置内部における温度感知所要域や
発熱体表面の温度を検出する熱電対素子であって、 絶縁基板の片面所定領域に、外部接続用の電極(32a) を
一端に具えてパターニング形成された薄膜状の第1の導
体(32)と該第1の導体(32)と異なる材料からなり一端が
上記第1の導体(32)の他端部で接すると共に他端に外部
接続用の電極(34a) を具えてパターニング形成された薄
膜状の第2の導体(34)とが少なくとも形成されて構成さ
れていることを特徴とした薄膜熱電対素子。
1. A thermocouple element for detecting a temperature sensing required area inside a device and a temperature of a heating element surface, comprising an electrode (32a) for external connection at one end on a predetermined area on one side of an insulating substrate. A patterned thin film-shaped first conductor (32) and one end made of a material different from the first conductor (32) are in contact with the other end of the first conductor (32) and are externally connected to the other end. A thin film thermocouple element, characterized in that it comprises at least a thin film-shaped second conductor (34) formed by patterning, comprising an electrode (34a) for use.
【請求項2】 請求項1記載の絶縁基板が、前記第1の
導体と第2の導体をパターニング形成するに足る大きさ
の耐熱性と熱伝導性を併持する材料で構成されているこ
とを特徴とした薄膜熱電対素子。
2. The insulating substrate according to claim 1, wherein the insulating substrate is made of a material having both heat resistance and thermal conductivity large enough for patterning the first conductor and the second conductor. Thin-film thermocouple element characterized by.
【請求項3】 請求項1記載の絶縁基板が、電子デバイ
スが搭載・実装された回路基板であることを特徴とした
薄膜熱電対素子。
3. A thin film thermocouple element, wherein the insulating substrate according to claim 1 is a circuit substrate on which an electronic device is mounted and mounted.
【請求項4】 請求項1記載の絶縁基板が、薄膜回路素
子がパターニング形成された回路基板であることを特徴
とした薄膜熱電対素子。
4. A thin film thermocouple element, wherein the insulating substrate according to claim 1 is a circuit board on which a thin film circuit element is formed by patterning.
【請求項5】 機器装置内部における温度感知所要域や
発熱体表面の温度を検出する熱電対素子の製造方法であ
って、 絶縁基板の片面所定領域に、外部接続用の電極(32a) を
一端に具えた薄膜状の第1の導体(32)をパターニング形
成した後、該第1の導体(32)と異なる材料からなり一端
が上記第1の導体(32)の他端部で接すると共に他端に外
部接続用の電極(34a) を具えた薄膜状の第2の導体(34)
をパターニング形成することを特徴とした薄膜熱電対素
子の製造方法。
5. A method for manufacturing a thermocouple element for detecting a temperature sensing required area inside a device and a temperature of a heating element surface, wherein an electrode (32a) for external connection is provided at a predetermined area on one side of an insulating substrate. After patterning the thin film-shaped first conductor (32), the one end made of a material different from that of the first conductor (32) is in contact with the other end of the first conductor (32) and the other end A thin film second conductor (34) having an electrode (34a) for external connection at the end
A method for manufacturing a thin film thermocouple element, which comprises patterning.
JP4250228A 1992-09-18 1992-09-18 Thin film thermocouple element and manufacture thereof Withdrawn JPH06104494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4250228A JPH06104494A (en) 1992-09-18 1992-09-18 Thin film thermocouple element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4250228A JPH06104494A (en) 1992-09-18 1992-09-18 Thin film thermocouple element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06104494A true JPH06104494A (en) 1994-04-15

Family

ID=17204747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4250228A Withdrawn JPH06104494A (en) 1992-09-18 1992-09-18 Thin film thermocouple element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06104494A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274553A (en) * 2004-02-24 2005-10-06 Kyocera Corp Wiring board and manufacturing method therefor
WO2013035173A1 (en) * 2011-09-07 2013-03-14 トヨタ自動車株式会社 Semiconductor device and method for manufacturing same
CN103017922A (en) * 2011-09-26 2013-04-03 中国电子科技集团公司第四十八研究所 Quick-response film-thermocouple temperature sensor and manufacturing method thereof
US8517605B2 (en) 2009-09-18 2013-08-27 Northwestern University Bimetallic integrated on-chip thermocouple array
JP2014053432A (en) * 2012-09-06 2014-03-20 Hirosaki Univ Thermoelectric power enhancement method and thermoelectric power testing method
JP2015501542A (en) * 2011-10-25 2015-01-15 ギュンター ハイスカナルテヒニク ゲーエムベーハー Thermoelectric element
CN104748876A (en) * 2013-12-30 2015-07-01 陕西电器研究所 High-temperature thin-film thermocouple temperature sensor
JP2016090877A (en) * 2014-11-07 2016-05-23 キヤノン株式会社 Fixing device and image forming apparatus including the fixing device
KR20200144088A (en) 2018-04-17 2020-12-28 미쓰비시 마테리알 가부시키가이샤 Cu-Ni alloy sputtering target

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693381B2 (en) * 2004-02-24 2011-06-01 京セラ株式会社 Wiring board and manufacturing method thereof
JP2005274553A (en) * 2004-02-24 2005-10-06 Kyocera Corp Wiring board and manufacturing method therefor
US8517605B2 (en) 2009-09-18 2013-08-27 Northwestern University Bimetallic integrated on-chip thermocouple array
AU2011376423B2 (en) * 2011-09-07 2014-09-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method for manufacturing same
KR20140050686A (en) * 2011-09-07 2014-04-29 도요타지도샤가부시키가이샤 Semiconductor device and method for manufacturing same
CN103782405A (en) * 2011-09-07 2014-05-07 丰田自动车株式会社 Semiconductor device and method for manufacturing same
WO2013035173A1 (en) * 2011-09-07 2013-03-14 トヨタ自動車株式会社 Semiconductor device and method for manufacturing same
RU2565360C1 (en) * 2011-09-07 2015-10-20 Тойота Дзидося Кабусики Кайся Semiconductor device and method for thereof production
US9595655B2 (en) 2011-09-07 2017-03-14 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing the same
CN103017922A (en) * 2011-09-26 2013-04-03 中国电子科技集团公司第四十八研究所 Quick-response film-thermocouple temperature sensor and manufacturing method thereof
JP2015501542A (en) * 2011-10-25 2015-01-15 ギュンター ハイスカナルテヒニク ゲーエムベーハー Thermoelectric element
US9958338B2 (en) 2011-10-25 2018-05-01 Guenther Heisskanaltechnik Gmbh Thermocouple with a heater on a substrate
JP2014053432A (en) * 2012-09-06 2014-03-20 Hirosaki Univ Thermoelectric power enhancement method and thermoelectric power testing method
CN104748876A (en) * 2013-12-30 2015-07-01 陕西电器研究所 High-temperature thin-film thermocouple temperature sensor
JP2016090877A (en) * 2014-11-07 2016-05-23 キヤノン株式会社 Fixing device and image forming apparatus including the fixing device
KR20200144088A (en) 2018-04-17 2020-12-28 미쓰비시 마테리알 가부시키가이샤 Cu-Ni alloy sputtering target

Similar Documents

Publication Publication Date Title
US7106167B2 (en) Stable high temperature sensor system with tungsten on AlN
US7441950B2 (en) Probe for electronic clinical thermometer
US6906539B2 (en) High density, area array probe card apparatus
JP2006078478A (en) Film temperature sensor and substrate for temperature measurement
JPH1123338A (en) Thermosensitive flow-rate detecting element and flow-rate sensor using the same
US5057811A (en) Electrothermal sensor
JPH06104494A (en) Thin film thermocouple element and manufacture thereof
JPS5937773B2 (en) temperature detection device
JPH10213470A (en) Thin film type resistor, its manufacturing, flow rate sensor, humidity sensor, gas sensor and temperature sensor
JPH0436625A (en) Isothermal terminal block
JP5406082B2 (en) Thermopile infrared sensor and method for manufacturing the same
JP2003303702A (en) Temperature sensing element and circuit board having the same
JP2000266608A (en) Temperature sensor
JP2011191215A (en) Thermopile type infrared sensor and method for manufacturing the same
WO2021237602A1 (en) Thin film type thermocouple, temperature sensor, and intelligent wearable device
JPH11258055A (en) Thermopile type temperature sensor
US5958606A (en) Substrate structure with adhesive anchoring-seams for securely attaching and boding to a thin film supported thereon
JPH11354302A (en) Thin-film resistor element
JPH10332455A (en) Flow sensor and its manufacture
KR20000059127A (en) Fabrication method of thermocouple wafer and temperature measurement method by using thermocouple wafer
JPH10221144A (en) Micro heater and its manufacture
JPH0883880A (en) Semiconductor package with temperature sensor
JPH0666643A (en) Substrate with temperature detector
JP2528398Y2 (en) Temperature sensor
JP2003106884A (en) Airflow sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130