JP3629988B2 - Electric power control method for ash melting furnace - Google Patents

Electric power control method for ash melting furnace Download PDF

Info

Publication number
JP3629988B2
JP3629988B2 JP33130598A JP33130598A JP3629988B2 JP 3629988 B2 JP3629988 B2 JP 3629988B2 JP 33130598 A JP33130598 A JP 33130598A JP 33130598 A JP33130598 A JP 33130598A JP 3629988 B2 JP3629988 B2 JP 3629988B2
Authority
JP
Japan
Prior art keywords
power
electrode
melting furnace
ash melting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33130598A
Other languages
Japanese (ja)
Other versions
JP2000156279A (en
Inventor
信彦 池田
善久 小賀坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP33130598A priority Critical patent/JP3629988B2/en
Publication of JP2000156279A publication Critical patent/JP2000156279A/en
Application granted granted Critical
Publication of JP3629988B2 publication Critical patent/JP3629988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、三相交流による電気抵抗式灰溶融炉の電力制御方法に関する。
【0002】
【従来の技術】
都市ごみ、あるいは産業廃棄物などの焼却装置からは大量の灰が排出される。これらの灰は以前は単に埋め立てに用いられていたが、埋め立て地の立地が困難となる中で、近年、灰の溶融処理が開発されている。
【0003】
例えば、特開平8−8060号公報には、三相アーク式灰溶融炉の電力制御方法が提案されている。この技術は、電極ごとに発熱量を所要に応じて分配するため、電極ごとに目標とするインピーダンスを定め、電極を昇降させるというものである。
【0004】
また、特開平9−105507号公報には、電気抵抗式灰溶融炉内の溶融スラグレベルを検知して、最適かつ安定な運転方法を提供する灰溶融炉の運転方法が提案されている。この方法は、灰溶融炉の炉蓋に垂直方向に設置された溶融スラグレベル検出器により、炉内のスラグレベルを検知することで、灰供給量及び電力投入量を制御して最適かつ安定な運転を図るというものである。
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術には次のような問題点がある。
【0006】
まず、特開平8−8060号公報記載の技術では、電極ごとに目標とするインピーダンスを定めるので、各電極の電流は必ずしも一定とならない。一般に、三相交流の使用に当っては、三相の各相が不平衡とならないよう、各相の電流を一定にすることが望ましい。
【0007】
この従来技術では、三相交流の各相の電流は不平衡であり、一部のケーブルに過大な電流が流れたり、投入電力の加熱効率が低下する。また、三相交流の中性点が、炉心からずれて炉壁に近づくと、その部分の炉壁が高温の溶融スラグと接触し損傷し易くなるという問題がある。
【0008】
また、この従来技術のようにアーク式加熱方法を用いる場合、電流が被加熱物(溶融スラグ)の表面に集中するので、炉内の温度分布を均一にし難いと言う問題がある。また、アーク式加熱炉一般に特有の問題として高調波の発生があり、制御機器やコンピュータへの悪影響、騒音あるいは近隣への電波障害等の原因となる。
【0009】
特開平9−105507号公報記載の技術は、直流電気抵抗式灰溶融炉を前提としており、これを三相交流を用いる三相電気抵抗式灰溶融炉に、適用することは簡単にはできない。特に、電源設備により投入電力量を制御すると記載されているが、三相交流の場合、電源設備により、個々の相に対して別々に投入電力量を制御することは困難である。
【0010】
一般に、電気抵抗加熱方式の場合、電極位置の調節による電力制御については、制御可能な範囲に制限がある。電力を電極が基準位置にある場合の値より増加させるには、電極をさらに深く挿入する必要がある。しかし、電気抵抗加熱方式における電極は、被加熱物(溶融した灰)の中に深く挿入されており、基準位置から炉底までの移動可能な余裕は僅かである。
【0011】
このように電気抵抗加熱方式では、電極の最適な位置は狭い範囲に限られることから、アーク式加熱のように、電極位置により電力を大幅に変化させることはできない。このように、電気抵抗加熱方式では、電極位置の調節により電力を制御することには限界がある。
【0012】
さらに、電力制御のためにインピーダンスを変化させると、電源と負荷のインピーダンスマッチングがとれなくなり、電極に供給可能な電力が低下する。また、電極のインピーダンスを操業上の最適値に設定できなくなるという問題もある。
【0013】
本発明は、上記のような問題点を解決するためになされたもので、各相の電流の平衡を保ちつつ投入電力量を大幅に制御することが可能であり、また電極のインピーダンスを最適値にして操業できる三相交流による電気抵抗式灰溶融炉の電力制御方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記の課題は、次の発明により解決される。
【0015】
その発明は、三相交流による電気抵抗式灰溶融炉の電力制御方法において、各電極についての電流および電圧を測定し、測定した電流および電圧から各電極についてのインピーダンスおよび電力を演算、三相電力の各相の電流が平衡するように、各電極の昇降により各電極のインピーダンスを制御するとともに、全体の電力を炉電源トランスのタップ切替えにより制御することを特徴とする電気抵抗式灰溶融炉の電力制御方法である。
【0016】
ここで、各電極についてのインピーダンスおよび電力は、各電極の電圧Eと電流Iを測定することにより容易に得られる。例えば、インピーダンスZは、Z=E/Iとなる。なお、これらの変数は位相を含むベクトル表示で表してある。
【0017】
インピーダンスの大きさZは、電圧Eと電流Iの実効値をそれぞれE,Iとすると、Z=E/Iとなる。ここで、抵抗RとリアクタンスXは、電圧Eと電流Iの位相差をδとすると、
Z=R+jX=Z(cosδ+jsinδ)
であるから、
R=Zcosδ
X=Zsinδ
と表される。
【0018】
電力は、電力の実効値をPとすると、
=Ecosδ
となる。なお、cosδは力率を表す。
【0019】
この発明では、炉電源トランスのタップ切替えにより全体の電力を制御している。これにより、従来技術と異なり、電極の昇降だけでは制御できない電力の制御を可能としている。また、インピーダンスは操業上最適な値に保持した状態で、電力を制御することが可能である。
【0020】
【発明の実施の形態】
図1は、本発明の実施の形態を示すブロック図である。電源トランス1より3本の電極2に電力が供給される。各電極2は電極昇降装置21(一部の電極2については、図示を省略)により支持され、灰溶融炉3の中の溶融状態の灰(溶融スラグ)9の内部に挿入されている。
【0021】
それぞれの電極2については、電流計41と電圧計42により(一部の電極2については、図示を省略)、電流と電圧が計測される。ここで、電圧計42により計測されるのは、各電極2とアース間の電圧である。これらの計測結果は電力調整装置5に送信され、信号処理される。
【0022】
電力調整装置5では、各電極2についてインピーダンスを算出し、予め与えられた設定値と比較する。比較結果に基づきある電極2のインピーダンスを増減する場合は、電力調整装置5の中の電極昇降指令手段51が、その電極2を支持する電極昇降装置21に上昇・下降の指令信号を送信する。電極昇降装置21は、送信された指令に基づき電極2を上昇・下降させて、電極2のインピーダンスを設定値になるよう調整する。
【0023】
また、電力調整装置5では、各電極2の電流と電圧から各電極の電力を算出する。これらの値を合計して灰溶融炉3全体の電力を算出し、別途与えられた電力設定値と比較する。ここで、電力設定値は灰溶融炉3の操業サイクルや灰の装入量等から設定される値で、手動・自動いずれで設定してもよい。
【0024】
比較結果に基づき灰溶融炉3全体の電力を増減する場合は、電力調整装置5の中のタップ切替指令手段52が、電源トランス1のタップ切替手段11にタップ切替の指令信号を送信する。タップ切替手段11は、送信された指令に基づき電源トランス1のタップを切替え、各電極2に供給する電力を増減させる。
【0025】
【発明の効果】
この発明により、三相電力の各相の電流の平衡を保ちつつ投入電力量を大幅に制御することが可能となる。またその際、電極のインピーダンスを最適値に保持したままで、操業することも可能となる。
【図面の簡単な説明】
【図1】発明の実施の形態を示すブロック図である。
【符号の説明】
1 電源トランス
2 電極
3 灰溶融炉
5 電力調整装置
9 灰(溶融スラグ)
11 タップ切替手段
21 電極昇降装置
41 電流計
42 電圧計
51 電極昇降指令手段
52 タップ切替指令手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power control method for an electric resistance ash melting furnace using three-phase alternating current.
[0002]
[Prior art]
Large amounts of ash are emitted from incinerators such as municipal waste or industrial waste. In the past, these ashes were simply used for landfill, but in recent years, ash melting treatment has been developed in the face of difficulties in the location of landfills.
[0003]
For example, JP-A-8-8060 proposes a power control method for a three-phase arc ash melting furnace. In this technique, the calorific value is distributed to each electrode as required, and therefore, a target impedance is determined for each electrode, and the electrode is moved up and down.
[0004]
Japanese Laid-Open Patent Publication No. 9-105507 proposes an ash melting furnace operating method that detects the molten slag level in an electric resistance ash melting furnace and provides an optimal and stable operating method. This method detects the slag level in the furnace with a molten slag level detector installed in the vertical direction on the furnace lid of the ash melting furnace, thereby controlling the ash supply amount and the power input amount to achieve optimum and stable. It is to drive.
[0005]
[Problems to be solved by the invention]
However, the prior art has the following problems.
[0006]
First, in the technique described in JP-A-8-8060, a target impedance is determined for each electrode, so that the current of each electrode is not necessarily constant. In general, when using a three-phase alternating current, it is desirable to keep the current of each phase constant so that the three phases do not become unbalanced.
[0007]
In this prior art, the current of each phase of the three-phase alternating current is unbalanced, an excessive current flows through some cables, and the heating efficiency of input power is reduced. In addition, when the neutral point of the three-phase alternating current deviates from the core and approaches the furnace wall, there is a problem that the furnace wall in that part is in contact with the hot molten slag and is easily damaged.
[0008]
In addition, when the arc heating method is used as in this prior art, the current concentrates on the surface of the object to be heated (molten slag), which makes it difficult to make the temperature distribution in the furnace uniform. In addition, the generation of harmonics is a problem peculiar to arc-type heating furnaces, which may cause adverse effects on control devices and computers, noise, or radio wave interference in the vicinity.
[0009]
The technique described in Japanese Patent Laid-Open No. 9-105507 is based on a DC electric resistance ash melting furnace, and cannot be easily applied to a three-phase electric resistance ash melting furnace using three-phase AC. In particular, although it is described that the input power amount is controlled by the power supply facility, in the case of three-phase alternating current, it is difficult to control the input power amount individually for each phase by the power supply facility.
[0010]
In general, in the case of the electric resistance heating method, there is a limit to the controllable range for power control by adjusting the electrode position. In order to increase the power from the value when the electrode is at the reference position, it is necessary to insert the electrode deeper. However, the electrode in the electric resistance heating method is inserted deeply into the object to be heated (molten ash), and there is little margin for movement from the reference position to the furnace bottom.
[0011]
As described above, in the electric resistance heating method, since the optimum position of the electrode is limited to a narrow range, the electric power cannot be changed greatly depending on the electrode position as in the arc heating. Thus, in the electrical resistance heating method, there is a limit to controlling the power by adjusting the electrode position.
[0012]
Furthermore, when the impedance is changed for power control, impedance matching between the power source and the load cannot be achieved, and the power that can be supplied to the electrode is reduced. There is also a problem that the impedance of the electrode cannot be set to an optimum value for operation.
[0013]
The present invention has been made to solve the above-described problems, and can control the amount of power input while maintaining the balance of the current of each phase, and the electrode impedance can be optimized. An object of the present invention is to provide a power control method for an electric resistance type ash melting furnace using a three-phase alternating current that can be operated in the same manner.
[0014]
[Means for Solving the Problems]
The above problems are solved by the following invention.
[0015]
Its invention provides a power control method of the electric resistance type ash melting furnace according to the three-phase AC, the current and voltage for each electrode was measured, calculates the impedance and power for each electrode from the measured current and voltage, three-phase An electric resistance ash melting furnace characterized by controlling the impedance of each electrode by raising and lowering each electrode so that the current of each phase of power is balanced, and controlling the entire power by switching the tap of the furnace power transformer This is a power control method.
[0016]
Here, the impedance and power for each electrode can be easily obtained by measuring the voltage E and current I of each electrode. For example, the impedance Z is Z = E / I. These variables are represented by a vector display including the phase.
[0017]
The impedance magnitude Z 0 becomes Z 0 = E 0 / I 0 when the effective values of the voltage E and the current I are E 0 and I 0 , respectively. Here, the resistance R and the reactance X are expressed as follows, where δ is the phase difference between the voltage E and the current I:
Z = R + jX = Z 0 (cos δ + jsin δ)
Because
R = Z 0 cos δ
X = Z 0 sin δ
It is expressed.
[0018]
When the effective value of power is P 0 , the power is
P 0 = E 0 I 0 cos δ
It becomes. Note that cos δ represents a power factor.
[0019]
In the present invention, the entire power is controlled by switching the tap of the furnace power transformer. Thereby, unlike the prior art, it is possible to control electric power that cannot be controlled only by raising and lowering the electrodes. Further, it is possible to control the electric power in a state where the impedance is maintained at an optimum value for operation.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention. Power is supplied from the power transformer 1 to the three electrodes 2. Each electrode 2 is supported by an electrode lifting / lowering device 21 (some of the electrodes 2 are not shown) and inserted into a molten ash (molten slag) 9 in the ash melting furnace 3.
[0021]
For each electrode 2, the current and voltage are measured by an ammeter 41 and a voltmeter 42 (not shown for some electrodes 2). Here, what is measured by the voltmeter 42 is a voltage between each electrode 2 and the ground. These measurement results are transmitted to the power adjustment device 5 for signal processing.
[0022]
In the power adjustment device 5, the impedance is calculated for each electrode 2 and compared with a set value given in advance. When the impedance of the electrode 2 is increased or decreased based on the comparison result, the electrode lifting / lowering command means 51 in the power adjustment device 5 transmits a lifting / lowering command signal to the electrode lifting / lowering device 21 that supports the electrode 2. The electrode lifting / lowering device 21 raises / lowers the electrode 2 based on the transmitted command, and adjusts the impedance of the electrode 2 to be a set value.
[0023]
In the power adjustment device 5, the power of each electrode is calculated from the current and voltage of each electrode 2. These values are summed to calculate the power of the ash melting furnace 3 as a whole, and is compared with a separately set power setting value. Here, the power set value is a value set from the operation cycle of the ash melting furnace 3, the amount of ash charged, etc., and may be set manually or automatically.
[0024]
When increasing or decreasing the electric power of the ash melting furnace 3 as a whole based on the comparison result, the tap switching command means 52 in the power adjustment device 5 transmits a tap switching command signal to the tap switching means 11 of the power transformer 1. The tap switching unit 11 switches the tap of the power transformer 1 based on the transmitted command, and increases or decreases the power supplied to each electrode 2.
[0025]
【The invention's effect】
According to the present invention, it is possible to greatly control the input power amount while maintaining the balance of the current of each phase of the three-phase power. Further, at that time, it is possible to operate while maintaining the impedance of the electrode at the optimum value.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the invention.
[Explanation of symbols]
1 Power transformer 2 Electrode 3 Ash melting furnace 5 Power conditioner 9 Ash (molten slag)
DESCRIPTION OF SYMBOLS 11 Tap switching means 21 Electrode raising / lowering apparatus 41 Ammeter 42 Voltmeter 51 Electrode raising / lowering instruction means 52 Tap switching instruction means

Claims (1)

三相交流による電気抵抗式灰溶融炉の電力制御方法において、
各電極についての電流および電圧を測定し、測定した電流および電圧から各電極についてのインピーダンスおよび電力を演算、三相電力の各相の電流が平衡するように、各電極の昇降により各電極のインピーダンスを制御するとともに、全体の電力を炉電源トランスのタップ切替えにより制御することを特徴とする電気抵抗式灰溶融炉の電力制御方法。
In the electric resistance type ash melting furnace power control method by three-phase alternating current,
The current and voltage for each electrode was measured, it calculates the impedance and power for each electrode from the measured current and voltage, the three-phase power as each phase current is balanced, of each electrode by the lifting of the electrodes A power control method for an electric resistance ash melting furnace characterized by controlling the impedance and controlling the entire power by tap switching of a furnace power transformer.
JP33130598A 1998-11-20 1998-11-20 Electric power control method for ash melting furnace Expired - Fee Related JP3629988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33130598A JP3629988B2 (en) 1998-11-20 1998-11-20 Electric power control method for ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33130598A JP3629988B2 (en) 1998-11-20 1998-11-20 Electric power control method for ash melting furnace

Publications (2)

Publication Number Publication Date
JP2000156279A JP2000156279A (en) 2000-06-06
JP3629988B2 true JP3629988B2 (en) 2005-03-16

Family

ID=18242209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33130598A Expired - Fee Related JP3629988B2 (en) 1998-11-20 1998-11-20 Electric power control method for ash melting furnace

Country Status (1)

Country Link
JP (1) JP3629988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285670A (en) * 2006-04-20 2007-11-01 Jfe Engineering Kk Melting control method for electric resistance type ash melting furnace and its device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783210B (en) * 2021-09-02 2024-06-14 锦州天亿电容制造有限公司 Method for treating three-phase unbalance of transformer for mining and metallurgy furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285670A (en) * 2006-04-20 2007-11-01 Jfe Engineering Kk Melting control method for electric resistance type ash melting furnace and its device

Also Published As

Publication number Publication date
JP2000156279A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
AU2002231514B2 (en) Power control system for AC electric arc furnace
US6573691B2 (en) Control system and method for voltage stabilization in electric power system
AU2002231514A1 (en) Power control system for AC electric arc furnace
SE0103985L (en) Method and apparatus for compensating the consumption of reactive power by an industrial load
JP3629988B2 (en) Electric power control method for ash melting furnace
US11953265B2 (en) Method for operating an electric arc furnace
JP2004096897A (en) Electric melting furnace system and method for controlling electric melting furnace
JP2000161646A (en) Melting control method of electric resistance type ash melting furnace
RU2249774C2 (en) Arc steel-melting furnace with heating of a charge in the furnace stack and a method of realization of a melt in the furnace
Kuvaldin et al. Energy-efficient thyristor frequency converter with relay-frequency energy regulation for induction furnace
JPH09274987A (en) Power control method in melting furnace
JP2509411B2 (en) Arc furnace equipment for steelmaking
JP2002208472A (en) Arc furnace device
JP2003279269A (en) Input electric power control method of electric furnace
RU2241932C1 (en) Method of power supply to electric arc installations
Arad et al. Aspects of the electric arc furnace control
RU2075840C1 (en) Method of realization of optimum control of electric furnace
JP2003133054A (en) Electrode elevation control system for a.c. arc furnace, a.c. arc furnace and operation method of a.c. arc furnace
JP2000291921A (en) Melting furnace for refuse incineration residue
JP3627491B2 (en) Operation method of DC arc furnace equipment
JPH05174965A (en) Arc furnace closing power control device
JP3198593B2 (en) Power control method for ash melting furnace
JP2526554B2 (en) Dissolution control method for AC arc furnace
Lupi et al. Arc Furnaces
CN104813739B (en) Apparatus and method for adjusting electric arc furnaces in the starting stage of fusion process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees