JP3629971B2 - Variable valve engine start control device - Google Patents

Variable valve engine start control device Download PDF

Info

Publication number
JP3629971B2
JP3629971B2 JP25661998A JP25661998A JP3629971B2 JP 3629971 B2 JP3629971 B2 JP 3629971B2 JP 25661998 A JP25661998 A JP 25661998A JP 25661998 A JP25661998 A JP 25661998A JP 3629971 B2 JP3629971 B2 JP 3629971B2
Authority
JP
Japan
Prior art keywords
fuel
intake
intake valve
valve
vaporize
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25661998A
Other languages
Japanese (ja)
Other versions
JP2000087768A (en
Inventor
啓介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25661998A priority Critical patent/JP3629971B2/en
Publication of JP2000087768A publication Critical patent/JP2000087768A/en
Application granted granted Critical
Publication of JP3629971B2 publication Critical patent/JP3629971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸気弁の開閉時期を任意に制御自由な可変動弁手段を備えたエンジンにおいて、始動性を改善した技術に関する。
【0002】
【従来の技術】
エンジン(内燃機関) においては、低温時や燃料性状により燃料が気化しにくい条件で始動性が悪化するため、従来より種々の対策が採用されており、例えば、可変バルブタイミング機構により吸気弁の閉時期遅らせつつ吸気弁の開弁時に燃料噴射して負圧で燃料を微粒化することにより始動性改善を図ったものがある(特開平6−323168号等参照)
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の始動時対策では、燃料の気化しにくさに応じて十分適切な混合気状態が得られるものではなく、なお、改善の余地があった。本発明は、このような従来の課題に着目してなされたもので、吸気弁の開時期の制御と燃料噴射との組合せにより、運転条件に見合った適切な混合気状態が得られ、以て始動性を可及的に改善した可変動弁の始動制御装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
このため、請求項1に係る発明は、
吸気弁の開閉時期を任意に制御自由な可変動弁手段を備えたエンジンにおいて、
燃料が気化しにくい始動条件を検出する始動条件検出手段と、
前記燃料が気化しにくい始動条件で、吸気行程で吸気弁を複数回開弁する吸気弁開弁制御手段と、
前記燃料が気化しにくい始動条件で、吸気ポートへの燃料噴射を、燃料の気化しにくさが大きいときは吸気行程下死点付近で吸気弁が開弁したときに行い、燃料の気化しにくさが小さいときは、吸気行程上死点付近で吸気弁が開弁したときに行う燃料噴射制御手段と、
を含んで構成したことを特徴とする。
【0005】
請求項1に係る発明によると、始動条件検出手段により、燃料が気化しにくい始動条件が検出されると、吸気弁開弁制御手段が、吸気行程で吸気弁が複数回に分けて開弁されることにより、後半の吸気下死点付近での開弁時には、シリンダ内に大きな負圧で吸気が行われるため強い吸気流動が発生し、また、その前の開弁である程度は吸気を吸入しておくことにより、前記負圧の大きさをある程度抑制してポンピングロスを低減し、クランキングを可能にする。
そして、燃料の気化しにくさが大きいときは、吸気行程下死点付近で吸気弁が開弁したときに燃料噴射を行うことにより、強い吸気流によって、短時間で十分に混合,気化が促進される。また、吸気弁閉期間中に燃料噴射する場合に比較して壁流となる燃料がなく直接シリンダ内に噴射されるので、シリンダへの輸送性に優れ、その結果、噴射燃料量を減少できる。また、吸気行程下死点付近では、シリンダ容積(表面積 ) が大きいため点火栓容積(表面積 ) /シリンダ容積(表面積 ) の比率が小さいので、燃料噴射しても、点火栓の被り,燻りを生じにくく、以て、燃料の混合,気化促進と相まって、良好な始動性を確保できる。
【0006】
これにより、吸気行程で吸気弁が複数回に分けて開弁されることにより、後半の吸気下死点付近での開弁時には、シリンダ内に大きな負圧で吸気が行われるため強い吸気流動が発生し、また、その前の開弁である程度は吸気を吸入しておくことにより、前記負圧の大きさをある程度抑制してポンピングロスを低減し、クランキングを可能にする。
【0007】
また、燃料の気化しにくさが小さく、点火栓の被り,燻りを心配しないでよいときは、吸気行程上死点付近で吸気弁が開弁したときに燃料噴射を行うことにより、早い燃料噴射で気化時間を稼ぐことにより、気化を促進する。これにより、良好な始動性を確保できる。
また、請求項2に係る発明は、前記始動条件検出手段は、エンジン温度が所定以下の低温時又は燃料の性状が所定以上重質であるときに、燃料が気化しにくい始動条件として検出することを特徴とする。
【0008】
請求項2に係る発明によると、エンジン温度(冷却水温度等) が所定以下の低温時や燃料の性状が重質であるときには、燃料が気化しにくいので、これを燃料が気化しにくい始動条件として検出する。
また、請求項3に係る発明は、
燃料の気化しにくさが大きいときでも気化しにくさが最大のときは、吸気ポートへの燃料噴射を、前記吸気行程下死点付近で吸気弁が開弁したときでの燃料噴射を行わず、吸気行程中の吸気弁の閉期間中にのみ行うことを特徴とする。
【0009】
請求項3に係る発明によると、
燃料の気化しにくさが最大のときは、吸気弁の開弁期間中に燃料噴射すると、点火栓の被り,燻りを生じて着火しにくくなるので、吸気弁の閉期間中に燃料噴射する。これにより、吸気ポートに噴射された燃料が吸気弁が開弁するまでに気化を促進され、吸気弁開弁後、シリンダ内に前記気化された燃料及び壁流状態の燃料が流入するため、点火栓の被り,燻りを防止でき、良好な始動性を確保できる。
【0011】
また、請求項4に係る発明は、燃料噴射期間が長い条件で、燃料噴射を複数回に分割して行うことを特徴とする。
【0012】
請求項4に係る発明によると、
燃料噴射弁の仕様等により、燃料噴射期間が長い場合は、複数回に分けて燃料噴射を行う。この場合、噴射量の比率を適切に設定することにより、気化を促進することができる。
また、請求項5に係る発明は、
吸気弁開弁制御手段は、吸気弁の開期間を燃料の気化しにくさのレベルに基づいて制御することを特徴とする。
【0013】
請求項5に係る発明によると、
例えば、燃料の気化しにくさが大きい場合には、後半の吸気弁の開期間をより下死点に近づけ、あるいは後半の開期間の比率をより大きくして吸気流動による燃料の気化促進効果を高め、それほど気化しにくくない場合には、吸気弁の開期間を下死点から遠ざけ、あるいは後半の開期間の比率を相対的に小さくしてポンピングロスを低減したりすることができる。
【0014】
【発明の実施の形態】
以下に本発明の実施形態を図に基づいて説明する。一実施の形態の全体構成を示す図2において、エンジン1には、弁駆動装置2により開閉を電子制御される吸気弁3及び排気弁4が装着されている。各気筒の吸気ポート5には、燃料噴射弁6が装着され、燃焼室7には点火栓8及び点火コイル9が装着されている。また、吸気通路の上流部で吸入空気質量流量を検出する吸入空気質量流量検出手段として熱線式流量計等のエアフロメータ10が装着されている。エンジン本体には各気筒の基準クランク角で基準信号を出力すると共に、微小クランク角毎に単位角信号を出力するクランク角センサ11が装着されている。この他、イグニッションスイッチ12,スタータスイッチ13,エンジン冷却水温度(以下水温という) を検出する水温センサ14,燃料性状の重軽質を検出する重軽質センサ15,大気圧を検出する大気圧センサ16が設けられる。
【0015】
これらセンサ類の検出信号はコントロールユニット17に出力され、コントロールユニット17は、これらの検出信号に基づいて前記燃料噴射弁6に燃料噴射信号を出力して燃料噴射制御を行い、前記点火コイル9に点火信号を出力して点火制御を行い、更に、前記弁駆動装置2に弁駆動信号を出力して吸気弁3及び排気弁4の開閉を制御する。また、水温,燃料の重軽質に基づいて燃料の気化しにくさを判定し、この判定結果に基づいて吸気弁を吸気行程中に複数回(本実施の形態では2回) 開弁するか否かを判定して吸気弁の開弁を制御する。また、該吸気弁の開閉とタイミングを同期させて燃料噴射制御を行う。
【0016】
次に、前記弁駆動装置2の構成を図3に示す。図3において弁駆動装置2は、シリンダヘッド上に設けられる非磁性材料製のハウジング21と、吸気弁3(又は排気弁4、以下吸気弁3で代表する) のステムに一体に設けられてハウジング21内に移動自由に収納されるアーマチュア22と、該アーマチュア22を吸引して吸気弁3を閉弁作動させる電磁力を発揮可能なようにアーマチュア22の上面に対向する位置でハウジング21内に固定配置される閉弁用電磁石23と、該アーマチュア22を吸引して吸気弁3を開弁作動させる電磁力を発揮可能なようにアーマチュア22の下面に対向する位置でハウジング21内に固定配置される開弁用電磁石24と、吸気弁3の閉弁方向に向けてアーマチュア22を付勢する閉弁側戻しバネ25と、吸気弁3の開弁方向に向けてアーマチュア22を付勢する開弁側戻しバネ26と、を備えて構成される。そして、閉弁用電磁石23と開弁用電磁石24とを共に消磁したときに、吸気弁3は全開位置と閉弁位置との間の略中央位置にあるように、閉弁側戻しバネ25と開弁側戻しバネ26とのバネ力が設定され、閉弁用電磁石23のみを励磁したときに吸気弁3は閉弁し、開弁用電磁石24のみを励磁したときに吸気弁3は開弁(全開) するように駆動される。該弁駆動装置2が吸気弁駆動手段を構成する。
【0017】
前記弁駆動装置2による吸気弁3及び排気弁4の吸・排気のための開閉時期は、エンジン1の運転状態に基づいて設定された目標開閉時期となるように制御されるが、始動時は、後述するようにして吸気弁の開弁を制御する。始動後の通常運転時は、特に、吸気弁3の吸気下死点前の閉時期IVCを、アクセル開度とエンジン回転速度、或いはこれらに基づいて設定された要求トルクなどに基づいて広範囲に可変制御して吸入空気量を制御するようになっている。
【0018】
以下に、前記始動時の吸気弁の開弁制御及び燃料噴射制御について説明する。
図4は、同上制御のメインルーチンのフローチャートを示す。
ステップ1では、イグニッションスイッチ12がONであるかを判定し、ONのときは、ステップ2で水温センサ14によって検出された水温TWを読み込む。
ステップ3では、可変動弁である吸・排気弁の初期化を行う。これは、前記弁駆動装置2の閉弁用電磁石23、開弁用電磁石24を交互に通電して共振させて振幅を増幅しつつ閉弁状態に保持するものである。
【0019】
ステップ4ではスタータを駆動してクランキングを開始し、気筒判別信号を検出した時点からステップ5でクランク角の検出を開始する。
そして、ステップ6で、始動時に吸気弁3を吸気行程中に2度開弁するか否かを判定する。
具体的には、以下のように行う。水温センサ14により水温TWが第1の所定値TW0(例えば0°C) 以下の低温時か否かを判定すると共に、重軽質センサ15により燃料の性状が第1の所定値H0以上の重質であるか否かを判定する。そして、前記第1の所定値TW0以下の低温時であるか又は第1の所定値H0以上の重質である場合は、吸気弁3を吸気行程中に2度開弁させる。またそうでない場合は、吸気弁3を吸気行程中に1度開弁させる通常制御(例えば略上死点から略下死点まで開弁させる制御) を行う。
【0020】
前記ステップ6で吸気弁3を2度開弁させると判定された場合は、ステップ7へ進んで、燃料噴射モードを燃料の気化のしにくさに基づいて切り換える。なお、そうでないと判定された場合は、ステップ8へ進んで通常の始動制御を行う。前記ステップ7へ進んだ場合の燃料噴射モードについて図5を参照して説明する。まず、水温TWが前記第1の所定値TW0以下の低温時で、かつ、燃料性状が前記第1の所定値H0以上の重質である場合は、以下の制御Aを実行する。
【0021】
また、水温TWが前記所定以下の低温時で、かつ、燃料性状が前記第1の所定値H0未満〜該H0より小さい第2の所定値H1以上の範囲にある中程度の軽質のときか、又は、燃料性状が第1の所定値H0以上の重質で、かつ、水温が第1の所定値TW0以上〜該TW0より高温の第2の所定値TW1未満の範囲にある中程度の水温のときは、以下のB制御を実行する。
【0022】
また、水温TWが前記所定以下の低温時で、かつ、燃料性状が前記第2の所定値H1未満の高程度の軽質のときか、又は、燃料性状が第1の所定値H0以上の重質で、かつ、水温が第2の所定値TW1以上の高程度の水温のときは、以下のC制御を実行する。
以下、前記A,B,Cの制御について、サブルーチンのフローチャートを示す図6〜図8に従って説明する。
【0023】
まず、制御Aを図6に基づいて説明する。
ステップ11では、吸気行程の上死点付近のクランク角度Aが検出されたかを判定し、検出されたときにステップ12へ進んで吸気弁3を開弁する。
ステップ13で前記吸気弁3を閉弁するクランク角Bが検出されたか否かを判定し、検出されたときにステップ14へ進んで吸気弁3を閉弁する。
【0024】
ステップ15でさらに進んだピストン中間点付近のクランク角Cが検出されたか否かを判定し、検出されたときにステップ16へ進んで設定された期間だけ燃料噴射を行う。
次いで、ステップ17で吸気行程の下死点よりのクランク角Dが検出されたか否かを判定し、検出されたときにステップ18へ進んで再び吸気弁3を開弁する。
【0025】
ステップ19で吸気行程の下死点付近のクランク角Eが検出されたか否かを判定し、検出されたときにステップ20に進んで吸気弁3を閉弁する。
即ち、吸気行程の上死点付近と下死点付近とでそれぞれ吸気弁3を開弁すると共に、これら2回の開弁期間の間の吸気弁の閉期間中に燃料を噴射する。
このようにすれば、吸気弁の閉期間中に吸気ポートに燃料噴射されるので、その後吸気弁が開弁するまでの間に、気化を促進され、また、吸気弁開弁後は、シリンダ内に前記吸気ポート内で気化された燃料及び壁流状態となっている燃料が流入するため、直接シリンダに燃料噴射される場合のような点火栓の被り,燻りを防止でき、極めて気化しにくい始動条件でも、良好な始動性を確保できる。
【0026】
なお、本実施の形態では、1回目と2回目の吸気弁の開期間の間の閉期間中に燃料噴射する構成としたが、1回目の吸気弁の開期間の前、排気行程から吸気行程初期にかけての間に燃料噴射する構成としてもよい。このように早期に燃料噴射する方が燃料のシリンダ内に滞在する時間が長く、それによって混合,気化がより促進されるが、一方、遅めに燃料噴射する方が燃料がシリンダ内に流入するときのシリンダ容積が大きくなってシリンダ容積(表面積) /点火栓容積(表面積) の比率が大きくなるので、より確実に点火栓の被り,燻りを防止できる。
【0027】
次に、Bの制御を図7に基づいて説明する。
ステップ21〜ステップ24では、前記Aの制御のステップ11〜ステップ14と同様にして吸気行程の上死点付近で吸気弁3を1回開弁する。
次いで、ステップ25では吸気行程の下死点よりのクランク角Dが検出されたか否かを判定し、検出されたときにステップ26へ進んで再び吸気弁3を開弁する。
【0028】
ステップ27では、吸気弁3開弁中のクランク角Fが検出されたか否かを判定し、検出されたときにステップ28へ進んで所定期間燃料噴射を行う。
次いで、ステップ29で吸気行程の下死点付近のクランク角Eが検出されたか否かを判定し、検出されたときにステップ30に進んで吸気弁3を閉弁する。
即ち、吸気行程の上死点付近と下死点付近とでそれぞれ吸気弁3を開弁すると共に、2回目の開弁期間中に燃料を噴射する。
【0029】
このようにすれば、吸気行程下死点付近で吸気弁が開弁したときに燃料噴射を行うことにより、強い吸気流によって、短時間で十分に混合,気化が促進される。また、吸気弁閉期間中に燃料噴射する場合に比較して壁流となる燃料がなく直接シリンダ内に噴射されるので、シリンダへの輸送性に優れ、その結果、噴射燃料量を減少できる。また、前記吸気行程下死点付近では、シリンダ容積(表面積) /点火栓容積(表面積) の比率が最も小さくなるので、シリンダ内に直接燃料噴射しても点火栓の被り,燻りを生じにくい。したがって、前記Aの制御を行うほどではないが、かなり気化しにくい始動条件の場合でも、燃料の混合,気化促進と相まって、良好な始動性を確保できる。
【0030】
次に、Cの制御を図8に基づいて説明する。
ステップ31,ステップ32で、前記Aの制御のステップ11,12と同様にして吸気行程の上死点付近で吸気弁3を開弁する。
次いで、ステップ33で該吸気弁3開弁中のクランク角Gが検出されたか否かを判定し、検出されたときにステップ34へ進んで所定期間燃料噴射を行う。
【0031】
その後、ステップ35でクランク角Bが検出されたか否かを判定し、検出されたときにステップ36へ進んで吸気弁3を閉弁する。
次いで、ステップ37で吸気行程の下死点よりのクランク角Dが検出されたか否かを判定し、検出されたときにステップ38へ進んで再び吸気弁3を開弁する。
ステップ39で吸気行程の下死点付近のクランク角Eが検出されたか否かを判定し、検出されたときにステップ40に進んで吸気弁3を閉弁する。
【0032】
即ち、吸気行程の上死点付近と下死点付近とでそれぞれ吸気弁3を開弁すると共に、1回目の開弁期間中に燃料を噴射する。
このように燃料の気化しにくさが比較的小さく、点火栓の被り,燻りを心配しないでよいときは、吸気行程上死点付近で吸気弁が開弁したときに燃料噴射を行うことにより、吸気ポート中に壁流の残すことなく、シリンダ内への早期の燃料噴射で気化時間を稼ぐことにより、混合,気化が促進され、良好な始動性を確保できる。
【0033】
なお、以上示した実施の形態では、燃料噴射を1回のみ行うものを示したが、燃料噴射弁の仕様その他特に燃料が気化しにくいときに燃料噴射量が多く設定された場合は、2回以上に分けて噴射する構成とすることもできる。この場合、吸気弁の2回の閉期間中(1回目の開期間前と2開目の開期間前) や2回の開期間中にそれぞれ燃料噴射したり、選択された所定の閉期間中と開期間中とに1回ずつ燃料噴射したりすることができ、燃料の気化のしにくさに応じて適宜選択すればよい。
【0034】
また、前記大気圧センサ16によって検出される大気圧が低い高地等では、空気密度の低下により低地に比較して燃料が気化しやすくなるため、燃料噴射量を減少補正して点火栓の被り,燻りを防止する制御を一般に行うが、これと並行して、又はその代わりに、例えば、前記吸気弁を2回開弁するためのしきい値である水温TW0,TW1をそれぞれ低温側に補正し、重質のレベルH0,H1をそれぞれ大(重質) 側に補正して、A,B,Cの各制御が水温,燃料性状について燃料がより気化しにくい条件で実行されるようにしてもよい。
【0035】
この他、燃料の気化しにくさのレベルに基づいて、吸気弁の複数の開弁の時期や期間を変えるようにしてもよい。例えば、燃料の気化しにくさが大きい場合には、後半の吸気弁の開期間をより下死点に近づけ、あるいは後半の開期間の比率をより大きくして吸気流動による燃料の気化促進効果を高め、それほど気化しにくくない場合には、吸気弁の開期間を下死点から遠ざけ、あるいは後半の開期間の比率を相対的に小さくしてポンピングロスを低減したりすることができる。
【0036】
なお、本実施の形態では、燃料性状の重軽質を重軽質センサで検出する構成としたため、始動直前に燃料が交換された場合にも対処できる。これに対し、専用の重軽質センサを設けることなく、重軽質を検出することも可能である。例えば、クランキング状態で燃焼前に、酸素センサ等により排気通路中の空燃比を検出し、リッチ状態となる時間が早ければ気化しやすい軽質燃料であり、リッチとなる時間が遅ければ気化しにくい重質燃料であるというように検出することができる。
【0037】
この他、燃料交換直後の始動時には対処できないが、始動後のエンジン運転状態に基づいて重軽質を検出することも可能であり、検出結果を記憶しておけば、直前での燃料交換があった場合を除き、次回の始動時に対処することができる。例えば、所定の定常条件で燃焼圧に基づいてサージを検出し、サージレベルが大きいときほど重質と検出する等の公知方法を採用することができる。
【図面の簡単な説明】
【図1】本発明に係る発明の構成・機能を示すブロック図。
【図2】第1の実施の形態に係るシステム構成図。
【図3】弁駆動装置の構成を示す断面図。
【図4】第1の実施の形態に係る吸気弁開弁制御及び燃料噴射制御のメインルーチンを示すフローチャート。
【図5】第1の実施の形態における燃料の気化しにくさに応じた制御の切り換えを説明するための図。
【図6】第1の実施の形態に係る制御Aのサブルーチンを示すフローチャート。
【図7】第1の実施の形態に係る制御Bのサブルーチンを示すフローチャート。
【図8】第1の実施の形態に係る制御Cのサブルーチンを示すフローチャート。
【符号の説明】
1 エンジン
2 弁駆動装置
3 吸気弁
4 排気弁
6 燃料噴射弁
7 燃焼室
10 エアフロメータ
11 クランク角センサ
12 イグニッションスイッチ
13 スタータスイッチ
14 水温センサ
15 重軽質センサ
16 大気圧センサ
17 コントロールユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for improving startability in an engine provided with variable valve operating means that can freely control the opening / closing timing of an intake valve.
[0002]
[Prior art]
In an engine (internal combustion engine), the startability deteriorates at low temperatures or under conditions where the fuel is difficult to vaporize due to the fuel properties. Therefore, various countermeasures have been adopted conventionally. For example, the intake valve is closed by a variable valve timing mechanism. There is a system in which startability is improved by injecting fuel when the intake valve is opened while delaying the timing and atomizing the fuel with a negative pressure (see JP-A-6-323168, etc.)
[0003]
[Problems to be solved by the invention]
However, such a conventional countermeasure at the time of starting does not provide a sufficiently appropriate mixture state according to the difficulty of vaporizing the fuel, and there is still room for improvement. The present invention has been made paying attention to such a conventional problem, and by combining the control of the opening timing of the intake valve and the fuel injection, an appropriate mixture state suitable for the operating conditions can be obtained. It is an object of the present invention to provide a variable valve start control device with improved startability as much as possible.
[0004]
[Means for Solving the Problems]
For this reason, the invention according to claim 1
In an engine equipped with variable valve means that can freely control the opening and closing timing of the intake valve,
Starting condition detecting means for detecting a starting condition in which the fuel is hard to vaporize;
An intake valve opening control means for opening the intake valve a plurality of times during an intake stroke under a start condition where the fuel is less likely to vaporize;
When the fuel is difficult to vaporize under the starting conditions where the fuel is difficult to vaporize, fuel injection is performed when the intake valve opens near the bottom dead center of the intake stroke. When the stiffness is small, the fuel injection control means to be performed when the intake valve opens near the top dead center of the intake stroke ,
It is characterized by including.
[0005]
According to the first aspect of the present invention, when the starting condition detecting means detects a starting condition in which the fuel is not easily vaporized, the intake valve opening control means opens the intake valve in a plurality of times during the intake stroke. As a result, when the valve is opened near the intake bottom dead center in the latter half, strong intake flow occurs because intake is performed with a large negative pressure in the cylinder. Thus, the magnitude of the negative pressure is suppressed to some extent to reduce the pumping loss and enable cranking.
If the fuel is difficult to vaporize, fuel injection is performed when the intake valve is opened near the bottom dead center of the intake stroke, thereby facilitating sufficient mixing and vaporization in a short time with a strong intake flow. Is done. Further, since there is no fuel that becomes a wall flow and fuel is directly injected into the cylinder as compared with the case where fuel is injected during the intake valve closing period, it is excellent in transportability to the cylinder, and as a result, the amount of injected fuel can be reduced. In the vicinity of the bottom dead center of the intake stroke, the ratio of the spark plug volume (surface area ) / cylinder volume (surface area ) is small because the cylinder volume (surface area ) is large. Therefore, good startability can be secured in combination with fuel mixing and vaporization promotion.
[0006]
As a result, the intake valve is opened several times during the intake stroke, and when the valve is opened near the intake bottom dead center in the latter half, intake is performed with a large negative pressure in the cylinder, so a strong intake flow is generated. In addition, by sucking in intake air to some extent by opening the valve before that, the magnitude of the negative pressure is suppressed to some extent to reduce pumping loss and enable cranking.
[0007]
Also, when it is difficult to vaporize the fuel and there is no need to worry about the cover of the spark plug and the sag, it is possible to perform fast fuel injection by performing fuel injection when the intake valve opens near the top dead center of the intake stroke. Promote vaporization by earning vaporization time. Thereby, favorable startability can be secured.
According to a second aspect of the present invention, the starting condition detecting means detects the starting condition as a starting condition that makes it difficult for the fuel to vaporize when the engine temperature is a low temperature lower than a predetermined value or when the fuel property is higher than a predetermined value. It is characterized by.
[0008]
According to the second aspect of the present invention, when the engine temperature (cooling water temperature or the like) is low, such as when the engine temperature (cooling water temperature, etc.) is low or when the fuel is heavy, the fuel is difficult to vaporize. Detect as.
The invention according to claim 3
Even when the fuel is difficult to vaporize, if the vaporization difficulty is the maximum, the fuel injection to the intake port is not performed when the intake valve is opened near the bottom dead center of the intake stroke. , And only during the closing period of the intake valve during the intake stroke.
[0009]
According to the invention of claim 3,
When the fuel is hard to vaporize, if the fuel is injected during the opening period of the intake valve, it is difficult to ignite due to the cover of the spark plug, so that the fuel is injected during the closing period of the intake valve. As a result, vaporization of the fuel injected into the intake port is promoted until the intake valve opens, and after the intake valve is opened, the vaporized fuel and the fuel in the wall flow state flow into the cylinder. Cap and cover can be prevented and good startability can be secured.
[0011]
The invention according to claim 4 is characterized in that fuel injection is performed in a plurality of times under the condition that the fuel injection period is long.
[0012]
According to the invention of claim 4,
When the fuel injection period is long due to the specifications of the fuel injection valve, etc., the fuel injection is performed in a plurality of times. In this case, vaporization can be promoted by appropriately setting the ratio of the injection amount.
The invention according to claim 5
The intake valve opening control means controls the opening period of the intake valve based on the level of difficulty of vaporizing the fuel.
[0013]
According to the invention of claim 5,
For example, when the fuel is difficult to vaporize, the opening period of the intake valve in the latter half is brought closer to the bottom dead center, or the ratio of the opening period in the latter half is increased to increase the fuel vaporization promotion effect by the intake flow. If it is not so difficult to vaporize, the opening period of the intake valve can be kept away from the bottom dead center, or the ratio of the opening period in the latter half can be made relatively small to reduce the pumping loss.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing the overall configuration of an embodiment, an intake valve 3 and an exhaust valve 4 whose opening and closing are electronically controlled by a valve driving device 2 are mounted on the engine 1. A fuel injection valve 6 is attached to the intake port 5 of each cylinder, and an ignition plug 8 and an ignition coil 9 are attached to the combustion chamber 7. In addition, an air flow meter 10 such as a hot-wire flow meter is mounted as an intake air mass flow rate detecting means for detecting the intake air mass flow rate upstream of the intake passage. The engine body is provided with a crank angle sensor 11 that outputs a reference signal at the reference crank angle of each cylinder and outputs a unit angle signal for each minute crank angle. In addition, there are an ignition switch 12, a starter switch 13, a water temperature sensor 14 for detecting the engine coolant temperature (hereinafter referred to as water temperature), a heavy / light sensor 15 for detecting heavy / light fuel properties, and an atmospheric pressure sensor 16 for detecting atmospheric pressure. Provided.
[0015]
Detection signals from these sensors are output to the control unit 17, and the control unit 17 outputs a fuel injection signal to the fuel injection valve 6 based on these detection signals to perform fuel injection control. An ignition signal is output to perform ignition control, and further, a valve driving signal is output to the valve driving device 2 to control opening and closing of the intake valve 3 and the exhaust valve 4. Further, it is determined whether or not the fuel is difficult to vaporize based on the water temperature and the heavy and light fuel, and whether or not the intake valve is opened a plurality of times (twice in the present embodiment) during the intake stroke based on the determination result. Is determined to control the opening of the intake valve. In addition, fuel injection control is performed by synchronizing the timing of opening and closing the intake valve.
[0016]
Next, the configuration of the valve drive device 2 is shown in FIG. In FIG. 3, the valve drive device 2 is provided integrally with a non-magnetic material housing 21 provided on the cylinder head and a stem of an intake valve 3 (or an exhaust valve 4, hereinafter referred to as an intake valve 3). The armature 22 that is freely moved in the housing 21 and fixed in the housing 21 at a position facing the upper surface of the armature 22 so as to exert an electromagnetic force for sucking the armature 22 and closing the intake valve 3. The valve closing electromagnet 23 and the armature 22 are fixedly disposed in the housing 21 at a position facing the lower surface of the armature 22 so as to exert an electromagnetic force that attracts the armature 22 and opens the intake valve 3. A valve-opening electromagnet 24, a valve-closing return spring 25 that biases the armature 22 toward the valve closing direction of the intake valve 3, and an armature 2 toward the valve opening direction of the intake valve 3. And a valve-opening return spring 26 that urges 2. Then, when both the valve closing electromagnet 23 and the valve opening electromagnet 24 are demagnetized, the valve closing side return spring 25 and the valve closing side return spring 25 are arranged so that the intake valve 3 is at a substantially central position between the fully opened position and the valve closing position. When the spring force with the valve-opening return spring 26 is set and only the valve closing electromagnet 23 is excited, the intake valve 3 is closed, and when only the valve opening electromagnet 24 is excited, the intake valve 3 is opened. It is driven to fully open. The valve driving device 2 constitutes intake valve driving means.
[0017]
The opening / closing timing for intake / exhaust of the intake valve 3 and the exhaust valve 4 by the valve drive device 2 is controlled to be a target opening / closing timing set based on the operating state of the engine 1. The intake valve opening is controlled as will be described later. During normal operation after startup, in particular, the closing timing IVC before the intake bottom dead center of the intake valve 3 can be varied over a wide range based on the accelerator opening, the engine speed, or the required torque set based on these. The intake air amount is controlled by controlling.
[0018]
The intake valve opening control and fuel injection control at the time of starting will be described below.
FIG. 4 shows a flowchart of the main routine of the control described above.
In step 1, it is determined whether the ignition switch 12 is ON. If ON, the water temperature TW detected by the water temperature sensor 14 in step 2 is read.
In step 3, the intake / exhaust valves, which are variable valves, are initialized. In this configuration, the valve closing electromagnet 23 and the valve opening electromagnet 24 of the valve driving device 2 are alternately energized and resonated to amplify the amplitude and hold the valve closed.
[0019]
In step 4, cranking is started by driving the starter, and detection of the crank angle is started in step 5 from the time when the cylinder discrimination signal is detected.
Then, in step 6, it is determined whether or not the intake valve 3 is opened twice during the intake stroke at the time of starting.
Specifically, this is performed as follows. The water temperature sensor 14 determines whether or not the water temperature TW is at a low temperature below a first predetermined value TW0 (for example, 0 ° C.), and the heavy and light sensor 15 determines that the fuel property is heavy at a first predetermined value H0 or higher. It is determined whether or not. Then, when the temperature is lower than the first predetermined value TW0 or when the temperature is higher than the first predetermined value H0, the intake valve 3 is opened twice during the intake stroke. Otherwise, normal control is performed to open the intake valve 3 once during the intake stroke (for example, control to open from approximately top dead center to approximately bottom dead center).
[0020]
If it is determined in step 6 that the intake valve 3 is to be opened twice, the routine proceeds to step 7 where the fuel injection mode is switched based on the difficulty of vaporizing the fuel. If it is determined that this is not the case, the routine proceeds to step 8 where normal start control is performed. The fuel injection mode when proceeding to step 7 will be described with reference to FIG. First, when the water temperature TW is a low temperature equal to or lower than the first predetermined value TW0 and the fuel property is heavy such as the first predetermined value H0, the following control A is executed.
[0021]
In addition, when the water temperature TW is a low temperature below the predetermined value and the fuel property is moderately light in the range of the first predetermined value H0 less than the second predetermined value H1 smaller than the H0, or Alternatively, the fuel property is heavy with the first predetermined value H0 or higher, and the water temperature is in the range of the first predetermined value TW0 or higher to the second predetermined value TW1 higher than the TW0 and lower than the second predetermined value TW1. If so, the following B control is executed.
[0022]
Further, when the water temperature TW is a low temperature lower than the predetermined value and the fuel property is light and light and less than the second predetermined value H1, or the fuel property is heavy with the first predetermined value H0 or higher. And, when the water temperature is a high water temperature equal to or higher than the second predetermined value TW1, the following C control is executed.
Hereinafter, the control of A, B, and C will be described with reference to FIGS.
[0023]
First, the control A will be described with reference to FIG.
In step 11, it is determined whether the crank angle A near the top dead center of the intake stroke is detected. When the crank angle A is detected, the routine proceeds to step 12 where the intake valve 3 is opened.
In step 13, it is determined whether or not the crank angle B for closing the intake valve 3 has been detected. If detected, the routine proceeds to step 14 where the intake valve 3 is closed.
[0024]
In step 15, it is determined whether or not the crank angle C in the vicinity of the piston intermediate point has been detected, and if detected, the process proceeds to step 16 and fuel injection is performed for the set period.
Next, at step 17, it is determined whether or not the crank angle D from the bottom dead center of the intake stroke has been detected. When it is detected, the routine proceeds to step 18 where the intake valve 3 is opened again.
[0025]
In step 19, it is determined whether or not a crank angle E near the bottom dead center of the intake stroke has been detected. If detected, the routine proceeds to step 20 where the intake valve 3 is closed.
That is, the intake valve 3 is opened near the top dead center and the bottom dead center of the intake stroke, respectively, and fuel is injected during the closed period of the intake valve between these two valve opening periods.
In this way, fuel is injected into the intake port while the intake valve is closed, so that vaporization is promoted until the intake valve is opened thereafter. Since the fuel vaporized in the intake port and the fuel in the wall flow state flow in, it is possible to prevent the ignition plug from being worn and beaten as in the case of direct fuel injection into the cylinder, and to start very difficult to vaporize Good startability can be secured even under conditions.
[0026]
In the present embodiment, the fuel is injected during the closing period between the first and second intake valve opening periods. However, before the first intake valve opening period, the exhaust stroke to the intake stroke are performed. The fuel injection may be performed during the initial period. In this way, it takes longer time to inject the fuel in the cylinder, so that mixing and vaporization are further promoted. On the other hand, in the case of injecting the fuel later, the fuel flows into the cylinder. As the cylinder volume increases, the ratio of cylinder volume (surface area) / ignition plug volume (surface area) increases, so that it is possible to more reliably prevent the ignition plug from being covered and beaten.
[0027]
Next, the control of B will be described with reference to FIG.
In steps 21 to 24, the intake valve 3 is opened once near the top dead center of the intake stroke in the same manner as in steps 11 to 14 of the control A.
Next, at step 25, it is determined whether or not the crank angle D from the bottom dead center of the intake stroke has been detected. When it is detected, the routine proceeds to step 26 where the intake valve 3 is opened again.
[0028]
In step 27, it is determined whether or not the crank angle F during the opening of the intake valve 3 has been detected. If detected, the routine proceeds to step 28 where fuel injection is performed for a predetermined period.
Next, at step 29, it is determined whether or not the crank angle E near the bottom dead center of the intake stroke has been detected. When it is detected, the routine proceeds to step 30 where the intake valve 3 is closed.
That is, the intake valve 3 is opened near the top dead center and the bottom dead center of the intake stroke, respectively, and fuel is injected during the second valve opening period.
[0029]
In this way, fuel injection is performed when the intake valve is opened near the bottom dead center of the intake stroke, so that mixing and vaporization are sufficiently accelerated in a short time by a strong intake flow. Further, since there is no fuel that becomes a wall flow and fuel is directly injected into the cylinder as compared with the case where fuel is injected during the intake valve closing period, it is excellent in transportability to the cylinder, and as a result, the amount of injected fuel can be reduced. Further, in the vicinity of the bottom dead center of the intake stroke, the ratio of the cylinder volume (surface area) / the spark plug volume (surface area) is the smallest, so that even if fuel is directly injected into the cylinder, it is difficult for the spark plug to be covered and beaten. Therefore, even when the starting condition is not so high as to perform the control A, it is possible to ensure good startability in combination with fuel mixing and vaporization promotion.
[0030]
Next, the control of C will be described with reference to FIG.
In steps 31 and 32, the intake valve 3 is opened near the top dead center of the intake stroke in the same manner as in steps 11 and 12 of the control A.
Next, at step 33, it is determined whether or not the crank angle G during opening of the intake valve 3 has been detected. When it is detected, the routine proceeds to step 34 where fuel injection is performed for a predetermined period.
[0031]
Thereafter, it is determined in step 35 whether or not the crank angle B has been detected, and when it is detected, the routine proceeds to step 36 where the intake valve 3 is closed.
Next, at step 37, it is determined whether or not the crank angle D from the bottom dead center of the intake stroke has been detected. When it is detected, the routine proceeds to step 38, where the intake valve 3 is opened again.
In step 39, it is determined whether or not the crank angle E near the bottom dead center of the intake stroke has been detected. If detected, the routine proceeds to step 40, where the intake valve 3 is closed.
[0032]
That is, the intake valve 3 is opened near the top dead center and the bottom dead center of the intake stroke, respectively, and fuel is injected during the first valve opening period.
In this way, when the difficulty of vaporizing the fuel is relatively small and it is not necessary to worry about the cover of the spark plug and the stagnation, by performing fuel injection when the intake valve opens near the top dead center of the intake stroke, Mixing and vaporization can be promoted and good startability can be ensured by gaining vaporization time by early fuel injection into the cylinder without leaving a wall flow in the intake port.
[0033]
In the above-described embodiment, the fuel injection is performed only once. However, when the fuel injection amount is set to a large value when the fuel injection valve is otherwise difficult to vaporize, the fuel injection is performed twice. It can also be set as the structure injected separately in the above. In this case, fuel is injected during the two closing periods of the intake valve (before the first opening period and before the opening period of the second opening) or during the two opening periods, or during the selected predetermined closing period. The fuel can be injected once during the open period and can be selected as appropriate according to the difficulty of vaporizing the fuel.
[0034]
Also, in high altitudes where the atmospheric pressure detected by the atmospheric pressure sensor 16 is low, the fuel is more likely to vaporize compared to low altitudes due to a decrease in air density. In general, control for preventing the sag is performed, but in parallel with or instead of this, for example, the water temperatures TW0 and TW1, which are threshold values for opening the intake valve twice, are corrected to the low temperature side, respectively. The heavy levels H0 and H1 are corrected to the large (heavy) side so that the controls A, B, and C are executed under conditions where the water temperature and fuel properties are less likely to vaporize the fuel. Good.
[0035]
In addition, the timings and periods of the plurality of intake valves may be changed based on the level of difficulty of vaporizing the fuel. For example, when the fuel is difficult to vaporize, the opening period of the intake valve in the latter half is brought closer to the bottom dead center, or the ratio of the opening period in the latter half is increased to increase the fuel vaporization promotion effect by the intake flow. If it is not so difficult to vaporize, the opening period of the intake valve can be kept away from the bottom dead center, or the ratio of the opening period in the latter half can be made relatively small to reduce the pumping loss.
[0036]
In the present embodiment, since the heavy and light fuel properties are detected by the heavy and light sensor, it is possible to cope with the case where the fuel is replaced immediately before starting. On the other hand, it is possible to detect heavy and light without providing a dedicated heavy and light sensor. For example, before combustion in the cranking state, the air-fuel ratio in the exhaust passage is detected by an oxygen sensor or the like, and it is a light fuel that is easy to vaporize when the rich time is early, and is difficult to vaporize when the rich time is late. It can be detected as heavy fuel.
[0037]
In addition, although it cannot be dealt with at the time of starting immediately after fuel replacement, it is also possible to detect heavy and light based on the engine operating state after starting, and if the detection result is stored, there was a fuel replacement immediately before Except for cases, it can be dealt with at the next start-up. For example, it is possible to adopt a known method such as detecting a surge based on the combustion pressure under a predetermined steady condition and detecting the heavier as the surge level is larger.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration / function of an invention according to the present invention.
FIG. 2 is a system configuration diagram according to the first embodiment.
FIG. 3 is a cross-sectional view showing a configuration of a valve driving device.
FIG. 4 is a flowchart showing a main routine of intake valve opening control and fuel injection control according to the first embodiment.
FIG. 5 is a diagram for explaining switching of control according to the difficulty of vaporizing fuel in the first embodiment.
FIG. 6 is a flowchart showing a subroutine of control A according to the first embodiment.
FIG. 7 is a flowchart showing a subroutine of control B according to the first embodiment.
FIG. 8 is a flowchart showing a subroutine of control C according to the first embodiment.
[Explanation of symbols]
1 Engine 2 Valve Drive 3 Intake Valve 4 Exhaust Valve 6 Fuel Injection Valve 7 Combustion Chamber 10 Air Flow Meter 11 Crank Angle Sensor 12 Ignition Switch 13 Starter Switch 14 Water Temperature Sensor 15 Heavy Light Sensor 16 Atmospheric Pressure Sensor 17 Control Unit

Claims (5)

吸気弁の開閉時期を任意に制御自由な可変動弁手段を備えたエンジンにおいて、
燃料が気化しにくい始動条件を検出する始動条件検出手段と、
前記燃料が気化しにくい始動条件で、吸気行程で吸気弁を複数回開弁する吸気弁開弁制御手段と、
前記燃料が気化しにくい始動条件で、吸気ポートへの燃料噴射を、燃料の気化しにくさが大きいときは吸気行程下死点付近で吸気弁が開弁したときに行い、燃料の気化しにくさが小さいときは、吸気行程上死点付近で吸気弁が開弁したときに行う燃料噴射制御手段と、
を含んで構成したことを特徴とする可変動弁エンジンの始動制御装置。
In an engine equipped with variable valve means that can freely control the opening and closing timing of the intake valve,
Starting condition detecting means for detecting a starting condition in which the fuel is hard to vaporize;
An intake valve opening control means for opening the intake valve a plurality of times during an intake stroke under a start condition where the fuel is less likely to vaporize;
When the fuel is difficult to vaporize under the starting conditions where the fuel is difficult to vaporize, fuel injection is performed when the intake valve opens near the bottom dead center of the intake stroke. When the stiffness is small, the fuel injection control means to be performed when the intake valve opens near the top dead center of the intake stroke ,
A start control device for a variable valve engine, comprising:
前記始動条件検出手段は、エンジン温度が所定以下の低温時又は燃料の性状が所定以上重質であるときに、燃料が気化しにくい始動条件として検出することを特徴とする請求項1に記載の可変動弁エンジンの始動制御装置。2. The start condition detecting unit according to claim 1, wherein the start condition detecting unit detects a start condition that makes it difficult for the fuel to vaporize when the engine temperature is a low temperature below a predetermined value or when the fuel property is a predetermined value or more. Start control device for variable valve engine. 燃料の気化しにくさが大きいときでも気化しにくさが最大のときは、吸気ポートへの燃料噴射を、前記吸気行程下死点付近で吸気弁が開弁したときでの燃料噴射を行わず、吸気行程中の吸気弁の閉期間中にのみ行うことを特徴とする請求項1又は請求項2に記載の可変動弁エンジンの始動制御装置。Even when the fuel is difficult to vaporize, if the vaporization difficulty is the maximum, the fuel injection to the intake port is not performed when the intake valve is opened near the bottom dead center of the intake stroke. , the start control apparatus for a variable valve engine according to claim 1 or claim 2, characterized in that only in between closing time of the intake valve during the intake stroke. 燃料噴射期間が長い条件で、燃料噴射を複数回に分割して行うことを特徴とする請求項1又は請求項2に記載の可変動弁エンジンの始動制御装置。3. The variable valve engine start control device according to claim 1, wherein the fuel injection is divided into a plurality of times under a condition that the fuel injection period is long. 吸気弁開弁制御手段は、吸気弁の開期間を燃料の気化しにくさのレベルに基づいて制御することを特徴とする請求項1又は請求項2に記載の可変動弁エンジンの始動制御装置。The variable valve engine start control apparatus according to claim 1 or 2, wherein the intake valve opening control means controls the opening period of the intake valve based on a level of difficulty of vaporizing the fuel. .
JP25661998A 1998-09-10 1998-09-10 Variable valve engine start control device Expired - Fee Related JP3629971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25661998A JP3629971B2 (en) 1998-09-10 1998-09-10 Variable valve engine start control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25661998A JP3629971B2 (en) 1998-09-10 1998-09-10 Variable valve engine start control device

Publications (2)

Publication Number Publication Date
JP2000087768A JP2000087768A (en) 2000-03-28
JP3629971B2 true JP3629971B2 (en) 2005-03-16

Family

ID=17295142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25661998A Expired - Fee Related JP3629971B2 (en) 1998-09-10 1998-09-10 Variable valve engine start control device

Country Status (1)

Country Link
JP (1) JP3629971B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018303A1 (en) * 2000-04-13 2001-10-25 Bosch Gmbh Robert Procedure for charge control of internal combustion engine entails opening of at least one inlet valve inside load change in cylinder in at least two phases separated in time from each other
ATE372445T1 (en) * 2005-05-24 2007-09-15 Fiat Ricerche DEVICE AND METHOD FOR CONTROLLING LOAD AND COMBUSTION IN AN INTERNAL INTERNAL ENGINE BY VALVE ACTUATION WITH MULTIPLE VALVE STROKE PER CYCLE
JP2006291971A (en) * 2006-06-28 2006-10-26 Denso Corp Fuel injection control device of cylinder injection type internal combustion engine
JP4872655B2 (en) * 2006-12-25 2012-02-08 日産自動車株式会社 ENGINE CONTROL METHOD AND CONTROL DEVICE
JP5227235B2 (en) * 2009-03-31 2013-07-03 大阪瓦斯株式会社 engine
JP6330260B2 (en) * 2013-05-21 2018-05-30 日産自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2000087768A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US9222443B2 (en) Method for purging fuel vapors to an engine
US8141533B2 (en) Control apparatus and method for internal combustion engine
KR100758422B1 (en) Internal combustion engine and control method for the same
EP1054150A2 (en) Diesel engine control on engine-stop
JP3669175B2 (en) Preignition prevention device for variable valve engine
JP4094195B2 (en) Engine intake air amount control device
JP3627601B2 (en) Engine intake air amount control device
JP3629971B2 (en) Variable valve engine start control device
JP2001271682A (en) Intake control device for engine
JP3601386B2 (en) Engine intake air control system
JP4038979B2 (en) Engine control device
JP3598919B2 (en) Engine fuel pressure control device
JP4258453B2 (en) Intake control device for internal combustion engine
JP2003035167A (en) Variable valve control device for internal combustion engine
JP3772550B2 (en) Variable valve engine start control device
JPH05263698A (en) Fuel pressure control device of internal combustion engine of fuel injection type
JPS63143349A (en) Suction device for engine
JPH11270387A (en) Starting control device of internal combustion engine
JP3449233B2 (en) Electromagnetic valve device for internal combustion engine
JP3684964B2 (en) Engine intake air amount control device
JP2004076706A (en) Variable valve mechanism control system for internal combustion engine
JP2018141404A (en) Internal combustion engine
JP3398567B2 (en) In-cylinder direct injection internal combustion engine with variable valve timing means
JPH03100370A (en) Idling control device for air fuel injection type two-cycle engine
JP3985355B2 (en) Valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees