JP3631221B2 - Fiber spectroscopic detector and manufacturing method thereof - Google Patents

Fiber spectroscopic detector and manufacturing method thereof Download PDF

Info

Publication number
JP3631221B2
JP3631221B2 JP2002143671A JP2002143671A JP3631221B2 JP 3631221 B2 JP3631221 B2 JP 3631221B2 JP 2002143671 A JP2002143671 A JP 2002143671A JP 2002143671 A JP2002143671 A JP 2002143671A JP 3631221 B2 JP3631221 B2 JP 3631221B2
Authority
JP
Japan
Prior art keywords
fiber
detection
support member
groove
spectroscopic detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002143671A
Other languages
Japanese (ja)
Other versions
JP2003337103A (en
Inventor
文人 北谷
Original Assignee
核燃料サイクル開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 核燃料サイクル開発機構 filed Critical 核燃料サイクル開発機構
Priority to JP2002143671A priority Critical patent/JP3631221B2/en
Publication of JP2003337103A publication Critical patent/JP2003337103A/en
Application granted granted Critical
Publication of JP3631221B2 publication Critical patent/JP3631221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバを利用したATR法(減衰全反射法)による分光検出器及びその製造方法に関するものである。このファイバ分光検出器は、特に限定されるものではないが、溶融塩や溶融金属等を測定対象とする高温域での分光分析に有用である。
【0002】
【従来の技術】
赤外線吸収スペクトルを測定する方法の一つに、全反射を利用するATR法がある。この方法では、高い屈折率を持つATRプリズムを試料に密着させ、該ATRプリズムを通して赤外光を試料に照射し、そのATRプリズムからの出射光を分光分析する。このようなATR法は、試料及び測定装置の取り扱いが簡便なため、透過法に代わり使用されている。
【0003】
しかし内部反射エレメントとしてATRプリズムを用いる構成は、内部反射回数も少なく、感度もあまり高くない。そこで最近、内部反射エレメントとして光ファイバを用いる技術が提案されている。これは、光ファイバのクラッドの一部を、化学的あるいは物理的手段により除去してコアのみとしたクラッド欠損部を設ける方法である。光ファイバを用いることにより内部反射回数が増大し感度の向上を図ることができ、別途に集中光学系を必要とせず、そのため小型化できる等の利点がある。
【0004】
【発明が解決しようとする課題】
ところが従来の光ファイバを用いた分光検出器は、光ファイバのクラッドを全周取り去って作製するため、石英クラッド/石英コア構造の光ファイバでの製作は困難である。そのため、従来技術では主に、高分子クラッド/石英コア構造の光ファイバを用いて高分子クラッドを熱もしくは刃物を用いて取り除いている。しかし、このような方法は、コアの折損が生じ易く、検出器の製造の歩留まりが非常に悪いという問題があった。
【0005】
また、クラッドが高分子材料であるため、分光検出器の使用可能温度が高分子材料の耐熱性で決定され、高温域での使用が不可能であった。更に、作製した分光検出器は、極細の光ファイバのコアからなるため、物理的に脆弱でハンドリングが困難な上、振動などの影響を受け易く、実用には問題が多かった。
【0006】
本発明の目的は、堅牢な構造で、そのためハンドリングが容易であり、粘性の高い試料にも挿入でき、安定した測定が可能となるファイバ分光検出器を提供することである。本発明の他の目的は、高温環境や化学的に活性な環境など劣悪な環境下でも使用可能なファイバ分光検出器を提供することである。本発明の更に他の目的は、堅牢な構造にでき、必要な大きさの検出面を容易に形成できるファイバ分光検出器の製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明は、四角柱状のサポート部材の一主面の長手方向に溝が形成されると共に該溝に平行に貫通穴が形成され、前記溝内に検出ファイバが収容されファイバ固定充填材で固着され、前記貫通穴内に参照ファイバが挿通されて固定されており、それによって検出ファイバと参照ファイバがサポート部材と一体化され、前記検出ファイバのクラッドの一部が除去されコアの一部が露出することで検出面が形成されていることを特徴とするファイバ分光検出器である。このファイバ分光検出器は、光ファイバのクラッドを除去することによって、コアを伝播する光の全反射で生じるエバネッセント波と外部媒質との相互作用による吸光度を測定するものである。
【0008】
特に、サポート部材及び固定充填材を共に耐熱性材料で構成し、検出ファイバに石英クラッド/石英コア構造の光ファイバを用いると、高温対応型のファイバ分光検出器が得られる。
【0009】
例えば、検出ファイバ及び参照ファイバを、先端を丸めたサポート部材に沿って曲げ返、その戻り部分はファイバ固定充填材で覆われるようにしてサポート部材に固着する。ファイバの戻り部分の位置ずれを防ぐためには、サポート部材に別途溝を設けて、その溝にファイバを収容する構成も有効である。
【0010】
また本発明は、上記のような構造のファイバ分光検出器を製造する方法である。先端が丸味を帯びたサポート部材の細長状の一主面に縦方向にV溝を形成すると共に該V溝と平行に貫通穴を形成し、該サポート部材の表面にファイバ固定充填材を塗布し、前記溝内に検出ファイバを押し込んで半埋設状態とすると共にサポート部材の先端で曲げ返し、前記貫通穴内に参照ファイバを挿入すると共にサポート部材の先端で曲げ返し、前記検出ファイバ上に更にファイバ固定充填材を塗布して前記検出ファイバを覆い、加熱固化した後、ファイバ固定充填材ごとファイバを平面研磨してクラッドを除去し、コアを露出させて検出面を形成する。
【0011】
【実施例】
図1は本発明に係るファイバ分光検出器の一実施例を示す説明図であり、Aは縦断面を、Bは正面を、Cは底面を、それぞれ表している。また図2はそのx−x断面図である。ファイバ分光検出器10は、四角柱状のサポート部材12の細長状の一主面に縦方向に形成したV溝14内に、検出ファイバ16が収容されファイバ固定充填材18で固着されており、該検出ファイバ18のクラッド20の一部が除去されコア22の一部が露出することで検出面24が形成されている。サポート部材12の先端は丸味を帯びており、それに沿って曲げ返された検出ファイバの戻り部分16aは、サポート部材12の前記検出面24とは反対側の主面(裏面)にてファイバ固定充填材26中に埋設固着されている。クラッドの除去は、ファイバ固定充填材ごとファイバを平面研磨することによって行う。これによってコアの一部も研磨される。
【0012】
ここで参照ファイバ30は、検出ファイバ16と並置される。そのため、サポート部材12の長手方向に前記V溝14と平行に貫通穴32が形成され、該貫通穴32内に参照ファイバ30が挿通されファイバ固定充填材34で固着されている。サポート部材12の先端で曲げ返された参照ファイバの戻り部分30aは、検出ファイバの戻り部分16aと平行に配置され、ファイバ固定充填材26中に埋設固着されている。参照ファイバ30を貫通穴32内に収容することで、検出ファイバの研磨時に参照ファイバが研磨されないようにしている。このようにして、検出ファイバ16と参照ファイバ30とが極力同じ位置を経由して、サポート部材12と一体化したファイバ分光検出器10が得られる。なお、検出ファイバと参照ファイバの戻り部分16a,30aの位置決めを容易にするためには、図示しないが、サポート部材の裏面にも2本の平行溝を形成して、それぞれに検出ファイバと参照ファイバの戻り部分を収容するようにしてもよい。
【0013】
高温環境下で使用する場合には、サポート部材12として化学的に安定で耐熱性の高いアルミナ系セラミックスを用い、ファイバ固定充填材18,26,34には高温用アルミナ系の接着剤を用いる。検出ファイバ16及び参照ファイバ30には、石英クラッド/石英コア構造の光ファイバを用いる。この構成により、1000℃以上の高温域で使用可能なファイバ分光検出器が製作できる。また、この構成は、石英を侵すフッ酸系以外の強酸強塩基環境においても安定に使用できるファイバ分光検出器となる。なお使用光の波長は、光ファイバを効率よく透過できる波長であることから、石英ファイバであれば波長数μmの近赤外光から波長数百nmの紫外光となる。
【0014】
本発明のファイバ分光検出器10は、脆弱なファイバ検出部がサポート部材12に固着されているため、屈曲等の外乱による損失変化の影響を受け難く安定した測定が可能となる。また、このように製作したファイバ分光検出器10では、検出面以外の光伝播部はクラッド/コア構造が残っているために、低損失で外乱の影響を受けずに入出力光が伝播する。被測定物(試料)は、主にファイバ分光検出器周辺の液体もしくは気体である。しかし、ファイバ検出部はサポート部材によって支えられ機械的強度が高くなっているので、検出面を試料に圧接する方法による固体表面の測定も可能である。
【0015】
脆弱なファイバ検出部がサポート部材に固着され堅牢な構造となっているために、ハンドリングが容易であり、高温環境(例えば溶融塩や溶融金属等)や化学的に活性な環境(例えば強酸強塩基)で必要なロボットアーム等による遠隔操作が行い易い。また、粘性の高い試料や多数の粒子が存在する試料等でも本ファイバ分光検出器を容易に挿入可能であるため、測定対象が広がる。更に、本発明に係るファイバ分光検出器では、検出面に対する物理的な接触が容易であるため、検出面の洗浄が容易に行える。そのため、繰り返し測定に用いることが可能であり、その際、試料の汚染を低く抑えることができる。
【0016】
図3は、ファイバ分光測定系の一例を示す説明図である。ファイバ分光検出器10は試料40中に浸漬する。ここでは試料40は、容器42に入れられ、ヒータ44で熱せられた高温溶融物である。光源46からの光をコリメータレンズ48により平行光とし、ビームスプリッタ50で2分割する。そして信号光導光ファイバ52及び参照光導光ファイバ54によってファイバ分光検出器10の検出ファイバ16に検出光を、参照ファイバ30に参照光をそれぞれ導き、出力光をレンズ56,57で集光する。そして、それぞれを検出部58,59で検出して電気信号に変換し、信号処理系へ伝達する。これにより得られる信号(入射光強度と出射光強度の比)が吸光度になる。測定原理は吸光分光測定を同様なので、得られる情報は吸光分光測定の場合と同様となる。主な測定は、被測定物の濃度やイオンの状態変化等である。また、参照ファイバを設ける構成であるので、光源の出力変動やファイバの劣化の補正が可能となり、測定精度が向上する。信号処理としては、信号変化が微弱になれば、入射光に変調をかけたロックイン計測によりS/Nを向上させることができる。
【0017】
図4に使用状態の一例を示す。容器42に収容されている被測定物(試料)40中にファイバ分光検出器10を挿入する。ここで直線状のファイバ検出部の長さを変えれば(必要に応じてAのように短くしたり、Bのように長くすれば)、ファイバ分光検出器の長さに応じた挿入方向の積分情報を得ることができる。
【0018】
図5に使用状態の他の例を示す。Aは複数のファイバ分光検出器10を被測定物40中に並列に挿入した例である。このようにファイバ分光検出器を2次元的に分散配置すると、被測定物中の測定値分布を把握することが可能となる。Bは複数のファイバ分光検出器10を被測定物40中に直列に接続して挿入した例である。このようにファイバ分光検出器を配列すると、容易にファイバ検出部長さ(吸収長さ)を延長できるので、希薄物質などの低吸収物質の測定にも容易に対応できる。
【0019】
サポート部材の一例を図6に示し、それを用いたファイバ分光検出器の製造手順の一例を図7に示す。ここでは検出面の製造工程のみを示し、光ファイバの曲げ返し構造や参照ファイバの挿入用の貫通穴など、あるいはそれへの取り付けなどについては説明を省略する。まず図6に示すように、サポート部材12は、四角柱体の一主面(細長表面の一表面)にファイバ取り付け用のV溝14を形成したものとする。V溝14は、サポート部材12の表面に一端から他端に至るまで同じ断面形状で形成する。
【0020】
V溝14を図7のAに示す。このV溝14の最大幅は光ファイバの直径(クラッド外径)より若干大きいものとし、V溝14の深さは光ファイバの半径より若干深いものとする。即ち、光ファイバをV溝内に収容したとき、コア中心位置がサポート部材表面レベルと同じかそれよりもやや下方(溝内)に位置するような関係とするのがよい。
【0021】
Bに示すように、サポート部材12のV溝14の内外部分に予めファイバ固定充填材50を塗布しておく。次にCに示すように、前記V溝14内に検出ファイバ(被覆を取り去った光ファイバ、即ちコア/クラッドの状態)52を押し込んで半埋設状態とする。そしてDに示すように、該検出ファイバ52上に更にファイバ固定充填材54を塗布して前記検出ファイバ52を覆う。その状態で加熱固化させる。その後、Eに示すように、ファイバ固定充填材ごとファイバを研磨してクラッドを除去し、コア22を露出させて検出面24を形成する。
【0022】
ファイバの研磨は、結晶研磨を行うような平削研磨盤で行う。当然、散乱光によるロスを無くすために光学精度で仕上げる。作製の際、ファイバ光を導通させつつ研磨を行い出力光の強度をモニタすると、クラッドの除去状況を把握できるために検出面の形成が容易となる。クラッドが除去されるに従ってエバネッセント波のロスが多くなり出力光が減少していく。エバネッセント波のロス分が測定に関わる光の量にほぼ比例しており、出力光が0になるのは断線状態を意味することから、20〜40%までの出力減が研磨完了の目安となる。
【0023】
このようにサポート部材の面全体を研磨することで検出面を形成する。ファイバ分光検出器の大きさは、光学精度の研磨を行うことを考慮すれば、最長200mm程度となる。長さ200mm程度では吸光度を十分に測定できないような希薄媒質の場合には、前記図5のBに示す実施例のように、複数のファイバ分光検出器を直列に接続することで対応可能である。従って、取り扱いや製作の容易さを考慮して、100mm程度の長さのファイバ分光検出器を標準品として用意すれば十分である。
【0024】
【発明の効果】
本発明は上記のように、サポート部材の溝内に検出ファイバが収容されファイバ固定充填材で固着されており、クラッドの一部が除去されコアの一部が露出することで検出面が形成されているファイバ分光検出器であるので、堅牢な構造であり、そのためハンドリングが容易で、粘性の高い被測定物等にも挿入でき、安定した測定が可能となる。また本発明によれば、石英クラッド/石英コア構造の光ファイバでも作製が容易であるため、高温環境や化学的に活性な環境など劣悪な環境での使用も可能となり、測定可能な範囲が広がる。更に、ファイバ分光検出器がユニット単位で取り扱えるので、種々のアレンジ(並列配置による2次元分布の計測、直列接続による光路長の変更など)が容易に行える。
【0025】
また本発明は、サポート部材の溝に保護被覆を取り去った光ファイバをファイバ固定充填材にて固着し、これを研磨することにより検出面を形成する方法であるので、堅牢な構造のファイバ分光検出器を容易に製造することができる。
【図面の簡単な説明】
【図1】本発明に係るファイバ分光検出器の一実施例を示す説明図。
【図2】そのx−x断面図。
【図3】ファイバ分光検出器を用いた測定系の一例を示す説明図。
【図4】ファイバ分光検出器の使用状態の例を示す説明図。
【図5】ファイバ分光検出器の使用状態の他の例を示す説明図。
【図6】本発明で用いるサポート部材の例を示す説明図。
【図7】本発明に係る製造方法の一例を示す工程説明図。
【符号の説明】
10 ファイバ分光検出器
12 サポート部材
14 V溝
16 検出ファイバ
18 ファイバ固定充填材
20 クラッド
22 コア
24 検出面
26 ファイバ固定充填材
30 参照ファイバ
32 貫通穴
34 ファイバ固定充填材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spectroscopic detector by an ATR method (attenuated total reflection method) using an optical fiber and a method for manufacturing the same. The fiber spectroscopic detector is not particularly limited, but is useful for spectroscopic analysis in a high temperature range in which a molten salt, a molten metal, or the like is an object to be measured.
[0002]
[Prior art]
One method for measuring the infrared absorption spectrum is the ATR method using total reflection. In this method, an ATR prism having a high refractive index is closely attached to a sample, the sample is irradiated with infrared light through the ATR prism, and light emitted from the ATR prism is spectrally analyzed. Such an ATR method is used in place of the transmission method because the sample and the measuring device are easy to handle.
[0003]
However, the configuration using the ATR prism as the internal reflection element has a small number of internal reflections and the sensitivity is not so high. Therefore, recently, a technique using an optical fiber as an internal reflection element has been proposed. In this method, a part of the clad of the optical fiber is removed by chemical or physical means to provide a clad defect portion having only a core. By using an optical fiber, the number of internal reflections can be increased and the sensitivity can be improved, and there is an advantage that a separate centralized optical system is not required, so that the size can be reduced.
[0004]
[Problems to be solved by the invention]
However, since a conventional spectroscopic detector using an optical fiber is manufactured by removing the entire circumference of the optical fiber cladding, it is difficult to manufacture the optical fiber with a quartz cladding / quartz core structure. Therefore, in the prior art, the polymer cladding is mainly removed using heat or a blade using an optical fiber having a polymer cladding / quartz core structure. However, such a method has a problem that the core is easily broken, and the production yield of the detector is very poor.
[0005]
In addition, since the clad is a polymer material, the usable temperature of the spectroscopic detector is determined by the heat resistance of the polymer material, and cannot be used in a high temperature range. Furthermore, since the manufactured spectroscopic detector is composed of an ultrafine optical fiber core, it is physically fragile and difficult to handle, and is easily affected by vibrations, and has many problems in practical use.
[0006]
An object of the present invention is to provide a fiber spectroscopic detector that has a robust structure and is therefore easy to handle, can be inserted into a highly viscous sample, and enables stable measurement. Another object of the present invention is to provide a fiber spectroscopic detector that can be used in a poor environment such as a high temperature environment or a chemically active environment. Still another object of the present invention is to provide a method of manufacturing a fiber spectroscopic detector which can be made robust and can easily form a detection surface having a required size.
[0007]
[Means for Solving the Problems]
The present invention is a square parallel to the through hole in the groove with the longitudinal direction into the groove of the one main surface of the columnar support member is formed is formed, the are detection fibers accommodated in the groove in the fiber fixing filler The reference fiber is inserted and fixed in the through hole so that the detection fiber and the reference fiber are integrated with the support member, a part of the cladding of the detection fiber is removed, and a part of the core is removed. It is a fiber spectroscopic detector characterized in that a detection surface is formed by exposure. This fiber spectroscopic detector measures the absorbance due to the interaction between an evanescent wave generated by total reflection of light propagating through the core and the external medium by removing the cladding of the optical fiber.
[0008]
In particular, when both the support member and the fixed filler are made of a heat resistant material and an optical fiber having a quartz clad / quartz core structure is used as the detection fiber, a high-temperature compatible fiber spectroscopic detector can be obtained.
[0009]
For example, the detection fiber and the reference fiber, to return bent along the support member with rounded tip, the return portion is secured to the support member so as to be covered by the fiber fixing filler. In order to prevent displacement of the return portion of the fiber, it is also effective to provide a separate groove in the support member and accommodate the fiber in the groove.
[0010]
The present invention is also a method for manufacturing a fiber spectroscopic detector having the above structure. A V- groove is formed in a longitudinal direction on one elongated main surface of the support member having a rounded tip, and a through hole is formed in parallel to the V-groove, and a fiber fixing filler is applied to the surface of the support member. The detection fiber is pushed into the V- groove to be in a semi-embedded state and bent back at the tip of the support member , the reference fiber is inserted into the through hole and bent back at the tip of the support member, and a fiber is further placed on the detection fiber. After applying a fixed filler to cover the detection fiber and solidifying by heating, the fiber is planarly polished together with the fiber fixed filler to remove the cladding, and the core is exposed to form a detection surface.
[0011]
【Example】
FIG. 1 is an explanatory view showing an embodiment of a fiber spectral detector according to the present invention, in which A represents a longitudinal section, B represents a front surface, and C represents a bottom surface. FIG. 2 is a sectional view taken along line xx. The fiber spectroscopic detector 10 includes a detection fiber 16 accommodated in a V-groove 14 formed in a longitudinal direction on one elongated main surface of a square columnar support member 12 and fixed by a fiber fixing filler 18. A detection surface 24 is formed by removing a part of the clad 20 of the detection fiber 18 and exposing a part of the core 22. The front end of the support member 12 is rounded, and the return portion 16a of the detection fiber bent back along the support member 12 is fixed to the fiber on the main surface (back surface) opposite to the detection surface 24 of the support member 12. It is embedded and fixed in the material 26. The removal of the clad is performed by polishing the surface of the fiber together with the fiber fixing filler. As a result, a part of the core is also polished.
[0012]
Here the reference fiber 30, Ru is juxtaposed with detection fibers 16. Therefore, a through hole 32 is formed in the longitudinal direction of the support member 12 in parallel with the V groove 14, and the reference fiber 30 is inserted into the through hole 32 and fixed with a fiber fixing filler 34. The return portion 30a of the reference fiber bent back at the tip of the support member 12 is arranged in parallel with the return portion 16a of the detection fiber, and is embedded and fixed in the fiber fixing filler 26. By accommodating the reference fiber 30 in the through hole 32, the reference fiber is prevented from being polished when the detection fiber is polished. In this way, the fiber spectroscopic detector 10 integrated with the support member 12 is obtained through the detection fiber 16 and the reference fiber 30 through the same position as much as possible. In order to facilitate the positioning of the return portions 16a and 30a of the detection fiber and the reference fiber, although not shown, two parallel grooves are formed on the back surface of the support member, and the detection fiber and the reference fiber are respectively provided. The return part may be accommodated.
[0013]
When used in a high temperature environment, a chemically stable and highly heat-resistant alumina ceramic is used as the support member 12, and a high temperature alumina adhesive is used for the fiber fixing fillers 18, 26, and 34. As the detection fiber 16 and the reference fiber 30, an optical fiber having a quartz clad / quartz core structure is used. With this configuration, a fiber spectroscopic detector that can be used in a high temperature range of 1000 ° C. or higher can be manufactured. In addition, this configuration provides a fiber spectroscopic detector that can be used stably even in a strong acid strong base environment other than hydrofluoric acid that attacks quartz. Since the wavelength of the used light is a wavelength that can be efficiently transmitted through the optical fiber, a quartz fiber changes from near infrared light having a wavelength of several μm to ultraviolet light having a wavelength of several hundred nm.
[0014]
Since the fragile fiber detector is fixed to the support member 12, the fiber spectroscopic detector 10 of the present invention is not easily affected by a loss change due to disturbance such as bending, and can perform stable measurement. Further, in the fiber spectroscopic detector 10 manufactured in this way, since the clad / core structure remains in the light propagation part other than the detection surface, the input / output light propagates with low loss and without being affected by the disturbance. The object to be measured (sample) is mainly a liquid or gas around the fiber spectral detector. However, since the fiber detector is supported by the support member and has high mechanical strength, the solid surface can be measured by a method in which the detection surface is pressed against the sample.
[0015]
The fragile fiber detector is firmly attached to the support member and has a robust structure, so it is easy to handle and is used in a high temperature environment (for example, molten salt or molten metal) or a chemically active environment (for example, a strong acid or strong base). It is easy to perform remote control with the necessary robot arm. Moreover, since the present fiber spectroscopic detector can be easily inserted even in a sample having a high viscosity or a sample having a large number of particles, the object to be measured is widened. Furthermore, in the fiber spectroscopic detector according to the present invention, since the physical contact with the detection surface is easy, the detection surface can be easily cleaned. Therefore, it can be used for repeated measurement, and in this case, contamination of the sample can be kept low.
[0016]
FIG. 3 is an explanatory diagram showing an example of a fiber spectroscopic measurement system. The fiber spectroscopic detector 10 is immersed in the sample 40. Here, the sample 40 is a high-temperature melt placed in a container 42 and heated by a heater 44. The light from the light source 46 is converted into parallel light by the collimator lens 48 and divided into two by the beam splitter 50. Then, the signal light guide fiber 52 and the reference light guide fiber 54 guide the detection light to the detection fiber 16 of the fiber spectral detector 10 and the reference light to the reference fiber 30, respectively, and collect the output light by the lenses 56 and 57. And each is detected by the detection parts 58 and 59, is converted into an electric signal, and is transmitted to a signal processing system. The signal (the ratio between the incident light intensity and the emitted light intensity) thus obtained becomes the absorbance. Since the measurement principle is the same as that of absorption spectrometry, the obtained information is the same as in the case of absorption spectrometry. The main measurement is the concentration of the object to be measured, ion state change, and the like. Further, since it is configured to provide references fiber, it is possible to correct the deterioration of the output fluctuation and fiber sources, thus improving the measurement accuracy. As signal processing, if the signal change becomes weak, the S / N can be improved by lock-in measurement in which incident light is modulated.
[0017]
FIG. 4 shows an example of the usage state. The fiber spectroscopic detector 10 is inserted into an object to be measured (sample) 40 accommodated in the container 42. If the length of the linear fiber detector is changed here (if it is shortened as A or B as required), the integration in the insertion direction according to the length of the fiber spectral detector Information can be obtained.
[0018]
FIG. 5 shows another example of the usage state. A is an example in which a plurality of fiber spectral detectors 10 are inserted in parallel into the DUT 40. If the fiber spectral detectors are two-dimensionally distributed in this way, it is possible to grasp the measured value distribution in the object to be measured. B is an example in which a plurality of fiber spectroscopic detectors 10 are connected in series into the DUT 40. If the fiber spectroscopic detectors are arranged in this way, the length of the fiber detection part (absorption length) can be easily extended, so that it is possible to easily cope with the measurement of a low absorption material such as a diluted material.
[0019]
An example of the support member is shown in FIG. 6, and an example of a manufacturing procedure of a fiber spectral detector using the support member is shown in FIG. Here, only the manufacturing process of the detection surface is shown, and the description of the bent-back structure of the optical fiber, the through hole for inserting the reference fiber, or the attachment to the reference fiber will be omitted. First, as shown in FIG. 6, the support member 12 is assumed to have a V-groove 14 for attaching a fiber formed on one main surface (one surface of an elongated surface) of a quadrangular prism. The V-groove 14 is formed on the surface of the support member 12 with the same cross-sectional shape from one end to the other end.
[0020]
The V groove 14 is shown in FIG. The maximum width of the V groove 14 is slightly larger than the diameter of the optical fiber (cladding outer diameter), and the depth of the V groove 14 is slightly deeper than the radius of the optical fiber. That is, when the optical fiber is accommodated in the V-groove, it is preferable that the core center position is the same as or slightly lower than the support member surface level (in the groove).
[0021]
As shown in B, a fiber fixing filler 50 is applied in advance to the inner and outer portions of the V groove 14 of the support member 12. Next, as shown in C, a detection fiber (an optical fiber from which the coating has been removed, that is, a core / cladding state) 52 is pushed into the V-groove 14 to make it a semi-embedded state. And as shown to D, the fiber fixing filler 54 is further apply | coated on this detection fiber 52, and the said detection fiber 52 is covered. Solidify by heating in that state. Thereafter, as shown in E, the fiber is polished together with the fiber fixing filler to remove the clad, and the core 22 is exposed to form the detection surface 24.
[0022]
The polishing of the fiber is performed by a planing polishing machine that performs crystal polishing. Naturally, it is finished with optical accuracy to eliminate loss due to scattered light. When manufacturing, if polishing is performed while the fiber light is conducted and the intensity of the output light is monitored, the detection state can be easily formed because the removal status of the clad can be grasped. As the cladding is removed, the loss of the evanescent wave increases and the output light decreases. The loss of the evanescent wave is almost proportional to the amount of light involved in the measurement, and the fact that the output light becomes zero means a disconnected state. Therefore, a reduction in output of 20 to 40% is a guideline for completion of polishing. .
[0023]
Thus, the detection surface is formed by polishing the entire surface of the support member. The size of the fiber spectroscopic detector is about 200 mm at the longest in consideration of polishing with optical accuracy. In the case of a dilute medium in which the absorbance cannot be measured sufficiently with a length of about 200 mm, it can be handled by connecting a plurality of fiber spectroscopic detectors in series as in the embodiment shown in FIG. 5B. . Therefore, considering the ease of handling and manufacturing, it is sufficient to prepare a fiber spectroscopic detector having a length of about 100 mm as a standard product.
[0024]
【The invention's effect】
In the present invention, as described above, the detection fiber is accommodated in the groove of the support member and fixed with the fiber fixing filler, and the detection surface is formed by removing a part of the cladding and exposing a part of the core. The fiber spectroscopic detector has a robust structure, so that it is easy to handle and can be inserted into a highly viscous object to be measured, thereby enabling stable measurement. In addition, according to the present invention, an optical fiber having a quartz clad / quartz core structure can be easily manufactured, so that it can be used in a poor environment such as a high temperature environment or a chemically active environment, and the measurable range is widened. . Furthermore, since the fiber spectroscopic detector can be handled in units, various arrangements (two-dimensional distribution measurement by parallel arrangement, change of optical path length by serial connection, etc.) can be easily performed.
[0025]
Further, the present invention is a method of forming a detection surface by fixing an optical fiber from which a protective coating has been removed to a groove of a support member with a fiber fixing filler, and polishing the optical fiber. Can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a fiber spectral detector according to the present invention.
FIG. 2 is a sectional view taken along line xx.
FIG. 3 is an explanatory diagram showing an example of a measurement system using a fiber spectral detector.
FIG. 4 is an explanatory diagram showing an example of a usage state of a fiber spectral detector.
FIG. 5 is an explanatory diagram showing another example of the usage state of the fiber spectral detector.
FIG. 6 is an explanatory view showing an example of a support member used in the present invention.
FIG. 7 is a process explanatory view showing an example of a manufacturing method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Fiber spectroscopy detector 12 Support member 14 V groove 16 Detection fiber 18 Fiber fixing filler 20 Cladding 22 Core 24 Detection surface 26 Fiber fixing filler 30 Reference fiber 32 Through-hole 34 Fiber fixing filler

Claims (3)

四角柱状のサポート部材の一主面の長手方向に溝が形成されると共に該溝に平行に貫通穴が形成され、前記溝内に検出ファイバが収容されファイバ固定充填材で固着され、前記貫通穴内に参照ファイバが挿通されて固定されており、それによって検出ファイバと参照ファイバがサポート部材と一体化され、前記検出ファイバのクラッドの一部が除去されコアの一部が露出することで検出面が形成されていることを特徴とするファイバ分光検出器。 Is parallel to the through hole in the groove with the longitudinal direction into the groove of the one main surface of the square cylindrical support member is formed is formed, detection fibers are housed is fixed in the fiber fixing filler in the groove, The reference fiber is inserted and fixed in the through hole, whereby the detection fiber and the reference fiber are integrated with the support member, and a part of the cladding of the detection fiber is removed and a part of the core is exposed. A fiber spectral detector, wherein a detection surface is formed. サポート部材及びファイバ固定充填材が共に耐熱性材料からなり、検出ファイバに石英クラッド/石英コア構造の光ファイバを用いて高温対応型とした請求項1記載のファイバ分光検出器。2. The fiber spectroscopic detector according to claim 1, wherein both the support member and the fiber fixing filler are made of a heat-resistant material, and the detection fiber is a high-temperature compatible type using an optical fiber having a quartz clad / quartz core structure. 請求項1又は2記載のファイバ分光検出器を製造する方法であって、先端が丸味を帯びたサポート部材の細長状の一主面に縦方向にV溝を形成すると共に該V溝と平行に貫通穴を形成し、該サポート部材の表面にファイバ固定充填材を塗布し、前記溝内に検出ファイバを押し込んで半埋設状態とすると共にサポート部材の先端で曲げ返し、前記貫通穴内に参照ファイバを挿入すると共にサポート部材の先端で曲げ返し、前記検出ファイバ上に更にファイバ固定充填材を塗布して前記検出ファイバを覆い、加熱固化した後、ファイバ固定充填材ごとファイバを平面研磨してクラッドを除去し、コアを露出させて検出面を形成するファイバ分光検出器の製造方法。 3. A method of manufacturing a fiber spectroscopic detector according to claim 1 , wherein a V-groove is formed in a longitudinal direction on one elongated main surface of a support member having a rounded tip and parallel to the V-groove. A through hole is formed , a fiber fixing filler is applied to the surface of the support member, the detection fiber is pushed into the V- groove to be in a semi-embedded state , bent back at the tip of the support member , and the reference fiber is inserted into the through hole And is bent back at the tip of the support member , further coated with a fiber fixing filler on the detection fiber, covered with the detection fiber, solidified by heating, and then flattened the fiber together with the fiber fixing filler to polish the cladding. A method for manufacturing a fiber spectroscopic detector that is removed and a core is exposed to form a detection surface.
JP2002143671A 2002-05-17 2002-05-17 Fiber spectroscopic detector and manufacturing method thereof Expired - Fee Related JP3631221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143671A JP3631221B2 (en) 2002-05-17 2002-05-17 Fiber spectroscopic detector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143671A JP3631221B2 (en) 2002-05-17 2002-05-17 Fiber spectroscopic detector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003337103A JP2003337103A (en) 2003-11-28
JP3631221B2 true JP3631221B2 (en) 2005-03-23

Family

ID=29703608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143671A Expired - Fee Related JP3631221B2 (en) 2002-05-17 2002-05-17 Fiber spectroscopic detector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3631221B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616549B1 (en) 2004-01-16 2006-08-28 주식회사 골드텔 Optical cable for Optical signal detection and method manufacturing it
WO2008105146A1 (en) * 2007-02-28 2008-09-04 Suntory Holdings Limited Liquid immersion type absorbance sensor element and absorption spectrometer using same
JP5260882B2 (en) * 2007-03-28 2013-08-14 花王株式会社 Probe for measuring total reflection absorption spectrum
JP7117869B2 (en) * 2018-03-22 2022-08-15 株式会社日立製作所 Analysis equipment

Also Published As

Publication number Publication date
JP2003337103A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP7072615B2 (en) How to evaluate the characteristics of a waveguide
US20180252586A1 (en) Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
Samusenko et al. A SiON microring resonator-based platform for biosensing at 850 nm
Muellner et al. CMOS-compatible Si3N4 waveguides for optical biosensing
WO2006108096A2 (en) Method and apparatus for measuring and monitoring distances, physical properties, and phase changes of light reflected from a surface based on a ring-resonator
US8175423B2 (en) Filtered fiber optic probe
US9696207B2 (en) Method of enhancing contrast in prism coupling measurements of stress
CN101142474A (en) Optical reader system and method that uses non-coherent illumination and angular filtering to interrogate a label indepenedent biosensor
Xue et al. Investigation of a D-shaped plastic optical fiber assisted by a long period grating for refractive index sensing
US10145789B2 (en) Immersion refractometer
JP3631221B2 (en) Fiber spectroscopic detector and manufacturing method thereof
JP2006112808A (en) Surface plasmon sensor
JP7117869B2 (en) Analysis equipment
CN209310742U (en) A kind of gradual change multimode fibre fluorescent effect micro-displacement sensor
Al Mamun et al. Double clad fiber improves the performance of a single-ended optical fiber sensor
JP2006105670A (en) Surface plasmon resonance sensor probe and manufacturing method therefor
JP2006170709A (en) Sensor head connection method for optical fiber sensor system and its device
RU2626299C1 (en) Device for registration of optical parameters of liquid analyte
JP2008203216A (en) Biosensor
Tai et al. Sensitive handheld refractometer by using combination of a tapered fiber tip and a multimode fiber
Beam et al. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films
JP2006125920A (en) Optical fiber type sensor head and measuring apparatus using it
Resonators et al. Check for updates
Ren Specially Shaped Optical Fiber Probes: Understanding and Their Applications in Integrated Photonics, Sensing, and Microfluidics
Němeček Metody detekce analytů založené na speciálních optických vláknech

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees