JP3630529B2 - Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof - Google Patents

Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof Download PDF

Info

Publication number
JP3630529B2
JP3630529B2 JP18395897A JP18395897A JP3630529B2 JP 3630529 B2 JP3630529 B2 JP 3630529B2 JP 18395897 A JP18395897 A JP 18395897A JP 18395897 A JP18395897 A JP 18395897A JP 3630529 B2 JP3630529 B2 JP 3630529B2
Authority
JP
Japan
Prior art keywords
electrode plate
active material
current collector
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18395897A
Other languages
Japanese (ja)
Other versions
JPH1131503A (en
Inventor
徳昭 佐見津
頼人 大花
浩 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18395897A priority Critical patent/JP3630529B2/en
Publication of JPH1131503A publication Critical patent/JPH1131503A/en
Application granted granted Critical
Publication of JP3630529B2 publication Critical patent/JP3630529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池などの非水電解液二次電池に用いられる電極板の製造方法およびこれによって製造された電極板を用いた非水電解液二次電池に関するものである。
【0002】
【従来の技術】
近年、電子機器の発達に伴い、小型で軽量かつエネルギー密度が高く、さらに繰り返し充放電が可能な二次電池の開発が要望されている。このような二次電池として、正極にLiCoOなどのリチウム含有複酸化物を、負極に炭素材料をそれぞれ用いた円筒形リチウム二次電池が活発に研究開発されている。特に、この種の電池は非水電解液を用いるため、電流特性の観点から、電極板の表面積を大きくするため電極板をシート状に構成している。そしてこのシート状電極板を円筒状電池ケース内に収容率よく収容するため、そのシートを渦巻き状に巻回する構成が多く提案されている。このようなシート状電極板は、金属箔製の集電体の上に活物質粉末が分散した活物質ペーストを厚さ数十〜数百μm均一に塗布し、乾燥した後に、活物質の充填率を上げるため圧延されてなる。この活物質ペーストは、活物質粉末と結着剤などとを水または有機溶媒に配合、混練して得られる。
【0003】
円筒形電池の組立てにおいて、金属集電体の上に厚い活物質層が塗着されたシート状電極板を小さな曲率半径で曲げることになるので、金属集電体と活物質層間に大きなストレスが発生する。ここで、活物質層中の結着剤は、活物質同士を結着すると共に、金属集電体と活物質間を接着する役目を担っている。結着剤としては、一般にペースト状態が安定なポリ四フッ化エチレン樹脂ディスパージョンが用いられるが、金属集電体と活物質間の接着強度をより強くするには、それに代えてスチレンブタジエンゴムなどのゴム系の結着剤を主成分とした方がよいことが判っている。
【0004】
【発明が解決しようとする課題】
しかしながら、本発明者らの検討において、ゴム系の結着剤を主成分とした活物質ペーストでは、金属集電体の上に塗着された活物質ペーストの乾燥速度が適切でないと、金属集電体と活物質層間の接着強度が低下して、金属集電体から活物質層が脱落することがあるということが判った。
【0005】
本発明は、上記問題に鑑み、集電体と活物質層間の接着強度に優れるゴム系の結着剤を用いつつ、その優れた接着強度を安定させることができる非水電解液二次電池の電極板の製造方法およびこれによって製造された電極板を用いた非水電解液二次電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の非水電解液二次電池の電極板の製造方法は、上記目的を達成するため、電極活物質粉末とゴム系結着剤と溶媒40〜70vol%とを混練した活物質ペーストを集電体に塗布した後、前記集電体に塗布された活物質ペーストをその溶媒量が35vol%まで減少するのに要する時間が0.5〜2.5分間となるように水、N−メチルピロリドン、キシレン、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサン、エタノール、メタノール、酢酸メチル、酢酸エチル、酢酸ブチル、塩化メチレン、塩化エチレンから選ばれた1種以上の溶媒の蒸発速度を制御しながら乾燥することを特徴とする。
【0007】
本発明の非水電解液二次電池の電極板の製造方法によれば、溶媒量が40〜70vol%の流動状態(ゾル状態)にある活物質ペーストは、集電体に塗布された後、その溶媒量が35vol%まで減少するのに要する時間が0.5分間以上となるように活物質ペースト層表面からの溶媒の蒸発速度が制限されるので、活物質ペースト層中の溶媒量の均一化が維持されて結着剤の分布の均一化が維持されるし、前記の時間が2.5分間以下となるように活物質ペーストが流動状態にある時間が制限されるので、活物質層中で活物質と結着剤とが重力差などで分離することなく結着剤の分布の均一化が維持される。そして、集電体に塗布された活物質ペーストの溶媒量が35vol%まで減少すると、その活物質ペーストが非流動状態(ゲル状態)になるので、その後の溶媒の蒸発速度の大小に係わらず活物質ペースト層中の結着剤の移動は生じなくなる。従って、活物質層の集電体表面近傍の結着剤の量や分布が均一となるので、集電体と活物質層間の接着強度に優れるゴム系の結着剤を用いつつ、その優れた接着強度を安定させることができる。
【0008】
活物質層が流動状態にある時間が0.5分間より短いと、活物質層中の結着剤が雰囲気側に移動するマイグレーションが発生して、集電体側の結着剤が不足する結果、集電体と活物質層間の接着強度が低下し好ましくなく、前記時間が2.5分間より長いと、活物質層中で活物質と結着剤とが重力差などで徐々に分離して結着剤の分布が不均一になる結果、結着剤が不足した部分の集電体と活物質層間の接着強度が低下し好ましくない。なお、活物質ペーストの当初の溶媒量が40vol%に満たないと、活物質ペーストの流動性が小さすぎて塗布が困難となり好ましくなく、前記溶媒量が70vol%を越えると、流動性が大きすぎて均一な厚さでの塗布が困難となり好ましくない。
【0009】
本発明の非水電解液二次電池は、前記本発明の電極板の製造方法により製造された正極板または負極板を用い、正極板と負極板とがセパレータを介して渦巻き状に巻回されて円筒状の電池ケースに組み込まれていることを特徴とする。
【0010】
本発明の非水電解液二次電池によれば、前記本発明の電極板の製造方法による正極板または負極板は、集電体と活物質層間の接着強度が強く安定しているので、小さな曲率半径で曲げられても、活物質層が剥離することがない。従って、正極板と負極板とを、セパレータを介して渦巻き状に巻回して円筒状の電池ケース内に空間利用効率よく組み込むことができる。また、円筒状電池ケースの中心軸近傍の空間にも電極を配することができるので、特に直径の小さな円筒形の非水電解液二次電池において有用である。
【0011】
【発明の実施の形態】
本発明の実施形態を図面に基づいて以下に説明する。
【0012】
本発明の非水電解液二次電池の電極板の製造方法の一実施形態は、活物質ペーストを得る第1工程と、活物質ペーストを集電体に塗布する第2工程と、集電体に塗布された活物質ペーストをその溶媒量が35vol%以下になるまで乾燥する第3工程と、前記の活物質ペーストをほぼ完全に乾燥する第4工程と、乾燥して得られたものを圧延・裁断して電極板を得る第5工程とからなる。前記の第2〜第4工程は、図1に示す製造装置にて行われる。
【0013】
先ず、製造装置は、図1に示すように、テープ状の集電体12(13)を繰出す繰出し機14と、走行している集電体12(13)を弛まないように支持する4つのローラ15と、走行している集電体12(13)に活物質ペーストを塗布する活物質コーター16と、活物質コーター16の走行方向下流に配され槽内の雰囲気の温度と湿度とを制御する恒温恒湿槽17と、恒温恒湿槽17の走行方向下流に配され集電体12(13)に塗布された活物質ペーストをほぼ完全に乾燥する乾燥炉18と、ほぼ完全に乾燥された集電体12(13)を走行速度可変に巻取る巻取り機19とを備えている。
【0014】
恒温恒湿槽17は、前記第3工程に用いられるもので、集電体12(13)の走行方向長さが500mmある槽内の雰囲気の温度と湿度とを制御することによって、集電体12(13)に塗布された活物質ペーストをその溶媒の蒸発速度を制御しながら乾燥するように構成されている。また、乾燥炉18は、前記第4工程に用いられるもので、加熱ヒータとファンとを内蔵している。
【0015】
第1工程は、正極活物質ペーストおよび負極活物質ペーストそれぞれを得る工程である。
【0016】
正極活物質ペーストは、正極活物質としてLiCoO粉末を55wt%と、導電材としてカーボンブラックを1.5wt%、結着剤としてスチレンブタジエンゴム3.0wt%と、増粘剤としてカルボキシルメチルセルロースを0.5wt%、ペースト溶媒として水を40wt%、配合して混練して得た。得られた正極活物質ペーストの水分は体積率で64vol%であった。正極活物質は、LiCoOの他に、例えばLiNiO、LiMnでもよい。
【0017】
負極活物質ペーストは、負極活物質として黒鉛粉末を53wt%、結着剤としてスチレンブタジエンゴムを6.0wt%、増粘剤としてカルボキシルメチルセルロースを1.0wt%、ペースト溶媒として水を40wt%、配合し混練して得た。得られた負極活物質ペーストの水分は体積率で53vol%であった。負極活物質は、002面の格子面間隔が3.35〜3.80Åの炭素材粉末が好ましく、前記黒鉛粉末の他に、例えば石油コークス、クレゾール樹脂焼成炭素粉末、フラン樹脂焼成炭素粉末、ポリアクリロニトリル樹脂焼成炭素粉末、気相成長炭素粉末、メソフェーズピッチ焼成炭素粉末でもよい。
【0018】
第2工程では、厚さ20μmのAl箔製の集電体12に正極活物質ペーストを、厚さ16μmのCu箔製の集電体13に負極活物質ペーストを、それぞれ厚さ約150μm均一に連続塗布した。集電体12(13)の走行速度は、巻取り機19にて200〜1000mm/分の範囲で設定した。活物質コーター16は、前記に設定された走行速度に対応して活物質の吐出速度を制御して、一定の塗布厚さ約150μmを確保するように構成されている。
【0019】
第3工程では、恒温恒湿槽17の槽内雰囲気の温度と湿度とを制御して、集電体12(13)に塗布された活物質ペーストを、その水分量(溶媒量)が35vol%まで減少するのに要する時間が0.5〜2.5分間となるように、水分の蒸発速度を可変制御しながら乾燥した。具体的には、負極集電体13の実施例1、2および3それぞれの走行速度1000、500および200mm/分間に対応して、長さ500mmの恒温恒湿槽17内を通過した直後の水分量が35±1vol%となるように槽内雰囲気の温度と湿度とを可変制御した。表1に示すように、実施例1、2および3では、前記の時間をそれぞれ0.5、1.0および2.5分間とした。なお、正極集電体12における前記の時間は、一定の1.0分間とした。
【0020】
第4工程では、乾燥炉18の炉内温度を約150℃に設定して、集電体12(13)に塗布され第3工程で約35vol%まで乾燥された活物質ペーストの水分をほぼ完全に除去し、自然に冷却して巻取り機19に巻き取った。
【0021】
第5工程では、乾燥して得られたものを活物質の充填密度を上げるために圧延し、最後に電池一個分に使用する寸法に裁断して正極板、負極板それぞれの電極板が得られた。
【0022】
【表1】

Figure 0003630529
【0023】
このようにして得られた負極板の実施例1〜3の活物質層の接着強度を連続荷重式引掻強度試験機(JISK6718)を用いた引掻強度で評価した。この試験は、幅5mmの引掻刃を活物質層の上面に垂直に押圧しながら引掻速度600mm/分で引掻いて剥離の有無を判定するもので、試料に印加する荷重を段階的に増加させて印加し、活物質層の剥離が発生したときの最低荷重がその試料の引掻強度となる。評価結果を比較例1、2と共に、表1にまとめた。
【0024】
表1に示すように、負極板は、集電体13に塗布された活物質ペーストをその水分量が35vol%まで減少するのに要する時間が0.5〜2.5分間の範囲において、活物質層の集電体13との接着強度が強く安定していることが判る。
【0025】
また、前記時間が0.3分間の比較例1や前記時間が4.0分間の比較例2のものは、共に接着強度が低下している。
【0026】
本発明の非水電解液二次電池の一実施形態は、前記実施形態による正極板および負極板を用いたもので、図2に示すような直径17mm、長さ50mmの円筒型リチウム二次電池であり、極板群と、電解液と、これらを収容する電池ケースとからなる。
【0027】
極板群は、シート状の正極板1と、シート状の負極板3と、正極板1と負極板3間を絶縁するシート状のセパレータ5と、正極リード2と、負極リード4と、上部絶縁板6と、下部絶縁板7とからなる。これら正極板1と負極板3とが、多孔質ポリプロピレンフィルム製のセパレータ5を介して重ねられ、渦巻き状に巻回されて、円筒型の電池ケース内にきっちりと収容されている。特に、負極板3は上記実施例2のものである。
【0028】
電解液は、炭酸エチレンと炭酸ジエチルとプロピオン酸メチルとの等体積混合有機溶媒にLiPFを1.5mol/literの濃度に溶解した非水電解液からなる。この非水電解液は、電池ケース内に収容され、正極活物質層および負極活物質層中の連続した空隙中にも充填されて、電池反応において、多孔質なセパレータ5の微小孔を通しての正極板1と負極板3間のLiイオンの移動を担う。
【0029】
電池ケースは、耐有機電解液性のステンレス鋼板を深絞り成形して得たケース本体8と、安全弁11を設けた封口板10と、正極外部端子となる封口板10と負極外部端子となるケース本体8との間を絶縁しガスシールする絶縁ガスケット9とからなる。
【0030】
この円筒型リチウム二次電池によれば、正極板と負極板とを小さな曲率半径で曲げても活物質層が剥離することなく、正極板と負極板とをセパレータを介して渦巻き状に巻回して円筒状の電池ケース内に空間利用効率よく組み込むことができた。
【0031】
上記実施形態では、結着剤としてスチレンブタジエンゴムを用いたが、本発明はこれに限定されず、他のゴム系結着剤、例えばイソプレンゴム、クロロプレンゴム、アクリルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴムでもよい。
【0032】
また上記実施形態では、ペースト溶媒として水を用いたが、本発明はこれに限定されず、適当な蒸気圧を有する一般的な有機溶媒、例えばN−メチルピロリドン、キシレン、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、クロヘキサン、エタノール、メタノール、酢酸メチル、酢酸エチル、酢酸ブチル、塩化メチレン、塩化エチレンでもよい。
【0033】
円筒型リチウム二次電池の上記実施形態では、正極板および負極板共に、前記本発明の電極板の製造方法を適用したが、正極板または負極板のうち集電体と活物質層間の接着強度の弱い方の極板にのみ前記本発明の電極板の製造方法を適用しても、大きな効果を得られる。
【0034】
また上記実施形態では、正極活物質および負極活物質がLiを可逆的に吸蔵、放出する電極板の製造方法とこれによる電極板を用いたリチウム二次電池について述べたが、Liの代わりにH、NaまたはKを可逆的に吸蔵、放出する電極板の製造方法とこれによる電極板を用いた非水溶液二次電池にも適用できる。
【0035】
【発明の効果】
本発明の非水電解液二次電池の電極板の製造方法によれば、溶媒量が40〜70vol%の流動状態(ゾル状態)にある活物質ペーストは、集電体に塗布された後、その溶媒量が35vol%まで減少するのに要する時間が0.5分間以上となるように活物質ペースト層表面からの溶媒の蒸発速度が制限されるので、活物質ペースト層中の溶媒量の均一化が維持されて結着剤の分布の均一化が維持されるし、前記の時間が2.5分間以下となるように活物質ペーストが流動状態にある時間が制限されるので、活物質層中で活物質と結着剤とが重力差などで分離することなく結着剤の分布の均一化が維持される。そして、集電体に塗布された活物質ペーストの溶媒量が35vol%まで減少すると、その活物質ペーストが非流動状態(ゲル状態)になるので、その後の溶媒の蒸発速度の大小に係わらず活物質ペースト層中の結着剤の移動は生じなくなる。従って、活物質層の集電体表面近傍の結着剤の量や分布が均一となるので、集電体と活物質層間の接着強度に優れるゴム系の結着剤を用いつつ、その優れた接着強度を安定させることができる。
【0036】
本発明の非水電解液二次電池によれば、前記本発明の電極板の製造方法による正極板または負極板は、集電体と活物質層間の接着強度が強く安定しているので、小さな曲率半径で曲げられても、活物質層が剥離することがない。従って、正極板と負極板とを、セパレータを介して渦巻き状に巻回して円筒状の電池ケース内に空間利用効率よく組み込むことができる。
【図面の簡単な説明】
【図1】本発明の電極板の製造方法の一実施形態を示す概念図。
【図2】本発明の非水電解液二次電池の一実施形態を示す概略断面図。
【符号の説明】
1 正極板
3 負極板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode plate used in a non-aqueous electrolyte secondary battery such as a lithium secondary battery, and a non-aqueous electrolyte secondary battery using the electrode plate produced thereby.
[0002]
[Prior art]
In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. As such a secondary battery, a cylindrical lithium secondary battery using a lithium-containing double oxide such as LiCoO 2 for the positive electrode and a carbon material for the negative electrode has been actively researched and developed. In particular, since this type of battery uses a non-aqueous electrolyte, the electrode plate is formed into a sheet shape in order to increase the surface area of the electrode plate from the viewpoint of current characteristics. And in order to accommodate this sheet-like electrode plate in a cylindrical battery case with high accommodation rate, many configurations have been proposed in which the sheet is wound in a spiral shape. Such a sheet-shaped electrode plate is coated with an active material paste having a thickness of several tens to several hundreds μm uniformly on a current collector made of metal foil, and then filled with an active material. Rolled to increase rate. This active material paste is obtained by blending and kneading an active material powder and a binder in water or an organic solvent.
[0003]
In assembling a cylindrical battery, a sheet-like electrode plate having a thick active material layer coated on a metal current collector is bent with a small radius of curvature, which causes a large stress between the metal current collector and the active material layer. Occur. Here, the binder in the active material layer serves to bind the active materials and to bond the metal current collector and the active material. As the binder, a polytetrafluoroethylene resin dispersion having a stable paste state is generally used. However, in order to increase the adhesive strength between the metal current collector and the active material, styrene butadiene rubber or the like is used instead. It has been found that it is better to have a rubber-based binder as a main component.
[0004]
[Problems to be solved by the invention]
However, in the study by the present inventors, in an active material paste mainly composed of a rubber-based binder, if the drying speed of the active material paste applied on the metal current collector is not appropriate, the metal collector It has been found that the adhesive strength between the current collector and the active material layer decreases, and the active material layer may fall off from the metal current collector.
[0005]
In view of the above problems, the present invention provides a non-aqueous electrolyte secondary battery capable of stabilizing an excellent adhesive strength while using a rubber-based binder having an excellent adhesive strength between a current collector and an active material layer . It aims at providing the manufacturing method of an electrode plate, and the nonaqueous electrolyte secondary battery using the electrode plate manufactured by this.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing an electrode plate of a non-aqueous electrolyte secondary battery according to the present invention collects an active material paste obtained by kneading an electrode active material powder, a rubber-based binder, and a solvent of 40 to 70 vol%. After applying to the current collector, water, N-methyl so that the time required for reducing the amount of the solvent of the active material paste applied to the current collector to 35 vol% is 0.5 to 2.5 minutes. While controlling the evaporation rate of one or more solvents selected from pyrrolidone, xylene, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane, ethanol, methanol, methyl acetate, ethyl acetate, butyl acetate, methylene chloride, and ethylene chloride It is characterized by drying.
[0007]
According to the method for manufacturing the electrode plate of the non-aqueous electrolyte secondary battery of the present invention, after the active material paste in a fluid state (sol state) having a solvent amount of 40 to 70 vol% is applied to the current collector, Since the evaporation rate of the solvent from the surface of the active material paste layer is limited so that the time required for the solvent amount to decrease to 35 vol% is 0.5 minutes or more, the amount of solvent in the active material paste layer is uniform. The active material layer is kept in a fluid state so that the above-mentioned time is 2.5 minutes or less. The distribution of the binder is kept uniform without separating the active material and the binder due to a difference in gravity. When the amount of the active material paste applied to the current collector is reduced to 35 vol%, the active material paste becomes a non-flowing state (gel state). The binder does not move in the material paste layer. Accordingly, since the amount and distribution of the binder in the vicinity of the current collector surface of the active material layer becomes uniform, the rubber-based binder having excellent adhesive strength between the current collector and the active material layer is used, and its excellent Adhesive strength can be stabilized.
[0008]
When the time during which the active material layer is in a fluidized state is shorter than 0.5 minutes, migration occurs in which the binder in the active material layer moves to the atmosphere side, resulting in a shortage of binder on the current collector side, Adhesive strength between the current collector and the active material layer decreases, which is not preferable. If the time is longer than 2.5 minutes, the active material and the binder are gradually separated in the active material layer due to a difference in gravity or the like. As a result of uneven distribution of the adhesive, the adhesive strength between the current collector and the active material layer in the portion where the binder is insufficient is lowered, which is not preferable. In addition, if the initial amount of the solvent of the active material paste is less than 40 vol%, the flowability of the active material paste is too small and it becomes difficult to apply, and if the amount of the solvent exceeds 70 vol%, the fluidity is too large. Therefore, coating with a uniform thickness becomes difficult, which is not preferable.
[0009]
The non-aqueous electrolyte secondary battery of the present invention uses a positive electrode plate or a negative electrode plate manufactured by the method for manufacturing an electrode plate of the present invention, and the positive electrode plate and the negative electrode plate are wound in a spiral shape via a separator. And is incorporated in a cylindrical battery case.
[0010]
According to the nonaqueous electrolyte secondary battery of the present invention, the positive electrode plate or the negative electrode plate produced by the method for producing an electrode plate of the present invention is small because the adhesive strength between the current collector and the active material layer is strong and stable. Even if it is bent with a radius of curvature, the active material layer does not peel off. Therefore, the positive electrode plate and the negative electrode plate can be spirally wound via the separator and can be efficiently incorporated into the cylindrical battery case. Moreover, since an electrode can be arranged also in the space near the central axis of the cylindrical battery case, it is particularly useful in a cylindrical non-aqueous electrolyte secondary battery having a small diameter.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
One embodiment of a method for producing an electrode plate of a non-aqueous electrolyte secondary battery of the present invention includes a first step of obtaining an active material paste, a second step of applying the active material paste to a current collector, and a current collector A third step of drying the active material paste applied to the substrate until the amount of the solvent becomes 35 vol% or less, a fourth step of drying the active material paste almost completely, and rolling the resulting paste. -It consists of the 5th process which cuts and obtains an electrode plate. Said 2nd-4th process is performed with the manufacturing apparatus shown in FIG.
[0013]
First, as shown in FIG. 1, the manufacturing apparatus supports the feeder 14 that feeds out the tape-like current collector 12 (13) and the current collector 12 (13) that is running so as not to loosen 4. Two rollers 15, an active material coater 16 for applying an active material paste to the traveling current collector 12 (13), and the temperature and humidity of the atmosphere in the tank disposed downstream of the active material coater 16 in the traveling direction. A constant temperature and humidity chamber 17 to be controlled, a drying oven 18 that almost completely dries the active material paste disposed on the downstream side of the constant temperature and humidity chamber 17 and applied to the current collector 12 (13), and almost completely dried And a winder 19 that winds the current collector 12 (13) that is variable in traveling speed.
[0014]
The constant temperature and humidity tank 17 is used in the third step, and controls the temperature and humidity of the atmosphere in the tank in which the length of the current collector 12 (13) in the traveling direction is 500 mm. The active material paste applied to No. 12 (13) is dried while controlling the evaporation rate of the solvent. The drying furnace 18 is used in the fourth step and incorporates a heater and a fan.
[0015]
The first step is a step of obtaining each of the positive electrode active material paste and the negative electrode active material paste.
[0016]
The positive electrode active material paste includes 55 wt% LiCoO 2 powder as the positive electrode active material, 1.5 wt% carbon black as the conductive material, 3.0 wt% styrene butadiene rubber as the binder, and 0 carboxymethyl cellulose as the thickener. 0.5 wt%, 40 wt% of water as a paste solvent was blended and kneaded. The water content of the obtained positive electrode active material paste was 64 vol% by volume. The positive electrode active material may be, for example, LiNiO 2 or LiMn 2 O 4 in addition to LiCoO 2 .
[0017]
The negative electrode active material paste contains 53 wt% graphite powder as the negative electrode active material, 6.0 wt% styrene butadiene rubber as the binder, 1.0 wt% carboxymethyl cellulose as the thickener, and 40 wt% water as the paste solvent. And kneaded. The water content of the obtained negative electrode active material paste was 53 vol% by volume. The negative electrode active material is preferably a carbon material powder with a lattice plane spacing of 3.35 to 3.80 mm on the 002 plane. In addition to the graphite powder, for example, petroleum coke, cresol resin calcined carbon powder, furan resin calcined carbon powder, poly Acrylonitrile resin calcined carbon powder, vapor-grown carbon powder, and mesophase pitch calcined carbon powder may be used.
[0018]
In the second step, the positive electrode active material paste is uniformly applied to the current collector 12 made of Al foil having a thickness of 20 μm, and the negative electrode active material paste is uniformly applied to the current collector 13 made of Cu foil having a thickness of 16 μm to a thickness of about 150 μm. Continuously applied. The traveling speed of the current collector 12 (13) was set in the range of 200 to 1000 mm / min by the winder 19. The active material coater 16 is configured so as to ensure a constant coating thickness of about 150 μm by controlling the discharge speed of the active material in accordance with the travel speed set as described above.
[0019]
In the third step, the temperature and humidity of the atmosphere in the constant temperature and humidity chamber 17 are controlled, and the active material paste applied to the current collector 12 (13) has a water content (solvent amount) of 35 vol%. Drying was performed while variably controlling the evaporation rate of water so that the time required for the reduction to 0.5 to 2.5 minutes was reached. Specifically, the moisture immediately after passing through the constant temperature and humidity chamber 17 having a length of 500 mm corresponding to the traveling speeds 1000, 500, and 200 mm / min of Examples 1, 2, and 3 of the negative electrode current collector 13, respectively. The temperature and humidity of the atmosphere in the tank were variably controlled so that the amount was 35 ± 1 vol%. As shown in Table 1, in Examples 1, 2, and 3, the time was set to 0.5, 1.0, and 2.5 minutes, respectively. In addition, the said time in the positive electrode collector 12 was made into fixed 1.0 minute.
[0020]
In the fourth step, the furnace temperature of the drying furnace 18 is set to about 150 ° C., and the moisture of the active material paste applied to the current collector 12 (13) and dried to about 35 vol% in the third step is almost completely removed. Then, it was naturally cooled and wound on a winder 19.
[0021]
In the fifth step, the product obtained by drying is rolled to increase the packing density of the active material, and finally cut to the size used for one battery to obtain the respective electrode plates of the positive electrode plate and the negative electrode plate. It was.
[0022]
[Table 1]
Figure 0003630529
[0023]
Thus, the adhesive strength of the active material layer of Examples 1-3 of the negative electrode plate obtained was evaluated by scratch strength using a continuous load type scratch strength tester (JISK6718). In this test, the presence or absence of peeling is determined by scratching at a scratching speed of 600 mm / min while pressing a scratching blade having a width of 5 mm perpendicularly to the upper surface of the active material layer. The minimum load when the active material layer is peeled off is applied as the scratch strength of the sample. The evaluation results are shown in Table 1 together with Comparative Examples 1 and 2.
[0024]
As shown in Table 1, in the negative electrode plate, the active material paste applied to the current collector 13 has an active time in the range of 0.5 to 2.5 minutes required for the water content to be reduced to 35 vol%. It can be seen that the adhesive strength of the material layer with the current collector 13 is strong and stable.
[0025]
Moreover, the adhesive strength of Comparative Example 1 where the time is 0.3 minutes and Comparative Example 2 where the time is 4.0 minutes are both low.
[0026]
One embodiment of the non-aqueous electrolyte secondary battery of the present invention uses the positive electrode plate and the negative electrode plate according to the above embodiment, and has a cylindrical lithium secondary battery having a diameter of 17 mm and a length of 50 mm as shown in FIG. And consists of an electrode plate group, an electrolytic solution, and a battery case for housing them.
[0027]
The electrode plate group includes a sheet-like positive electrode plate 1, a sheet-like negative electrode plate 3, a sheet-like separator 5 that insulates between the positive electrode plate 1 and the negative electrode plate 3, a positive electrode lead 2, a negative electrode lead 4, and an upper part It consists of an insulating plate 6 and a lower insulating plate 7. The positive electrode plate 1 and the negative electrode plate 3 are overlapped via a separator 5 made of a porous polypropylene film, wound in a spiral shape, and tightly accommodated in a cylindrical battery case. In particular, the negative electrode plate 3 is that of Example 2 above.
[0028]
The electrolytic solution is composed of a non-aqueous electrolytic solution in which LiPF 6 is dissolved at a concentration of 1.5 mol / liter in an equal volume mixed organic solvent of ethylene carbonate, diethyl carbonate, and methyl propionate. This nonaqueous electrolytic solution is accommodated in the battery case and filled in the continuous voids in the positive electrode active material layer and the negative electrode active material layer, and the positive electrode through the micropores of the porous separator 5 in the battery reaction. It is responsible for the movement of Li ions between the plate 1 and the negative electrode plate 3.
[0029]
The battery case includes a case main body 8 obtained by deep drawing an organic electrolyte resistant stainless steel plate, a sealing plate 10 provided with a safety valve 11, a sealing plate 10 serving as a positive external terminal, and a case serving as a negative external terminal. It consists of an insulating gasket 9 that insulates the main body 8 and gas seals.
[0030]
According to this cylindrical lithium secondary battery, the active material layer does not peel even when the positive electrode plate and the negative electrode plate are bent with a small radius of curvature, and the positive electrode plate and the negative electrode plate are wound spirally through the separator. And can be efficiently incorporated into the cylindrical battery case.
[0031]
In the above embodiment, styrene butadiene rubber is used as the binder, but the present invention is not limited to this, and other rubber binders such as isoprene rubber, chloroprene rubber, acrylic rubber, urethane rubber, silicone rubber, Fluoro rubber may be used.
[0032]
Moreover, in the said embodiment, although water was used as a paste solvent, this invention is not limited to this, The common organic solvent which has a suitable vapor pressure, for example, N-methylpyrrolidone, xylene, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclo-hexane, ethanol, methanol, methyl acetate, ethyl acetate, butyl acetate, methylene chloride, or a chloride of ethylene.
[0033]
In the above embodiment of the cylindrical lithium secondary battery, the method for producing an electrode plate of the present invention is applied to both the positive electrode plate and the negative electrode plate, but the adhesion strength between the current collector and the active material layer of the positive electrode plate or the negative electrode plate. Even if the electrode plate manufacturing method of the present invention is applied only to the weaker electrode plate, a great effect can be obtained.
[0034]
Moreover, in the said embodiment, although the positive electrode active material and the negative electrode active material described the manufacturing method of the electrode plate which occludes and discharge | releases Li reversibly, and the lithium secondary battery using the electrode plate by this, H instead of Li was described. The present invention can also be applied to a method for producing an electrode plate that reversibly occludes and releases Na or K and a non-aqueous solution secondary battery using the electrode plate.
[0035]
【The invention's effect】
According to the method for manufacturing the electrode plate of the non-aqueous electrolyte secondary battery of the present invention, after the active material paste in a fluid state (sol state) having a solvent amount of 40 to 70 vol% is applied to the current collector, Since the evaporation rate of the solvent from the surface of the active material paste layer is limited so that the time required for the solvent amount to decrease to 35 vol% is 0.5 minutes or more, the amount of solvent in the active material paste layer is uniform. The active material layer is kept in a fluid state so that the above-mentioned time is 2.5 minutes or less. The distribution of the binder is kept uniform without separating the active material and the binder due to a difference in gravity. When the amount of the solvent of the active material paste applied to the current collector is reduced to 35 vol%, the active material paste becomes a non-flowing state (gel state). Therefore, the active material paste is activated regardless of the subsequent evaporation rate. The binder does not move in the material paste layer. Accordingly, since the amount and distribution of the binder in the vicinity of the current collector surface of the active material layer becomes uniform, the rubber-based binder having excellent adhesive strength between the current collector and the active material layer is used, and the excellent Adhesive strength can be stabilized.
[0036]
According to the non-aqueous electrolyte secondary battery of the present invention, the positive electrode plate or the negative electrode plate produced by the method for producing an electrode plate of the present invention is small because the adhesive strength between the current collector and the active material layer is strong and stable. Even if it is bent with a radius of curvature, the active material layer does not peel off. Therefore, the positive electrode plate and the negative electrode plate can be spirally wound via the separator and can be efficiently incorporated into the cylindrical battery case.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an embodiment of a method for producing an electrode plate of the present invention.
FIG. 2 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
1 Positive electrode plate 3 Negative electrode plate

Claims (2)

電極活物質粉末とゴム系結着剤と溶媒40〜70vol%とを混練した活物質ペーストを集電体に塗布した後、前記集電体に塗布された活物質ペーストをその溶媒量が35vol%まで減少するのに要する時間が0.5〜2.5分間となるように水、N−メチルピロリドン、キシレン、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサン、エタノール、メタノール、酢酸メチル、酢酸エチル、酢酸ブチル、塩化メチレン、塩化エチレンから選ばれた1種以上の溶媒の蒸発速度を制御しながら乾燥することを特徴とする非水電解液二次電池の電極板の製造方法。An active material paste obtained by kneading an electrode active material powder, a rubber-based binder, and a solvent of 40 to 70 vol% is applied to a current collector, and then the active material paste applied to the current collector has a solvent amount of 35 vol%. Water, N-methylpyrrolidone, xylene, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexane, ethanol, methanol, methyl acetate, ethyl acetate so that the time required to decrease to 0.5 to 2.5 minutes A method for producing an electrode plate for a non-aqueous electrolyte secondary battery, wherein the drying is performed while controlling the evaporation rate of at least one solvent selected from butyl acetate, methylene chloride, and ethylene chloride . 請求項1記載の非水電解液二次電池の電極板の製造方法により製造された正極板または負極板を用い、正極板と負極板とがセパレータを介して渦巻き状に巻回されて円筒状の電池ケースに組み込まれていることを特徴とする非水電解液二次電池。A positive electrode plate or a negative electrode plate manufactured by the method for manufacturing an electrode plate of a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode plate and the negative electrode plate are spirally wound through a separator and cylindrical. A non-aqueous electrolyte secondary battery characterized by being incorporated in a battery case.
JP18395897A 1997-07-09 1997-07-09 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof Expired - Fee Related JP3630529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18395897A JP3630529B2 (en) 1997-07-09 1997-07-09 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18395897A JP3630529B2 (en) 1997-07-09 1997-07-09 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof

Publications (2)

Publication Number Publication Date
JPH1131503A JPH1131503A (en) 1999-02-02
JP3630529B2 true JP3630529B2 (en) 2005-03-16

Family

ID=16144803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18395897A Expired - Fee Related JP3630529B2 (en) 1997-07-09 1997-07-09 Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof

Country Status (1)

Country Link
JP (1) JP3630529B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063457A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
JP2010199043A (en) * 2009-02-27 2010-09-09 Mitsubishi Heavy Ind Ltd Method of manufacturing negative electrode for secondary battery, and nonaqueous secondary battery
JP5522364B2 (en) * 2009-09-30 2014-06-18 日本ゼオン株式会社 Slurry composition for electrode
JP5543869B2 (en) * 2010-07-23 2014-07-09 日本碍子株式会社 Electrode coating drying furnace for lithium ion batteries
JP2013134909A (en) * 2011-12-27 2013-07-08 Toray Eng Co Ltd Drying method for coating of collector electrode
JP5259875B1 (en) * 2012-07-19 2013-08-07 日本碍子株式会社 Battery electrode coating film drying method and drying furnace
JP2018028962A (en) * 2014-12-26 2018-02-22 三洋電機株式会社 Cylindrical cell
KR20210072691A (en) * 2019-12-09 2021-06-17 주식회사 엘지에너지솔루션 Manufacturing Apparatus of Electrode for Secondary Battery Comprising Heating Part and Manufacturing Method of Electrode for Secondary Battery Comprising Heating Process, for Heating of Electrode Current Collector Before Coating with Electrode Active Material Slurry
US11837709B2 (en) 2019-12-09 2023-12-05 Lg Energy Solution, Ltd. Manufacturing apparatus of electrode for secondary battery comprising heating part and manufacturing method of electrode for secondary battery comprising heating process, for heating electrode current collector before coating with electrode active material slurry

Also Published As

Publication number Publication date
JPH1131503A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
CN105493318B (en) Active material composite powder, lithium battery, and methods for producing these
EP3488485B1 (en) Method for drying electrode assemblies
CN110299515B (en) Positive electrode active material, preparation method thereof, positive electrode and battery
AU2017329931B2 (en) Electrode assemblies
US20130252092A1 (en) Lithium Ion Battery
EP3516713B1 (en) Method of preparing electrode assemblies
WO2008029719A1 (en) Nonaqueous electrolytic secondary cell
CN102859625A (en) Electrochemical capacitor having lithium containing electrolyte
WO2008053880A1 (en) Secondary cell and its manufacturing method
US5697145A (en) Method of producing a sheet electrode plate for electrochemical battery
JP7242120B2 (en) Lithium secondary battery and manufacturing method thereof
JP2010061913A (en) Method for manufacturing electrode
JP3630529B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing electrode plate thereof
US9899673B2 (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing the same
EP2846383B1 (en) Conductive material for secondary battery and electrode for lithium secondary battery comprising same
CN114709367A (en) Negative plate, lithium ion battery and preparation method of negative plate
KR101606958B1 (en) Collector, electrode and secondary battery having the same
JP2002170556A (en) Method for manufacturing electrode plate of secondary battery
KR101510509B1 (en) Method for manufacturing a battery electrode
JP2020035682A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JPH10116604A (en) Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
JP3697324B2 (en) Sheet electrode manufacturing method and non-aqueous electrolyte battery
EP4113658A1 (en) Method for manufacturing electrode for lithium secondary battery
WO2014128844A1 (en) Lithium ion secondary battery
CN111987277B (en) Porous carrier and electrochemical device separation membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees