JP3630935B2 - Defect correction method for halftone phase shift mask - Google Patents

Defect correction method for halftone phase shift mask Download PDF

Info

Publication number
JP3630935B2
JP3630935B2 JP23658597A JP23658597A JP3630935B2 JP 3630935 B2 JP3630935 B2 JP 3630935B2 JP 23658597 A JP23658597 A JP 23658597A JP 23658597 A JP23658597 A JP 23658597A JP 3630935 B2 JP3630935 B2 JP 3630935B2
Authority
JP
Japan
Prior art keywords
film
phase shift
shift mask
defect
halftone phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23658597A
Other languages
Japanese (ja)
Other versions
JPH1165091A (en
Inventor
秀喜 須田
淳一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP23658597A priority Critical patent/JP3630935B2/en
Publication of JPH1165091A publication Critical patent/JPH1165091A/en
Application granted granted Critical
Publication of JP3630935B2 publication Critical patent/JP3630935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、位相シフトリソグラフィーに用いられる位相シフトマスクの欠陥修正方法に関し、特に、ハーフトーン型の位相シフトマスクの欠陥修正方法に関する。
【0002】
【従来の技術】
半導体LSIなどの製造において微細パターンを投影露光装置にて転写する際に用いられるフォトマスクの一つとして位相シフトマスクが用いられる。この位相シフトマスクは、マスクを透過する露光光間に位相差を与えることにより、転写パターンの解像度を向上できるようにしたものである。この位相シフトマスクの一つに、特に、孤立したホールやライン&スペースパターンを転写するのに適したマスクにして特開平4−136854号公報に記載の位相シフトマスクが知られている。
【0003】
この位相シフトマスクは、透明基板上に実質的に露光に寄与しない強度の光を透過させると同時に通過する光の位相をシフトさせる半透光膜(ハーフトーン位相シフト膜)を形成し、この半透光膜の一部を選択的に除去して半透光膜パターンを形成することにより、実質的に露光に寄与する強度の光を透過させる透光部(透明基板露出部)と、実質的に露光に寄与しない強度の光を透過させる半透光部とで構成されるマスクパターンを形成したものである。この位相シフトマスクは、半透光部を通過する光の位相をシフトさせて、この半透光部を通過した光の位相が上記透光部を通過した光の位相に対して実質的に反転する関係になるようにすることによって、前記半透光部と透光部との境界近傍を通過して回折により回り込んだ光が互いに打ち消しあうようにして境界部のコントラストを良好に保持できるようにしたものであり、通称、ハーフトーン型位相シフトマスクと称されている。
この位相シフトマスクにおいては露光光の波長をλ、半透光膜の露光光に対する屈折率をnとしたとき、半透光膜の膜厚tの値が
t=λ/{2(n−1)}
を満たす値に一般的に設定され、また、露光光の波長における半透光膜の透過率が1〜50%程度になるように設定されるのが普通である。
【0004】
上述のようにハーフトーン型位相シフトマスクは、半透光部によって露光光の位相をシフトさせる位相シフト機能と露光光を実質的に遮断する遮光機能との二つの機能を兼ねさせたものである。すなわち、この半透光部を、パターンの境界部においては位相シフト層として機能させ、それ以外の部分では遮光層として機能させている。したがって、本来は完全に露光光を遮断するのが理想的である部分にもわずかな漏れ光が生じている。通常はこの漏れ光があっても実質的な露光とまで至らないように、全体の露光量を調整する。
【0005】
このようなハーフトーン型位相シフトマスクにおいては、通常のフォトマスクよりも高精度化が要求され、欠陥の修正部分の光学特性等の精度についても例外でない。
通常、フォトマスクで発生する欠落欠陥については、集束イオンビーム(FIB)を用いて、ピレン等の蒸気をGaイオンにより解離、励起させてカーボン膜を欠落欠陥に堆積させることにより修正している。これに対し、ハーフトーン型位相シフトマスクにおける欠落欠陥の修正は、例えば、特開平7−146544号公報に開示されているように、欠落欠陥部分に成膜する膜材料の光学特性を半透光膜とほぼ同じとし、具体的には、位相差を120〜240°、透過率を5〜15%としている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記特開平7−146544号公報に記載の欠陥修正方法では、欠落欠陥部分に半透光膜とほぼ同じ材質の膜を成膜する手段としてリフトオフ法等を採用しているが、このリフトオフ法は工程が複雑で実用上は細かい制御が難しいものである。なお、同公報では膜質や膜厚と光学特性との関係については考慮されていない。
【0007】
これらのことを考慮すると、ハーフトーン型位相シフトマスクにおける欠落欠陥の修正は、従来から一般的に利用されている欠落欠陥部分にFIBによりカーボン膜を堆積させる方法で修正できることが望ましく、かつ、欠落欠陥部分に堆積される修正膜の性質が極力、半透光膜の光学特性と合致していることが望ましい。
【0008】
本発明は上述した背景の下になされたものであり、FIB装置を用いた比較的単純な方法で、半透光膜と同等又はそれに近い光学特性の修正膜を欠落欠陥部に堆積して修正できるハーフトーン型位相シフトマスクの欠陥修正方法の提供を目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明のハーフトーン型位相シフトマスクの欠陥修正方法は、以下の構成としてある。
【0010】
(構成1)透明基板上に少なくとも半透光膜パターンを有するハーフトーン型位相シフトマスクの欠落欠陥に膜材料を供給しながらイオンビームを照射して前記膜材料又はその反応物からなる修正膜を堆積させることにより半透光膜パターンの欠落欠陥を修正するハーフトーン型位相シフトマスクの欠陥修正方法において、予め堆積させる修正膜の膜厚に対する光透過率と位相差との関係を把握した後、これらの関係に基づいて光透過率と位相差が前記半透光膜と実質的に同一である修正膜を堆積させることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
【0011】
(構成2)構成1記載のハーフトーン型位相シフトマスクの欠陥修正方法において、前記堆積させる修正膜が、単層膜であることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
【0012】
(構成3)構成1又は2記載のハーフトーン型位相シフトマスクの製造方法の欠陥修正方法において、集束イオンビーム装置に搭載したアパーチャーの径、及び堆積させる修正膜の膜厚を変化させることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
【0013】
(構成4)構成1乃至3記載のハーフトーン型位相シフトマスクの製造方法の欠陥修正方法において、前記堆積させる修正膜が、カーボン系の膜であることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
【0014】
(構成5)透明基板上に少なくとも半透光膜パターンを有するハーフトーン型位相シフトマスクの欠落欠陥に膜材料を供給しながらイオンビームを照射して前記膜材料又はその反応物からなる修正膜を堆積させることにより半透光膜パターンの欠落欠陥を修正するハーフトーン型位相シフトマスクの欠陥修正方法において、前記堆積させる修正膜が、前記半透光膜の光透過率と位相差と実質的に同一である単層膜であることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
【0015】
(構成6)透明基板上に少なくとも半透光膜パターンを有するハーフトーン型位相シフトマスクの欠落欠陥に膜材料を供給しながらイオンビームを照射して前記膜材料又はその反応物からなる修正膜を堆積させることにより半透光膜パターンの欠落欠陥を修正するハーフトーン型位相シフトマスクの欠陥修正方法において、前記修正膜における特定反応条件毎の膜厚に対する光透過率と位相差との相関関係を予め求め、前記修正膜の光透過率と位相差が前記半透光膜の光透過率と位相差と実質的に同一になるように前記反応条件を選択して修正膜を堆積させることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
【0016】
【作用】
本発明では、ハーフトーン型位相シフトマスクにおける欠落欠陥部分にFIBによりカーボン膜等を堆積させる方法を採用し、かつ、欠落欠陥部分に堆積される修正膜の性質を半透光膜の光学特性に近づけることで、効率よく欠陥修正が行えるとともに、欠陥の修正部分の光学精度が高く、結果として高精度にウエハへのパターン転写が行えるハーフトーン型位相シフトマスクを得ることができる。
【0017】
以下、本発明を詳細に説明する。
【0018】
図1に集束イオンビーム(FIB)装置の概略図を示す。FIB装置では、透明基板上に少なくとも半透光膜パターンを有するハーフトーン型位相シフトマスク1の欠落欠陥に、ノズル11から膜材料を供給しながらイオンビーム12を照射して、前記膜材料又はその反応物からなる修正膜を堆積させることにより半透光膜パターンの欠落欠陥を修正する。
【0019】
図2にFIB装置で堆積させた露光波長i線(365nm)におけるカーボン膜の特性を示す。図3にFIB装置で堆積させた露光波長g線(436nm)におけるカーボン膜の特性を示す。
【0020】
本発明では、予め堆積させる膜材料の膜厚に対する光透過率と位相差との関係を把握した後、これらの関係に基づいて光透過率と位相差が半透光膜と実質的に同一である修正膜を堆積させる。具体的には、例えば、図2及び図3に示すように、FIB装置のアパーチャーの径を変えることによって、修正膜の光学特性を制御して、膜厚と透過率、位相差との関係を変化させる。つまり、図2及び図3に示すように、アパーチャーの径を変えない場合、膜厚に応じた透過率、位相差が一義的にしか得られない(一組の関係曲線しか得られない)が、本発明では、アパーチャーの径を変えることで得られる複数の関係曲線のうちから最適なものを選択し(180°の位相差を有し、かつ、半透光膜により近い透過率が得られる関係曲線を選択し)かつ修正膜の膜厚を厳密に制御することで、修正膜の光学特性を半透光膜の光学特性に一致させるかあるいは近づけることができる。アパーチャーの径を変えることによって修正膜の光学特性を変えることができるのは、イオン源から照射されるイオンビーム中のGaイオンの量、言い換えれば単位時間当たりのエネルギー量がアパーチャー径の大きさによって制御されることによって、堆積される修正膜(カーボン膜等)の組成に影響を与え屈折率が変化するからであると考えられる。
【0021】
なお、本発明は、FIBによる修正膜をハーフトーン膜の特性に合わせるものであるから、ハーフトーン膜を構成する膜材料にかかわらず利用できる。また、マスクの非転写領域等に遮光膜を形成するタイプのハーフトーン型位相シフトマスクのにおける遮光膜の欠陥修正も同一装置で同時に行うことが可能である。
カーボン修正膜の場合、180°の位相差を有しかつ透過率が1〜50%の範囲でFIBによる修正膜をハーフトーン膜の特性に合わせることが可能である。
【0022】
カーボン修正膜をFIBで形成する際の原料ガスとしては、例えば、ピレン、スチレン、メタクリル酸メチル、2,4,4−トリメチル−1−ペンテン、イソプレン等の炭化水素系ガス単独、又はこれらの炭化水素系ガスと水素との混合ガス等を使用できる。
【0023】
カーボン系以外のFIB修正膜としては、W(タングステン)、Mo(モリブデン)、Cr(クロム)などが挙げられる。タングステン修正膜の原料ガスとしては、WF、W(CO)、WCl等が、モリブデン修正膜の原料ガスとしては、MoF、Mo(CO)、MoCl等が、クロム修正膜の原料ガスとしては、Cr(Cなどが挙げられる。
【0024】
膜質の制御は、アパーチャーの径を変えること以外に、FIB装置のイオン電流を変えるか、供給ガス圧力を変えることなどによっても可能である。
【0025】
なお、本発明では、FIBによる単層膜で、光透過率と位相差が半透光膜と実質的に同一である修正膜が形成できるので、修正が容易である。
ここで、「実質的に同一である」とは、半透光膜の光学特性が実質的に変わらないことを言い、具体的には、光透過率では、半透光膜の光透過率の±2%以内、好ましくは±1%以内、より好ましくは±0.5%以内の範囲におさまることを言い、位相差では、半透光膜の位相差の±20°以内、好ましくは±10°以内、より好ましくは±5°以内の範囲におさまることを言う。
【0026】
【実施例】
以下、実施例にもとづき本発明を詳細に説明する。
【0027】
実施例1
図4〜図5は本発明の一実施例にかかるハーフトーン型位相シフトマスクの欠落欠陥の修正方法を説明するための図である。
【0028】
図4(a)及び(b)は、透明基板2上に形成したモリブデンシリサイドの窒化膜(MoSiN膜)からなる半透光膜(ハーフトーン膜)3をパターニングして得られたハーフトーン型位相シフトマスク1の平面図及びA−A線矢視断面図である。このマスクは、スパッタリング法により透明基板上に成膜されたMoSiN膜上に、電子線レジストを塗布し電子線描画装置を用いて描画した後、レジストを現像し、レジストパターンをマスクにしてMoSiN膜をエッチングによりパターニングして得られたものであるが、これらの製造工程において何らかの理由により生じた欠落欠陥4を有するものであった。なお、マスク作製後に上記マスクの光学特性を測定した結果、露光波長g線(436nm)において位相差180°、透過率4.0%であった。
【0029】
次に、予め条件出しして求めた図3に基づき、FIB装置のアパーチャー径を50μmとし、膜厚を厳密に制御して、1620オングストロームの膜厚でカーボン膜5を堆積させて欠落欠陥を修正した(図5(a)及び(b))。カーボン膜は露光波長g線(436nm)において位相差180°、透過率は3.8%で4.0%に近かった。
【0030】
上記欠落欠陥修正後のマスクを用いてウエハ上への転写を行ったが、修正部分に起因する異常は見られず、本発明による修正部分の光学特性の制御が高精度であることが確認された。
【0031】
実施例2
透明基板上に形成したモリブデンシリサイドの窒化膜(MoSiN膜)からなる半透光膜をパターニングして得られたハーフトーン型位相シフトマスクを作製した。このマスクは、スパッタリング法により透明基板上に成膜されたMoSiN膜上に、電子線レジストを塗布し電子線描画装置を用いて描画した後、レジストを現像し、レジストパターンをマスクにしてMoSiN膜をエッチングによりパターニングして得られたものであるが、これらの製造工程において何らかの理由により生じた欠落欠陥を有するものであった。なお、マスク作製後に上記マスクの光学特性を測定した結果、露光波長i線(365nm)において位相差180°、透過率2.0%であった。
【0032】
次に、予め条件出しして求めた図2に基づき、FIB装置のアパーチャー径を80μmとし、膜厚を厳密に制御して、1400オングストロームの膜厚でカーボン膜を堆積させて欠落欠陥を修正した。カーボン膜は露光波長i線(365nm)において位相差180°、透過率は1.8%で2.0%に近かった。
【0033】
上記欠落欠陥修正後のマスクを用いてウエハ上への転写を行ったが、修正部分に起因する異常は見られず、本発明による修正が高精度であることが確認された。
【0034】
以上好ましい実施例をあげて本発明を説明したが、本発明は上記実施例に限定されるものではない。
【0035】
例えば、半透光膜は、モリブデン、シリコン、窒素からなるものに限定されず、例えば、モリブデンとシリコンと酸素、モリブデンとシリコンと酸素と窒素とからなる半透光膜や、タングステン、チタン、タンタル、クロムから選ばれる金属とシリコンと酸素及び/又は窒素とからなる半透光膜であってもよい。
【0036】
また、半透光膜の他に遮光膜を形成するタイプのハーフトーン型位相シフトマスクにおいては、遮光膜の欠陥修正も同一装置で同時に行うことが可能である。この場合の遮光膜としては、例えば、クロムや、酸素、窒素、炭素のうちより選ばれた少なくとも一種とクロムとを含む材料や、アルミニウム、チタン、タングステン、モリブデンシリサイド(MoSi)等の膜や、あるいはこれらに酸素、窒素、炭素のうちより選ばれた少なくとも一種を含ませた材料からなるものが挙げられる。
【0037】
さらに、エッジにかかる欠落欠陥の他に、ピンホール等の欠落欠陥の修正にも利用できる。
【0038】
【発明の効果】
以上説明したように本発明のハーフトーン型位相シフトマスクの欠陥修正方法によれば、FIB装置を用いた比較的単純な方法で、半透光膜と同等又はそれに近い光学特性の修正膜を欠落欠陥部に堆積して修正できるため、結果として実際のウエハ転写上は欠陥の影響がなくなり、高品質のハーフトーン型位相シフトマスクを効率よく高歩留まりで得ることができる。
【図面の簡単な説明】
【図1】FIB装置の概略を示す図である。
【図2】FIB装置で堆積させた露光波長i線(365nm)におけるカーボン膜の特性を示す図である。
【図3】FIB装置で堆積させた露光波長g線(436nm)におけるカーボン膜の特性を示す図である。
【図4】本発明の一実施例にかかるハーフトーン型位相シフトマスクの欠落欠陥の修正方法を説明するための図であり、(a)は平面図、(b)は(a)のA−A線矢視断面図である。
【図5】本発明の一実施例にかかるハーフトーン型位相シフトマスクの欠落欠陥の修正方法を説明するための図であり、(a)は平面図、(b)は(a)のB−B線矢視断面図である。
【符号の説明】
1 ハーフトーン型位相シフトマスク
2 透明基板
3 半透光膜(ハーフトーン膜)
4 欠落欠陥
5 カーボン膜
11 ノズル
12 集束イオンビーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a defect correction method for a phase shift mask used in phase shift lithography, and more particularly to a defect correction method for a halftone phase shift mask.
[0002]
[Prior art]
A phase shift mask is used as one of photomasks used when a fine pattern is transferred by a projection exposure apparatus in the manufacture of a semiconductor LSI or the like. This phase shift mask can improve the resolution of the transfer pattern by providing a phase difference between the exposure light passing through the mask. As one of the phase shift masks, a phase shift mask described in Japanese Patent Laid-Open No. 4-136854 is known as a mask particularly suitable for transferring isolated hole and line & space patterns.
[0003]
This phase shift mask forms a semi-transparent film (half-tone phase shift film) on the transparent substrate, which transmits light of an intensity that does not substantially contribute to exposure and simultaneously shifts the phase of the light passing therethrough. By selectively removing a part of the light-transmitting film and forming a semi-light-transmitting film pattern, a light-transmitting portion (transparent substrate exposed portion) that transmits light having an intensity that substantially contributes to exposure, and substantially And a semi-transparent portion that transmits light having an intensity that does not contribute to exposure. This phase shift mask shifts the phase of the light passing through the semi-translucent portion, so that the phase of the light passing through the semi-transparent portion is substantially inverted with respect to the phase of the light passing through the translucent portion. Thus, the contrast of the boundary portion can be satisfactorily maintained so that the light passing through the vicinity of the boundary between the semi-translucent portion and the translucent portion cancels each other and cancels each other. This is commonly referred to as a halftone phase shift mask.
In this phase shift mask, when the wavelength of the exposure light is λ and the refractive index of the semi-transparent film with respect to the exposure light is n, the thickness t of the semi-transparent film is t = λ / {2 (n−1). )}
Generally, it is set to a value satisfying the above, and the transmittance of the semi-transparent film at the wavelength of the exposure light is usually set to about 1 to 50%.
[0004]
As described above, the halftone phase shift mask has two functions of a phase shift function for shifting the phase of the exposure light by the semi-transparent portion and a light shielding function for substantially blocking the exposure light. . That is, this semi-transparent portion functions as a phase shift layer at the boundary portion of the pattern, and functions as a light shielding layer at other portions. Therefore, a slight amount of light leaks even in a portion where it is ideal to completely block exposure light. Normally, the entire exposure amount is adjusted so that the substantial exposure is not reached even if this leakage light is present.
[0005]
Such a halftone phase shift mask requires higher accuracy than a normal photomask, and the accuracy of optical characteristics and the like of a defect-corrected portion is no exception.
Normally, missing defects generated in a photomask are corrected by using a focused ion beam (FIB) to dissociate and excite vapor such as pyrene by Ga ions to deposit a carbon film on the missing defects. On the other hand, the defect defect correction in the halftone phase shift mask is performed, for example, as disclosed in Japanese Patent Laid-Open No. 7-146544. It is almost the same as the film. Specifically, the phase difference is 120 to 240 ° and the transmittance is 5 to 15%.
[0006]
[Problems to be solved by the invention]
However, in the defect correction method described in the above-mentioned Japanese Patent Application Laid-Open No. 7-146544, a lift-off method or the like is adopted as a means for forming a film of substantially the same material as the semi-transparent film on the missing defect portion. The method is complicated and difficult to control in practice. The publication does not consider the relationship between the film quality and film thickness and the optical characteristics.
[0007]
Considering these, it is desirable that the defect defect correction in the halftone phase shift mask can be corrected by a method of depositing a carbon film by FIB on the defect defect part generally used in the past. It is desirable that the property of the correction film deposited on the defective portion matches the optical characteristics of the semi-transparent film as much as possible.
[0008]
The present invention has been made under the background described above, and a correction film having an optical property equivalent to or close to that of a semi-transparent film is deposited on a defect defect portion by a relatively simple method using an FIB apparatus. An object of the present invention is to provide a defect correction method for a halftone phase shift mask that can be used.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a defect correcting method for a halftone phase shift mask according to the present invention has the following configuration.
[0010]
(Configuration 1) A correction film made of the film material or a reaction product thereof is irradiated with an ion beam while supplying the film material to a missing defect of a halftone phase shift mask having at least a semi-transparent film pattern on a transparent substrate. In the defect correction method of the halftone phase shift mask that corrects the missing defect of the semi-transparent film pattern by depositing, after grasping the relationship between the light transmittance and the phase difference with respect to the thickness of the correction film to be deposited in advance, A defect correction method for a halftone phase shift mask, comprising depositing a correction film having a light transmittance and a phase difference substantially the same as those of the semi-transparent film based on these relationships.
[0011]
(Configuration 2) A defect correction method for a halftone phase shift mask according to Configuration 1, wherein the correction film to be deposited is a single layer film.
[0012]
(Configuration 3) In the defect correction method of the halftone phase shift mask manufacturing method according to Configuration 1 or 2, the diameter of the aperture mounted on the focused ion beam apparatus and the thickness of the correction film to be deposited are changed. A defect correction method for a halftone phase shift mask.
[0013]
(Structure 4) In the defect correcting method of the halftone phase shift mask manufacturing method according to structures 1 to 3, the correction film to be deposited is a carbon-based film. Defect correction method.
[0014]
(Configuration 5) A correction film made of the film material or a reaction product thereof is irradiated with an ion beam while supplying the film material to the missing defect of the halftone phase shift mask having at least a semi-transparent film pattern on the transparent substrate. In the defect correcting method of a halftone phase shift mask for correcting a defect defect of a semi-transparent film pattern by depositing, the correction film to be deposited substantially includes a light transmittance and a phase difference of the semi-transparent film. A defect correcting method for a halftone phase shift mask, characterized by being a single layer film that is the same.
[0015]
(Configuration 6) A correction film made of the film material or a reaction product thereof is irradiated with an ion beam while supplying the film material to the missing defect of the halftone phase shift mask having at least a semi-transparent film pattern on the transparent substrate. In a defect correction method for a halftone phase shift mask that corrects a missing defect of a semi-transparent film pattern by depositing, a correlation between a light transmittance and a phase difference with respect to a film thickness for each specific reaction condition in the correction film. The correction film is deposited by selecting the reaction conditions in advance so that the light transmittance and the phase difference of the correction film are substantially the same as the light transmittance and the phase difference of the semi-transparent film. A defect correction method for a halftone phase shift mask.
[0016]
[Action]
In the present invention, a method of depositing a carbon film or the like on the missing defect portion of the halftone phase shift mask by FIB is adopted, and the property of the correction film deposited on the missing defect portion is changed to the optical characteristic of the semi-transparent film. By bringing them closer, it is possible to obtain a halftone phase shift mask capable of efficiently correcting a defect and having high optical accuracy of a defect-corrected portion, and as a result, capable of transferring a pattern onto a wafer with high accuracy.
[0017]
Hereinafter, the present invention will be described in detail.
[0018]
FIG. 1 shows a schematic diagram of a focused ion beam (FIB) apparatus. In the FIB apparatus, the missing defect of the halftone phase shift mask 1 having at least a semi-transparent film pattern on a transparent substrate is irradiated with an ion beam 12 while supplying the film material from the nozzle 11, and the film material or its The defect defect of the semi-transparent film pattern is corrected by depositing a correction film made of a reactant.
[0019]
FIG. 2 shows the characteristics of the carbon film at the exposure wavelength i line (365 nm) deposited by the FIB apparatus. FIG. 3 shows the characteristics of the carbon film at the exposure wavelength g-line (436 nm) deposited by the FIB apparatus.
[0020]
In the present invention, after grasping the relationship between the light transmittance and the phase difference with respect to the film thickness of the film material to be deposited in advance, the light transmittance and the phase difference are substantially the same as the semi-transparent film based on these relationships. A correction film is deposited. Specifically, for example, as shown in FIG. 2 and FIG. 3, the optical characteristics of the correction film are controlled by changing the diameter of the aperture of the FIB apparatus, and the relationship between the film thickness, the transmittance, and the phase difference is controlled. Change. That is, as shown in FIG. 2 and FIG. 3, when the aperture diameter is not changed, the transmittance and phase difference corresponding to the film thickness can be obtained only uniquely (only a set of relational curves can be obtained). In the present invention, an optimum curve is selected from a plurality of relational curves obtained by changing the diameter of the aperture (having a phase difference of 180 ° and a transmittance closer to that of the semi-transparent film) By selecting the relationship curve) and strictly controlling the thickness of the correction film, the optical characteristics of the correction film can be matched or brought close to those of the semi-transparent film. The optical characteristics of the correction film can be changed by changing the aperture diameter because the amount of Ga ions in the ion beam irradiated from the ion source, in other words, the amount of energy per unit time depends on the size of the aperture diameter. This is considered to be because the refractive index changes by affecting the composition of the correction film (carbon film or the like) deposited by being controlled.
[0021]
In the present invention, the FIB correction film is matched with the characteristics of the halftone film, and therefore can be used regardless of the film material constituting the halftone film. Further, the defect correction of the light shielding film in the halftone phase shift mask of the type in which the light shielding film is formed in the non-transfer area of the mask can be performed simultaneously with the same apparatus.
In the case of the carbon correction film, it is possible to match the correction film by FIB to the characteristics of the halftone film within a range of 180 ° phase difference and transmittance of 1 to 50%.
[0022]
Examples of the raw material gas for forming the carbon correction film by FIB include hydrocarbon gases such as pyrene, styrene, methyl methacrylate, 2,4,4-trimethyl-1-pentene, and isoprene, or carbonization thereof. A mixed gas of hydrogen-based gas and hydrogen can be used.
[0023]
Examples of FIB correction films other than carbon-based films include W (tungsten), Mo (molybdenum), and Cr (chromium). The source gas for the tungsten correction film is WF 6 , W (CO) 6 , WCl 6, etc., and the source gas for the molybdenum correction film is MoF 6 , Mo (CO) 6 , MoCl 5, etc. Examples of the source gas include Cr (C 6 H 6 ) 2 .
[0024]
In addition to changing the aperture diameter, the film quality can be controlled by changing the ion current of the FIB apparatus or changing the supply gas pressure.
[0025]
In the present invention, a correction film having a light transmittance and a phase difference substantially the same as that of the semi-transparent film can be formed with a single layer film by FIB, and thus correction is easy.
Here, “substantially the same” means that the optical characteristics of the semi-transparent film are not substantially changed. Specifically, in terms of the light transmittance, the light transmittance of the semi-transparent film is the same. The phase difference is within ± 2%, preferably within ± 1%, more preferably within ± 0.5%. The phase difference is within ± 20 ° of the phase difference of the semi-transparent film, preferably ± 10. It means that it falls within the range of °, more preferably within ± 5 °.
[0026]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0027]
Example 1
4 to 5 are views for explaining a method for correcting a defect defect in a halftone phase shift mask according to an embodiment of the present invention.
[0028]
FIGS. 4A and 4B show a halftone phase obtained by patterning a semi-transparent film (halftone film) 3 made of a molybdenum silicide nitride film (MoSiN film) formed on the transparent substrate 2. It is the top view of the shift mask 1, and AA arrow sectional drawing. This mask is formed by applying an electron beam resist on a MoSiN film formed on a transparent substrate by sputtering and drawing using an electron beam drawing apparatus, developing the resist, and using the resist pattern as a mask, the MoSiN film Was obtained by patterning by etching, but had a missing defect 4 generated for some reason in these manufacturing processes. As a result of measuring the optical characteristics of the mask after manufacturing the mask, the phase difference was 180 ° and the transmittance was 4.0% at the exposure wavelength g-line (436 nm).
[0029]
Next, based on FIG. 3 obtained by preconditioning, the aperture diameter of the FIB apparatus is set to 50 μm, the film thickness is strictly controlled, and the carbon film 5 is deposited with a film thickness of 1620 Å to correct the missing defect. (FIGS. 5A and 5B). The carbon film had a phase difference of 180 ° at the exposure wavelength g-line (436 nm) and a transmittance of 3.8%, which was close to 4.0%.
[0030]
Although transfer onto the wafer was performed using the mask after correcting the missing defect, no abnormality due to the corrected portion was observed, and it was confirmed that the control of the optical characteristics of the corrected portion according to the present invention was highly accurate. It was.
[0031]
Example 2
A halftone phase shift mask obtained by patterning a semi-transparent film made of a molybdenum silicide nitride film (MoSiN film) formed on a transparent substrate was produced. This mask is formed by applying an electron beam resist on a MoSiN film formed on a transparent substrate by sputtering and drawing using an electron beam drawing apparatus, developing the resist, and using the resist pattern as a mask, the MoSiN film Was obtained by patterning by etching, but had missing defects caused for some reason in these manufacturing processes. As a result of measuring the optical characteristics of the mask after manufacturing the mask, the phase difference was 180 ° and the transmittance was 2.0% at the exposure wavelength i-line (365 nm).
[0032]
Next, based on FIG. 2 obtained by preconditioning, the aperture diameter of the FIB apparatus was set to 80 μm, the film thickness was strictly controlled, and a carbon film was deposited with a film thickness of 1400 Å to correct the missing defect. . The carbon film had a phase difference of 180 ° at an exposure wavelength i-line (365 nm) and a transmittance of 1.8%, which was close to 2.0%.
[0033]
Although the transfer onto the wafer was performed using the mask after correcting the missing defect, no abnormality due to the corrected portion was observed, and it was confirmed that the correction according to the present invention was highly accurate.
[0034]
Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above embodiments.
[0035]
For example, the semi-transparent film is not limited to those made of molybdenum, silicon, and nitrogen. For example, the semi-transparent film made of molybdenum, silicon, and oxygen, molybdenum, silicon, oxygen, and nitrogen, tungsten, titanium, and tantalum. A semi-transparent film made of a metal selected from chromium, silicon, oxygen, and / or nitrogen may be used.
[0036]
In addition, in a halftone phase shift mask of a type in which a light shielding film is formed in addition to a semi-transparent film, it is possible to simultaneously correct defects in the light shielding film with the same apparatus. As the light shielding film in this case, for example, a material containing at least one selected from chromium, oxygen, nitrogen, and carbon and chromium, a film of aluminum, titanium, tungsten, molybdenum silicide (MoSi), Or what consists of the material which included at least 1 type chosen from oxygen, nitrogen, and carbon in these is mentioned.
[0037]
Furthermore, in addition to the missing defect on the edge, it can be used to correct a missing defect such as a pinhole.
[0038]
【The invention's effect】
As described above, according to the defect correction method for a halftone phase shift mask of the present invention, a correction film having optical characteristics equivalent to or close to that of a semi-transparent film is missing by a relatively simple method using an FIB apparatus. Since the defect can be deposited and corrected, as a result, the influence of the defect is eliminated on the actual wafer transfer, and a high-quality halftone phase shift mask can be obtained efficiently and with a high yield.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an FIB apparatus.
FIG. 2 is a diagram showing characteristics of a carbon film at an exposure wavelength i line (365 nm) deposited by an FIB apparatus.
FIG. 3 is a view showing characteristics of a carbon film at an exposure wavelength g-line (436 nm) deposited by an FIB apparatus.
4A and 4B are diagrams for explaining a method for correcting a defect defect in a halftone phase shift mask according to an embodiment of the present invention, in which FIG. 4A is a plan view, and FIG. It is A line arrow sectional drawing.
FIGS. 5A and 5B are diagrams for explaining a method for correcting a defect defect in a halftone phase shift mask according to an embodiment of the present invention, where FIG. 5A is a plan view, and FIG. It is B line arrow sectional drawing.
[Explanation of symbols]
1 Halftone phase shift mask 2 Transparent substrate 3 Translucent film (halftone film)
4 Missing defect 5 Carbon film 11 Nozzle 12 Focused ion beam

Claims (3)

透明基板上に少なくとも半透光膜パターンを有するハーフトーン型位相シフトマスクの欠落欠陥に、集束イオンビーム装置を用いて膜材料を供給しながらイオンビームを照射して前記膜材料又はその反応物からなる修正膜を堆積させることにより半透光膜パターンの欠落欠陥を修正するハーフトーン型位相シフトマスクの欠陥修正方法において、
予め堆積させる修正膜の膜厚に対する光透過率と位相差との関係を、前記集束イオンビーム装置の異なるアパーチャーの径に対してそれぞれ把握した後、これらの関係に基づいて光透過率と位相差が前記半透光膜と実質的に同一となるような集束イオンビーム装置のアパーチャー径及び膜厚を選択し、前記選択したアパーチャー径及び膜厚にて修正膜を堆積することを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
The missing defect of the halftone phase shift mask having at least a semi-transparent film pattern on a transparent substrate is irradiated with an ion beam while supplying the film material using a focused ion beam apparatus, and the film material or its reaction product is irradiated. In a defect correction method for a halftone phase shift mask for correcting a missing defect in a semi-transparent film pattern by depositing a correction film,
In advance , the relationship between the light transmittance and the phase difference with respect to the thickness of the correction film to be deposited is grasped with respect to the diameters of the different apertures of the focused ion beam device, and then the light transmittance and the level are determined based on these relationships. The aperture diameter and film thickness of the focused ion beam apparatus are selected so that the phase difference is substantially the same as that of the semi-transparent film, and the correction film is deposited with the selected aperture diameter and film thickness. Defect correction method for halftone phase shift mask.
請求項1記載のハーフトーン型位相シフトマスクの欠陥修正方法において、
前記堆積させる修正膜が、単層膜であることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
The defect correction method for a halftone phase shift mask according to claim 1,
A defect correction method for a halftone phase shift mask, wherein the correction film to be deposited is a single layer film.
請求項1又は2記載のハーフトーン型位相シフトマスクの欠陥修正方法において、
前記堆積させる修正膜が、カーボン系の膜であることを特徴とするハーフトーン型位相シフトマスクの欠陥修正方法。
The defect correction method for a halftone phase shift mask according to claim 1 or 2 ,
A defect correction method for a halftone phase shift mask, wherein the correction film to be deposited is a carbon-based film.
JP23658597A 1997-08-18 1997-08-18 Defect correction method for halftone phase shift mask Expired - Fee Related JP3630935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23658597A JP3630935B2 (en) 1997-08-18 1997-08-18 Defect correction method for halftone phase shift mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23658597A JP3630935B2 (en) 1997-08-18 1997-08-18 Defect correction method for halftone phase shift mask

Publications (2)

Publication Number Publication Date
JPH1165091A JPH1165091A (en) 1999-03-05
JP3630935B2 true JP3630935B2 (en) 2005-03-23

Family

ID=17002823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23658597A Expired - Fee Related JP3630935B2 (en) 1997-08-18 1997-08-18 Defect correction method for halftone phase shift mask

Country Status (1)

Country Link
JP (1) JP3630935B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434494B1 (en) * 2001-10-23 2004-06-05 삼성전자주식회사 Method for reparing the phase shift mask pattern and phase shift mask repaired by the same method
JP5036349B2 (en) * 2007-02-28 2012-09-26 Hoya株式会社 Gray-tone mask defect correcting method and gray-tone mask manufacturing method
JP5102912B2 (en) * 2007-03-31 2012-12-19 Hoya株式会社 Gray-tone mask defect correcting method, gray-tone mask manufacturing method, and pattern transfer method
JP5057866B2 (en) * 2007-07-03 2012-10-24 Hoya株式会社 Gray-tone mask defect correcting method, gray-tone mask manufacturing method, gray-tone mask, and pattern transfer method
JP2009020312A (en) * 2007-07-12 2009-01-29 Hoya Corp Method for correcting defect in gray tone mask, method for manufacturing gray tone mask, gray tone mask, and method for transferring pattern
TWI440964B (en) * 2009-01-27 2014-06-11 Hoya Corp Multitone photomask, method of manufacturing the multitone photomask, and pattern transfer method
JP2011227209A (en) * 2010-04-16 2011-11-10 Cowin Dst Co Ltd Repair method and repair system for half tone mask
JP7449187B2 (en) 2020-07-20 2024-03-13 Hoya株式会社 Method for manufacturing phase shift mask, phase shift mask, and display device manufacturing method

Also Published As

Publication number Publication date
JPH1165091A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US7351505B2 (en) Phase shift mask blank, phase shift mask, and pattern transfer method
JP3339649B2 (en) Method for manufacturing blank for halftone phase shift photomask and method for manufacturing halftone phase shift photomask
US9709885B2 (en) Photomask blank and method for manufacturing photomask blank
TWI393994B (en) Method of correcting a defect in a gray tone mask, method of manufacturing a gray tone mask, gray tone mask, and method of transferring a pattern
US5858582A (en) Phase shift mask and phase shift mask blank
US20040110073A1 (en) Methods of manufacturing photomask blank and photomask
CN114660887A (en) Photomask and method for manufacturing display device
JP2009020312A (en) Method for correcting defect in gray tone mask, method for manufacturing gray tone mask, gray tone mask, and method for transferring pattern
JP3630935B2 (en) Defect correction method for halftone phase shift mask
TW201820025A (en) Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
TW201814394A (en) Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
TWI821669B (en) Method of manufacturing a photomask, photomask, and method of manufacturing a device for a display apparatus
JP2008203373A (en) Halftone blank and method for manufacturing halftone blank
TW201940961A (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device MASK BLANK, PHASE SHIFT MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JPH06301195A (en) Correcting method for phase shift photo-mask
TW201805716A (en) Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
US20100119958A1 (en) Mask blank, mask formed from the blank, and method of forming a mask
JP3630929B2 (en) Method for manufacturing halftone phase shift mask
TWI755683B (en) Method of repairing a photomask, method of manufacturing a photomask, photomask, and method of manufacturing a display device
JP4641086B2 (en) Blank for halftone phase shift photomask, halftone phase shift photomask, and manufacturing method thereof
JPH06138646A (en) Correcting method for phase shift mask
JPH07209849A (en) Halftone phase shift photomask and blank for halftone phase shift photomask
JPH08272074A (en) Halftone phase shift photomask and blank for halftone phase shift photomask
JPH06148870A (en) Method for correcting photomask having phase shift layer
JP2003302747A (en) Correction method for phase shift mask, phase shift mask, pattern transfer method and wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees