JP2003035167A - Variable valve control device for internal combustion engine - Google Patents

Variable valve control device for internal combustion engine

Info

Publication number
JP2003035167A
JP2003035167A JP2001220547A JP2001220547A JP2003035167A JP 2003035167 A JP2003035167 A JP 2003035167A JP 2001220547 A JP2001220547 A JP 2001220547A JP 2001220547 A JP2001220547 A JP 2001220547A JP 2003035167 A JP2003035167 A JP 2003035167A
Authority
JP
Japan
Prior art keywords
valve
intake
valve control
intake valve
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001220547A
Other languages
Japanese (ja)
Inventor
Masaomi Inoue
正臣 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001220547A priority Critical patent/JP2003035167A/en
Publication of JP2003035167A publication Critical patent/JP2003035167A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To improve engine starting and the precision of air/fuel ratio control, after the start of the engine. SOLUTION: During engine start (cranking), the closing timing of an intake valve 13 is controlled near the bottom dead center of air intake to enhance an effective compression ratio, and by controlling the opening timing of the intake valve 13 near the top dead center of air intake, a valve overlap amount with an exhaust valve is made to be approximately zero to lessen an inside EGR amount (remaining gas amount), thus improving the ignitability and combustibility at engine start. During warming up after start finishing, the working angle and lifting amount of intake valve 13 are made smaller than those at a normal operation to lessen the opening period of intake valve 13 and the cross section of intake air flow path. Further, by controlling the opening timing of intake valve 13 to the vicinity of or more advance angle side than the top dead center of intake air, the intake valve 13 is opened at a stage, when the difference between an intake pipe pressure and cylinder internal pressure is small. Thereby, the rapid intake of wet fuel immediately, after opening the intake valve, is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の吸気バ
ルブの開閉制御方法を改善した内燃機関の可変バルブ制
御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable valve control device for an internal combustion engine, which has an improved open / close control method for intake valves of the internal combustion engine.

【0002】[0002]

【従来の技術】近年、車両に搭載される内燃機関におい
ては、出力向上、燃費節減、排気エミッション低減等を
目的として、可変バルブ制御装置を採用したものが増加
しつつある。現在、実用化されている可変バルブ制御装
置は、吸気バルブのバルブタイミングを可変するものが
多く、例えば、部分負荷時に吸気バルブのバルブタイミ
ングを進角させてバルブオーバーラップ量を増大させる
ことで、内部EGR量(残留ガス量)を増加させてポン
ピング損失を低減し、燃費を向上させるようにしてい
る。
2. Description of the Related Art In recent years, an increasing number of internal combustion engines mounted on a vehicle employ a variable valve control device for the purpose of improving output, reducing fuel consumption, and reducing exhaust emissions. Many of the variable valve control devices that are currently in practical use change the valve timing of the intake valve. For example, by advancing the valve timing of the intake valve during partial load to increase the valve overlap amount, The internal EGR amount (residual gas amount) is increased to reduce pumping loss and improve fuel efficiency.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の一般
的な可変バルブタイミング制御装置では、図3(b)に
示すように、吸気バルブの作用角(吸気バルブの開弁期
間)が、高回転・全負荷時に十分な吸気性能が得られる
ような大きな作用角(例えば240℃A)に固定され、
しかも、始動時にはバルブオーバーラップ量を最小にす
るために吸気バルブのバルブタイミングの進角量がほぼ
0(吸入バルブの開弁タイミングが吸入上死点付近)に
設定されるため、始動時の吸気バルブの閉弁タイミング
が吸入下死点よりもかなり遅角側(一般にABDC40
℃よりも遅角側)にずれてしまう。このため、ピストン
が吸入下死点からある程度上昇してからでないと筒内ガ
スの圧縮が開始されないため、図6に示すように、始動
時の有効圧縮比(筒内圧力)が低くなって筒内温度を十
分に上昇させることができない。その結果、始動時の着
火性・燃焼性が低下し、特に、寒冷時の冷間始動時に
は、この影響が顕著に現れて、始動性が悪化することが
あった。
However, in the conventional general variable valve timing control device, as shown in FIG. 3B, the working angle of the intake valve (intake valve opening period) is high. -Fixed at a large working angle (for example, 240 ° C) so that sufficient intake performance can be obtained at full load,
Moreover, in order to minimize the valve overlap amount at the time of starting, the advance amount of the valve timing of the intake valve is set to almost 0 (the opening timing of the intake valve is near the intake top dead center). The valve closing timing is much retarded from the bottom dead center of suction (generally ABDC40
It shifts to the retard angle side from ℃). Therefore, the compression of the in-cylinder gas must be started until the piston has risen to a certain extent from the bottom dead center of the suction, and as shown in FIG. The internal temperature cannot be raised sufficiently. As a result, the ignitability and combustibility at the time of start-up are lowered, and particularly during cold start during cold weather, this effect becomes prominent and the startability may be deteriorated.

【0004】また、エンジンが冷えた状態で始動する冷
間始動時には、吸気ポート内壁等に付着する燃料(ウェ
ット燃料)が多くなるため、図4(b)に示すように、
冷間始動後の暖機運転時に、吸気バルブの作用角が高回
転・全負荷時に十分な吸気性能が得られるような大きな
作用角に固定されていると、始動完了直後のエンジン回
転速度の急上昇に伴って吸入空気量が急増するため、そ
の吸入空気の流れによって多量のウェット燃料が筒内に
急激に流入して、図5に点線で示すように空燃比が目標
空燃比からリッチ方向に大きくずれてしまい、始動後の
空燃比制御精度が低下するという欠点もあった。
Further, at the cold start when the engine is started in a cold state, a large amount of fuel (wet fuel) adheres to the inner wall of the intake port, etc., so that as shown in FIG.
During warm-up after cold start, if the working angle of the intake valve is fixed to a large working angle so that sufficient intake performance can be obtained at high rotation and full load, the engine speed will rapidly increase immediately after the start is completed. As a result, the intake air amount rapidly increases, and a large amount of wet fuel rapidly flows into the cylinder due to the flow of the intake air, and as shown by the dotted line in FIG. 5, the air-fuel ratio increases from the target air-fuel ratio to the rich direction. There is also a drawback in that the air-fuel ratio control accuracy after starting deteriorates due to deviation.

【0005】尚、特開平8−218833号公報では、
始動時に吸気バルブのリフト量を小さくすることで、始
動時(クランキング時)の吸気流速を速くして燃料吸入
性能を向上させ、始動完了直後に吸気バルブのリフト量
を通常の大きなリフト量に戻すことを提案しているが、
この場合も、始動完了直後に吸気バルブのリフト量を大
きくするので、冷間時の始動完了直後に多量のウェット
燃料が筒内に流入しやすく、やはり、始動完了直後の空
燃比制御精度が低下する欠点がある。
Incidentally, in Japanese Patent Laid-Open No. 8-218833,
By reducing the lift amount of the intake valve at startup, the intake flow velocity at startup (during cranking) is increased to improve fuel intake performance, and the lift amount of the intake valve is set to a normal large lift amount immediately after completion of startup. I'm suggesting to bring it back,
In this case as well, since the lift amount of the intake valve is increased immediately after the completion of the start, a large amount of wet fuel easily flows into the cylinder immediately after the completion of the cold start, and again, the accuracy of the air-fuel ratio control immediately after the completion of the start is deteriorated. There is a drawback to

【0006】本発明はこれらの事情を考慮してなされた
ものであり、第1の目的は、内燃機関の始動性を向上さ
せることができる内燃機関の可変バルブ制御装置を提供
することであり、また、第2の目的は、始動後の空燃比
制御精度を向上させることができる内燃機関の可変バル
ブ制御装置を提供することである。
The present invention has been made in consideration of these circumstances, and a first object thereof is to provide a variable valve control device for an internal combustion engine, which can improve the starting performance of the internal combustion engine. A second object is to provide a variable valve control device for an internal combustion engine that can improve the air-fuel ratio control accuracy after starting.

【0007】[0007]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の請求項1の内燃機関の可変バルブ制
御装置は、バルブ制御手段によって始動時に吸気バルブ
の閉弁タイミングを吸入下死点付近に制御する始動時バ
ルブ制御を行うようにしたものである。始動時に吸気バ
ルブの閉弁タイミングを吸入下死点付近に設定すれば、
始動時の有効圧縮比を高くして筒内温度を十分に上昇さ
せることができるので、始動時の着火性、燃焼性を向上
させることができ、寒冷時の冷間始動時でも、良好な始
動性を確保することができる。
In order to achieve the above-mentioned first object, the variable valve control device for an internal combustion engine according to claim 1 of the present invention sucks the closing timing of the intake valve at the time of starting by the valve control means. The valve control is performed at the time of starting to control near the bottom dead center. If you set the closing timing of the intake valve near the intake bottom dead center at startup,
Since the effective compression ratio at startup can be increased to raise the in-cylinder temperature sufficiently, it is possible to improve the ignitability and combustibility at startup, and to make a good start even during cold startup during cold weather. It is possible to secure the sex.

【0008】この場合、吸気バルブと排気バルブのバル
ブオーバーラップ量が大きいと、内部EGR量(残留ガ
ス量)が多くなって、筒内への新気導入量が少なくな
り、着火性、燃焼性の向上効果が少なくなる。
In this case, if the valve overlap amount of the intake valve and the exhaust valve is large, the internal EGR amount (residual gas amount) is increased and the amount of fresh air introduced into the cylinder is reduced, resulting in ignitability and combustibility. The effect of improving is reduced.

【0009】そこで、請求項2のように、始動時バルブ
制御中に、吸気バルブの作用角を小さくして排気バルブ
とのバルブオーバーラップ量を減らす又は無くすように
制御すると良い。このようにすれば、始動時バルブ制御
中に、内部EGR量(残留ガス量)を少なくして筒内を
新気で満たすことができ、始動時の着火性、燃焼性を更
に向上することができる。
Therefore, as in claim 2, during the valve control at the time of starting, it is preferable to control so that the working angle of the intake valve is reduced to reduce or eliminate the valve overlap amount with the exhaust valve. With this configuration, the internal EGR amount (residual gas amount) can be reduced and the inside of the cylinder can be filled with fresh air during the valve control at the time of starting, and the ignitability and the combustibility at the time of starting can be further improved. it can.

【0010】また、前記第2の目的を達成するために、
請求項3のように、始動後の暖機運転時に吸気バルブの
作用角及び/又はリフト量を通常運転時よりも小さくす
るように制御する暖機運転時バルブ制御を行うようにし
ても良い。つまり、冷間始動時には、吸気ポート内壁等
に付着する燃料(ウェット燃料)が多くなるが、冷間始
動後の暖機運転時に、吸気バルブの作用角を小さくして
吸気バルブの開弁期間を短くしたり、吸気バルブのリフ
ト量を小さくして吸気バルブ開弁時の吸入空気の流路断
面積を小さくしたりすれば、冷間始動後の暖機運転時に
多量のウェット燃料が筒内に急激に流入することを抑制
してウェット燃料を徐々に流入させることができ、空燃
比がリッチ方向にずれてしまうことを回避することがで
きる。
In order to achieve the second object,
As described in claim 3, the warm-up valve control may be performed during the warm-up operation after starting so as to control the working angle and / or the lift amount of the intake valve to be smaller than that during the normal operation. In other words, during cold start, a large amount of fuel (wet fuel) adheres to the inner wall of the intake port, etc., but during warm-up operation after cold start, the working angle of the intake valve is reduced to increase the intake valve open period. By shortening or reducing the lift of the intake valve to reduce the flow passage cross-sectional area of the intake air when the intake valve is opened, a large amount of wet fuel can get into the cylinder during warm-up operation after cold start. The wet fuel can be gradually introduced while suppressing the sudden inflow, and the air-fuel ratio can be prevented from shifting in the rich direction.

【0011】この場合、請求項4のように、スロットル
開度補正手段によって暖機運転時バルブ制御中にスロッ
トルバルブの開度を通常のアイドル運転時よりも開側に
補正すると良い。このようにすれば、始動後の暖機運転
時に吸気バルブの作用角及び/又はリフト量が小さくな
るように制御されても、それによる吸入空気量の減少分
を補うようにスロットル開度が開側に補正されるため、
吸入空気量を確保することができる。これにより、ポン
ピング損失を低減して、燃費を向上させることができ
る。
In this case, it is preferable that the throttle opening correction means corrects the opening of the throttle valve to the open side during normal warm-up operation than during normal idle operation. By doing so, even if the working angle and / or the lift amount of the intake valve are controlled to be small during the warm-up operation after the start, the throttle opening is opened so as to compensate for the decrease in the intake air amount. Because it is corrected to the side,
The amount of intake air can be secured. Thereby, pumping loss can be reduced and fuel consumption can be improved.

【0012】更に、請求項5のように、燃料噴射量補正
手段によって暖機運転時バルブ制御中に、トルク減少分
を補うように燃料噴射量を増量補正するようにしても良
い。このようにすれば、始動後の暖機運転時に吸気バル
ブの作用角及び/又はリフト量が小さくなるように制御
されることによるトルクの減少分を補うように燃料噴射
量が増量補正されるため、暖機運転時のトルク変動を抑
えて機関回転速度を安定させることができる。
Further, as in claim 5, the fuel injection amount may be increased and corrected by the fuel injection amount correcting means during the warm-up operation valve control so as to compensate for the torque decrease. By doing so, the fuel injection amount is increased and corrected to compensate for the decrease in torque due to the control that the working angle and / or the lift amount of the intake valve are controlled to be small during the warm-up operation after starting. The engine speed can be stabilized by suppressing torque fluctuation during warm-up operation.

【0013】また、吸気バルブの作用角を小さくしすぎ
て吸気バルブの開弁タイミングを吸入上死点よりも遅角
側にずらしすぎると、ピストンが吸入上死点から下降し
て筒内圧力が吸気管圧力よりもかなり低下してから吸気
バルブが開弁されるため、この吸気バルブの開弁直後に
吸気管内の吸入空気が一気に筒内に吸引されるようにな
ってしまい、ウェット燃料の吸入抑制効果が低下してし
まう。
Further, if the operating angle of the intake valve is made too small and the valve opening timing of the intake valve is shifted too far behind the intake top dead center, the piston descends from the intake top dead center and the cylinder pressure increases. Since the intake valve is opened after it has dropped considerably below the intake pipe pressure, the intake air in the intake pipe is suddenly sucked into the cylinder immediately after the intake valve is opened, and the intake of wet fuel The suppression effect is reduced.

【0014】この対策として、請求項6のように、暖機
運転時バルブ制御中に、吸気バルブの開弁タイミングを
吸入上死点付近又はそれよりも進角側に制御すると良
い。このようにすれば、吸気管圧力と筒内圧力との差圧
が小さい段階で吸気バルブを開弁することができて、吸
気バルブの開弁直後の急激な空気吸入(急激なウェット
燃料の吸入)を避けることができ、ウェット燃料の吸入
抑制効果を更に向上させることができる。
As a countermeasure against this, it is preferable to control the valve opening timing of the intake valve near the intake top dead center or on the advance side of the intake valve during the warm-up operation valve control. In this way, the intake valve can be opened at a stage where the pressure difference between the intake pipe pressure and the in-cylinder pressure is small, and a rapid air intake (a sudden wet fuel intake) immediately after the intake valve is opened. ) Can be avoided, and the effect of suppressing the intake of wet fuel can be further improved.

【0015】また、機関温度が高くなると、吸気ポート
温度も高くなってウェット燃料量が少なくなる。この点
を考慮して、請求項7のように、機関温度又はそれと相
関関係のあるパラメータ(例えば冷却水温、始動後経過
時間等)に応じて吸気バルブの作用角及び/又はリフト
量を可変するようにしても良い。このようにすれば、機
関温度(吸気ポート温度)の上昇に応じてウェット燃料
量が減少するのに対応して、吸気バルブの作用角やリフ
ト量を大きくすることができるので、吸気バルブの作用
角やリフト量が必要以上に小さく制御されて吸気性能が
損なわれてしまうことを回避することができる。
When the engine temperature rises, the intake port temperature rises and the amount of wet fuel decreases. In consideration of this point, the working angle and / or the lift amount of the intake valve are changed according to the engine temperature or a parameter (for example, cooling water temperature, elapsed time after start, etc.) that correlates with the engine temperature. You may do it. In this way, the working angle and lift amount of the intake valve can be increased in response to the decrease in the wet fuel amount as the engine temperature (intake port temperature) rises. It is possible to prevent the intake performance from being deteriorated by controlling the angle and the lift amount to be smaller than necessary.

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施形態を図1
乃至図5に基づいて説明する。まず、図1に基づいてエ
ンジンの概略構成を説明する。内燃機関であるエンジン
11の各気筒の吸気ポート12には、電磁駆動式の吸気
バルブ13が設けられ、各気筒の排気ポート14には、
電磁駆動式の排気バルブ15が設けられている。吸気バ
ルブ13と排気バルブ15は、それぞれ電磁アクチュエ
ータ16,17によって駆動される。また、各気筒の吸
気ポート12の近傍には、燃料を噴射する燃料噴射弁1
8が取り付けられ、各気筒のシリンダヘッドには、点火
プラグ22が取り付けられている。一方、エンジン11
のシリンダブロックには、冷却水温を検出する水温セン
サ19や、エンジン回転速度を検出するクランク角セン
サ20が取り付けられている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG.
It will be described with reference to FIG. First, the schematic configuration of the engine will be described with reference to FIG. An electromagnetically driven intake valve 13 is provided at an intake port 12 of each cylinder of an engine 11 that is an internal combustion engine, and an exhaust port 14 of each cylinder is provided at an exhaust port 14.
An electromagnetically driven exhaust valve 15 is provided. The intake valve 13 and the exhaust valve 15 are driven by electromagnetic actuators 16 and 17, respectively. A fuel injection valve 1 for injecting fuel is provided near the intake port 12 of each cylinder.
8 is attached, and a spark plug 22 is attached to the cylinder head of each cylinder. On the other hand, the engine 11
A water temperature sensor 19 for detecting the cooling water temperature and a crank angle sensor 20 for detecting the engine rotation speed are attached to the cylinder block.

【0017】これら水温センサ19、クランク角センサ
20等の各種のセンサ出力は、エンジン制御回路21に
入力される。このエンジン制御回路21は、マイクロコ
ンピュータを主体として構成され、内蔵されたROM
(記憶媒体)に記憶された各種のエンジン制御プログラ
ムを実行することで、エンジン運転状態に応じて燃料噴
射弁18の燃料噴射量や点火プラグ22の点火時期を制
御する。
Outputs of various sensors such as the water temperature sensor 19 and the crank angle sensor 20 are input to the engine control circuit 21. The engine control circuit 21 is mainly composed of a microcomputer and has a built-in ROM.
By executing various engine control programs stored in the (storage medium), the fuel injection amount of the fuel injection valve 18 and the ignition timing of the ignition plug 22 are controlled according to the engine operating state.

【0018】また、エンジン制御回路21は、各バルブ
13,15の電磁アクチュエータ16,17を制御して
各バルブ13,15の開閉動作を制御するバルブ制御手
段として機能する。その際、エンジン制御回路21は、
ROMに記憶された図2の吸気バルブ制御プログラムを
実行することで、図3(a)に示すように、エンジンの
始動時には、始動時バルブ制御を実施して、吸気バルブ
13の閉弁タイミングを吸入下死点(吸入BDC)付
近、例えば吸入BDC±20℃Aの範囲内に制御すると
共に、吸気バルブ13の作用角を小さくして排気バルブ
15とのバルブオーバーラップ量をほぼ0にする。そし
て、図4(a)に示すように、始動後の暖機運転時に
は、暖機運転時バルブ制御を実施して、吸気バルブ13
の作用角とリフト量を通常運転時よりも小さくするよう
に制御すると共に、吸気バルブ13の開弁タイミングを
吸入TDC付近又はそれよりも進角側に制御する。
The engine control circuit 21 also functions as valve control means for controlling the electromagnetic actuators 16 and 17 of the valves 13 and 15 to control the opening / closing operations of the valves 13 and 15. At that time, the engine control circuit 21
By executing the intake valve control program of FIG. 2 stored in the ROM, as shown in FIG. 3A, when the engine is started, the valve control at the time of starting is executed to control the closing timing of the intake valve 13. The intake valve 13 is controlled near the intake bottom dead center (intake BDC), for example, in the range of intake BDC ± 20 ° C, and the operating angle of the intake valve 13 is reduced to make the valve overlap amount with the exhaust valve 15 almost zero. Then, as shown in FIG. 4 (a), during warm-up operation after starting, valve control during warm-up operation is carried out, and the intake valve 13
The valve opening timing of the intake valve 13 is controlled near the intake TDC or on the advance side of the intake valve 13 while controlling the operating angle and the lift amount thereof to be smaller than those during normal operation.

【0019】以下、エンジン制御回路21が実行する図
2の吸気バルブ制御プログラムの具体的な処理内容を説
明する。本プログラムは、イグニッションスイッチ(図
示せず)のオン後に、所定時間毎又は所定クランク角毎
に繰り返し実行される。本プログラムが起動されると、
まず、ステップ101で、始動完了か否かを、例えばエ
ンジン回転速度が完爆判定値を越えたか否かによって判
定する。
The specific processing contents of the intake valve control program of FIG. 2 executed by the engine control circuit 21 will be described below. This program is repeatedly executed every predetermined time or every predetermined crank angle after the ignition switch (not shown) is turned on. When this program is started,
First, in step 101, it is determined whether or not the start is completed, for example, based on whether or not the engine speed exceeds a complete explosion determination value.

【0020】始動完了前、つまり、始動中(クランキン
グ中)は、ステップ102に進み、始動時バルブ制御を
実施する。この始動時バルブ制御では、図3(a)に示
すように、吸気バルブ13の閉弁タイミングを吸入BD
C付近(例えば吸入BDC±20℃Aの範囲内)に制御
して、始動時の有効圧縮比を高くすると共に、吸気バル
ブ13の開弁タイミングを吸入TDC付近に制御するこ
とで、排気バルブ15とのバルブオーバーラップ量をほ
ぼ0にして、内部EGR量(残留ガス量)を少なくす
る。
Before starting is completed, that is, during starting (during cranking), the routine proceeds to step 102, where valve control at starting is carried out. In this valve control at the time of starting, as shown in FIG. 3A, the closing timing of the intake valve 13 is set to the intake BD.
The exhaust valve 15 is controlled by controlling near C (for example, in the range of intake BDC ± 20 ° C.) to increase the effective compression ratio at the time of starting, and by controlling the opening timing of the intake valve 13 near intake TDC. The valve overlap amount with is made almost zero, and the internal EGR amount (residual gas amount) is reduced.

【0021】その後、ステップ101で、始動完了と判
定された時点で、ステップ103に進み、冷却水温が所
定温度αよりも低いか否かによって暖機運転実行条件が
成立しているか否かを判定する。もし、暖機運転実行条
件が不成立であれば、ステップ106に進み、通常の吸
気バルブ制御を実施して、エンジン運転状態に基づいて
吸気バルブ13の開閉動作を制御する。
After that, at step 101, when it is determined that the start-up is completed, the routine proceeds to step 103, where it is determined whether or not the warm-up operation execution condition is satisfied depending on whether or not the cooling water temperature is lower than the predetermined temperature α. To do. If the warm-up operation execution condition is not satisfied, the routine proceeds to step 106, where normal intake valve control is performed, and the opening / closing operation of the intake valve 13 is controlled based on the engine operating state.

【0022】一方、暖機運転実行条件が成立して暖機運
転が実行される場合は、ステップ104に進み、暖機運
転時バルブ制御を実施する。この暖機運転時バルブ制御
では、図4(a)に示すように、吸気バルブ13の作用
角とリフト量を通常運転時よりも小さくするように制御
して、吸気バルブ13の開弁期間及び吸入空気の流路断
面積を小さくすると共に、吸気バルブ13の開弁タイミ
ングを吸入TDC付近又はそれよりも進角側に制御し
て、吸気管圧力と筒内圧力との差圧が小さいときに吸気
バルブ13を開弁する。
On the other hand, when the warm-up operation execution condition is satisfied and the warm-up operation is executed, the routine proceeds to step 104, where the warm-up operation valve control is executed. In the valve control during warm-up operation, as shown in FIG. 4A, the operating angle and lift amount of the intake valve 13 are controlled to be smaller than those during normal operation, and the opening period of the intake valve 13 and When the flow passage cross-sectional area of the intake air is made small and the valve opening timing of the intake valve 13 is controlled near the intake TDC or at the advance side thereof, when the differential pressure between the intake pipe pressure and the in-cylinder pressure is small. The intake valve 13 is opened.

【0023】更に、この暖機運転時バルブ制御中は、吸
気バルブ13の作用角やリフト量を小さくすることによ
る吸入空気量の減少分を補うために、図4(a)に示す
ように、スロットルバルブの開度を通常のアイドル運転
時よりも開側に補正することで、吸入空気量を確保して
ポンピング損失を低減する。この機能が、特許請求の範
囲でいうスロットル開度補正手段に相当する役割を果た
す。
Further, during the valve control during the warm-up operation, as shown in FIG. 4 (a), in order to compensate for the decrease in the intake air amount due to the decrease in the working angle and the lift amount of the intake valve 13, By correcting the opening of the throttle valve to the open side as compared with the normal idle operation, the intake air amount is secured and pumping loss is reduced. This function plays a role corresponding to the throttle opening correction means in the claims.

【0024】この後、ステップ105に進み、暖機運転
終了条件が成立したか否かを、冷却水温が所定温度α以
上となったか否か、又は、アイドル運転が終了したか否
か等によって判定する。暖機運転終了条件が不成立の期
間、つまり、暖機運転中は、暖機運転時バルブ制御を継
続する。
After this, the routine proceeds to step 105, where it is judged whether or not the warm-up operation end condition is satisfied, based on whether or not the cooling water temperature is equal to or higher than a predetermined temperature α, or whether or not the idle operation is ended. To do. During the period when the warm-up operation end condition is not satisfied, that is, during the warm-up operation, the valve control during the warm-up operation is continued.

【0025】その後、ステップ105で、冷却水温が所
定温度α以上と判定されたり、又はアイドル運転が終了
したと判定された場合は、暖機運転終了条件が成立した
と判断してステップ106に進み、通常の吸気バルブ制
御に移行する。
Thereafter, if it is determined in step 105 that the cooling water temperature is equal to or higher than the predetermined temperature α, or if the idle operation has been completed, it is determined that the warm-up operation end condition is satisfied, and the routine proceeds to step 106. , Shift to normal intake valve control.

【0026】以上説明した本実施形態の吸気バルブ制御
を実行した場合の制御例を図5を用いて説明する。イグ
ニッションスイッチのオンから始動完了するまでの始動
期間中は、始動時バルブ制御[図3(a)参照]を実施
して、吸気バルブ13の閉弁タイミングを吸入BDC付
近に制御する。これにより、始動時の有効圧縮比を高く
して筒内温度を十分に上昇させることができ、始動時の
着火性、燃焼性を向上させることができる。これによ
り、寒冷時の冷間始動時でも、良好な始動性を確保する
ことができる。
A control example when the intake valve control of the present embodiment described above is executed will be described with reference to FIG. During the start-up period from when the ignition switch is turned on to when the start-up is completed, the start-time valve control [see FIG. 3 (a)] is performed to control the closing timing of the intake valve 13 near the intake BDC. As a result, the effective compression ratio at the time of starting can be increased to sufficiently raise the in-cylinder temperature, and the ignitability and combustibility at the time of starting can be improved. As a result, good startability can be ensured even during cold start during cold weather.

【0027】この始動時バルブ制御中は、吸気バルブ1
3と排気バルブ15のバルブオーバーラップ量が大きい
と、内部EGR量(残留ガス量)が多くなって、筒内へ
の新気導入量が少なくなり、着火性、燃焼性の向上効果
が少なくなるが、本実施家態では、始動時バルブ制御中
に、吸気バルブ13の開弁タイミングを吸入TDC付近
に制御することで、排気バルブ15とのバルブオーバー
ラップ量をほぼ0にしているので、内部EGR量(残留
ガス量)を少なくして筒内を新気で満たすことができ、
始動時の着火性、燃焼性を更に向上することができる。
During the valve control at the time of starting, the intake valve 1
If the valve overlap amount of 3 and the exhaust valve 15 is large, the internal EGR amount (residual gas amount) increases, the amount of fresh air introduced into the cylinder decreases, and the effect of improving ignitability and combustibility decreases. However, in the present embodiment, the valve overlap timing with the exhaust valve 15 is set to almost 0 by controlling the opening timing of the intake valve 13 near the intake TDC during the valve control at the start, so By reducing the EGR amount (residual gas amount), the cylinder can be filled with fresh air,
The ignitability and flammability at the time of starting can be further improved.

【0028】その後、始動完了からギア位置がDレンジ
に切り換えられて車両の走行が開始されるまでの暖機運
転期間中は、暖機運転時バルブ制御[図4(a)参照]
を実施して、吸気バルブ13の作用角とリフト量を通常
運転時よりも小さくするように制御する。これにより、
吸気ポート12内壁等に付着するウェット燃料が多くな
る冷間始動後の暖機運転時に、吸気バルブ13の開弁期
間及び開弁時の吸入空気の流路断面積を小さくして、多
量のウェット燃料が筒内に急激に流入することを抑制し
てウェット燃料を徐々に流入させることができる。その
ため、ウェット燃料の筒内への流入による空燃比のずれ
を空燃比フィードバック制御で補正することができて、
空燃比を目標空燃比付近に安定させることができ、空燃
比制御精度を向上させることができる。
Thereafter, during the warm-up operation period from the completion of the start-up until the gear position is switched to the D range and the traveling of the vehicle is started, the valve control during the warm-up operation [see FIG. 4 (a)].
Is performed to control the working angle and the lift amount of the intake valve 13 to be smaller than those during normal operation. This allows
During the warm-up operation after the cold start in which the amount of wet fuel adhering to the inner wall of the intake port 12 and the like increases, the opening period of the intake valve 13 and the flow passage cross-sectional area of the intake air at the time of opening the intake port 13 are reduced to make a large amount of wet It is possible to prevent the fuel from rapidly flowing into the cylinder and gradually allow the wet fuel to flow. Therefore, the deviation of the air-fuel ratio due to the inflow of the wet fuel into the cylinder can be corrected by the air-fuel ratio feedback control,
The air-fuel ratio can be stabilized near the target air-fuel ratio, and the air-fuel ratio control accuracy can be improved.

【0029】この暖機運転時バルブ制御中は、吸気バル
ブ13の作用角を小さくしすぎて吸気バルブ13の開弁
タイミングを吸入TDCよりも遅角側にずらしすぎると
[図4(a)の点線参照]、ピストンが吸入TDC上死
点から下降して筒内圧力が吸気管圧力よりもかなり低下
してから吸気バルブ13が開弁されるため、この吸気バ
ルブ13の開弁直後に吸気管内の吸入空気が一気に筒内
に吸引されるようになってしまい、ウェット燃料の吸入
抑制効果が低下してしまう。
During the valve control during the warm-up operation, if the working angle of the intake valve 13 is made too small and the opening timing of the intake valve 13 is shifted too far behind the intake TDC [Fig. 4 (a)]. [Refer to the dotted line], since the piston descends from the top dead center of the intake TDC and the in-cylinder pressure drops significantly below the intake pipe pressure, the intake valve 13 is opened. The intake air is sucked into the cylinder all at once, and the effect of suppressing wet fuel intake is reduced.

【0030】その点、本実施形態では、暖機運転時バル
ブ制御中に、吸気バルブ13の開弁タイミングを吸入T
DC付近又はそれよりも進角側(図5の二点鎖線参照)
に制御するので、吸気管圧力と筒内圧力との差圧が小さ
い段階で吸気バルブ13を開弁することができて、吸気
バルブ13の開弁直後の急激な空気吸入(急激なウェッ
ト燃料の吸入)を避けることができ、ウェット燃料の吸
入抑制効果を更に向上させることができる。
In this regard, in the present embodiment, the intake valve opening timing of the intake valve 13 is set to the intake timing T during the valve control during the warm-up operation.
Near DC or on the advance side (see the chain double-dashed line in Fig. 5)
Therefore, the intake valve 13 can be opened when the pressure difference between the intake pipe pressure and the in-cylinder pressure is small, and rapid intake of air immediately after the intake valve 13 is opened (a sudden increase in wet fuel (Inhalation) can be avoided, and the effect of suppressing wet fuel inhalation can be further improved.

【0031】更に、この暖機運転時バルブ制御中は、吸
気バルブ13の作用角やリフト量を小さくすることによ
る吸入空気量の減少分を補うようにスロットル開度を開
側に補正するので、吸入空気量を確保することができ、
ポンピング損失を低減して、燃費を向上させることがで
きる。
Further, during the valve control during the warm-up operation, the throttle opening is corrected to the open side so as to compensate for the decrease in the intake air amount by reducing the working angle and lift amount of the intake valve 13. It is possible to secure the amount of intake air,
It is possible to reduce pumping loss and improve fuel efficiency.

【0032】尚、暖機運転時バルブ制御中に、吸気バル
ブ13の作用角やリフト量を小さくすることによるトル
ク減少分を補うように燃料噴射量を増量補正するように
しても良い。このようにすれば、暖機運転時バルブ制御
によるトルク減少分を燃料噴射量の増量補正による補う
ことができるため、暖機運転時のトルク変動を抑えてエ
ンジン回転速度を安定させることができる。
During the warm-up valve control, the fuel injection amount may be increased and corrected so as to compensate for the torque decrease amount caused by reducing the working angle and the lift amount of the intake valve 13. With this configuration, the torque decrease amount due to the valve control during warm-up operation can be compensated by the increase correction of the fuel injection amount, so that the torque fluctuation during warm-up operation can be suppressed and the engine rotation speed can be stabilized.

【0033】また、本実施形態では、暖機運転時バルブ
制御中に、吸気バルブ13の作用角とリフト量を両方と
も小さくするようにしたが、吸気バルブ13の作用角と
リフト量のうちのどちらか一方のみを小さくするように
しても良い。
In this embodiment, both the working angle and the lift amount of the intake valve 13 are reduced during the valve control during warm-up operation. Only one of them may be made smaller.

【0034】また、暖機運転時バルブ制御中の吸気バル
ブ13の作用角とリフト量は、予め設定した固定値とし
ても良いが、機関温度(吸気ポート12温度)の上昇に
応じてウェット燃料量が減少するのに対応して、吸気バ
ルブ13の作用角やリフト量をマップ等により大きくす
るようにしても良い。このようにすれば、吸気バルブ1
3の作用角やリフト量が必要以上に小さくなって吸気性
能が損なわれてしまうことを回避することができる。
The working angle and the lift amount of the intake valve 13 during the valve control during the warm-up operation may be fixed values set in advance, but the wet fuel amount may be increased as the engine temperature (the intake port 12 temperature) rises. Corresponding to the decrease of the above, the working angle and the lift amount of the intake valve 13 may be increased by a map or the like. In this way, the intake valve 1
It is possible to avoid that the working angle and the lift amount of 3 become unnecessarily small and the intake performance is impaired.

【0035】この場合、機関温度(又は吸気ポート12
の温度)は、温度センサで検出しても良いが、冷却水
温、始動後の経過時間、始動後の累積エンジン回転数、
始動後の累積吸入空気量、累積燃料噴射量等の機関温度
と相関関係のあるパラメータから推定するようにしても
良い。或は、機関温度の代わりに、機関温度と相関関係
のあるパラメータに応じてマップ等により吸気バルブ1
3の作用角やリフト量を可変するようにしても良い。
In this case, the engine temperature (or the intake port 12
Temperature) may be detected by a temperature sensor, but the cooling water temperature, the elapsed time after the start, the cumulative engine speed after the start,
It may be estimated from parameters such as the cumulative intake air amount after starting and the cumulative fuel injection amount, which are correlated with the engine temperature. Alternatively, instead of the engine temperature, the intake valve 1 may be mapped according to a parameter that correlates with the engine temperature.
The working angle and lift amount of 3 may be variable.

【0036】また、上記実施形態では、電磁アクチュエ
ータで吸気バルブ13の作用角やリフト量を可変するよ
うにしているが、本発明は、油圧回路でカム機構等の動
作を制御して吸気バルブ13の作用角及び/又はリフト
量を段階的、或は、連続的に可変する可変バルブ制御装
置に適用しても良い。
Further, in the above embodiment, the working angle and lift amount of the intake valve 13 are changed by the electromagnetic actuator, but in the present invention, the intake valve 13 is controlled by controlling the operation of the cam mechanism or the like by the hydraulic circuit. It may be applied to a variable valve control device in which the working angle and / or the lift amount of the variable valve are varied stepwise or continuously.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態におけるエンジンの概略構
成を示す縦断面図
FIG. 1 is a vertical sectional view showing a schematic configuration of an engine according to an embodiment of the present invention.

【図2】吸気バルブ制御プログラムの処理の流れを示す
フローチャート
FIG. 2 is a flowchart showing a flow of processing of an intake valve control program.

【図3】(a)は本実施形態の始動時のバルブ動作特性
を示す図、(b)は従来の始動時のバルブ動作特性を示
す図
FIG. 3A is a diagram showing a valve operating characteristic at the time of starting of the present embodiment, and FIG. 3B is a diagram showing a conventional valve operating characteristic at the time of starting.

【図4】(a)は本実施形態の暖機運転時のバルブ動作
特性を示す図、(b)は従来の暖機運転時のバルブ動作
特性を示す図
FIG. 4A is a diagram showing a valve operating characteristic during warm-up operation of the present embodiment, and FIG. 4B is a diagram showing a valve operating characteristic during conventional warm-up operation.

【図5】本実施形態の制御例を示すタイムチャートFIG. 5 is a time chart showing a control example of the present embodiment.

【図6】吸気バルブの閉弁タイミングと筒内圧力との関
係を示す図
FIG. 6 is a diagram showing a relationship between a closing timing of an intake valve and a cylinder pressure.

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、13…吸気バルブ、14
…排気バルブ、16,17…電磁アクチュエータ、18
…燃料噴射弁、21…エンジン制御回路(バルブ制御手
段,スロットル開度補正手段,燃料噴射量補正手段)。
11 ... Engine (internal combustion engine), 13 ... Intake valve, 14
... Exhaust valves, 16, 17 ... Electromagnetic actuators, 18
... fuel injection valve, 21 ... engine control circuit (valve control means, throttle opening correction means, fuel injection amount correction means).

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/06 370 F02D 41/06 370 43/00 301 43/00 301H 301K 301Z Fターム(参考) 3G018 AB08 BA38 CA11 DA70 EA02 EA17 EA21 FA01 FA08 FA26 GA11 3G084 BA23 CA01 CA02 DA04 DA05 DA09 EA11 FA02 FA33 3G092 AA01 AA11 AB02 BA01 DA01 DA02 DA03 DA07 DA12 DE01S DG09 DG10 EA01 EA02 EA03 EA04 EA11 EC01 FA03 FA31 GA01 HE01Z HE08Z 3G301 HA01 HA19 JA00 JA03 KA01 KA02 LA03 LA07 LB02 LC01 MA01 MA11 ND04 ND12 NE01 NE11 NE12 NE13 PE01Z PE08Z Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 41/06 370 F02D 41/06 370 43/00 301 43/00 301H 301K 301Z F term (reference) 3G018 AB08 BA38 CA11 DA70 EA02 EA17 EA21 FA01 FA08 FA26 GA11 3G084 BA23 CA01 CA02 DA04 DA05 DA09 EA11 FA02 FA33 3G092 AA01 AA11 AB02 BA01 DA01 DA02 DA03 DA07 DA12 DE01S DG09 DG10 KA01 LA00 LA03 HA01 HA01 HA01 HA03 HA01 HE01 GA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA01 FA03 FA01 FA03 FA31 FA01 FA03 FA31 FA01 FA03 FA08 LB02 LC01 MA01 MA11 ND04 ND12 NE01 NE11 NE12 NE13 PE01Z PE08Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の吸気バルブの開閉動作を制御
するバルブ制御手段を備えた内燃機関の可変バルブ制御
装置において、 前記バルブ制御手段は、始動時に前記吸気バルブの閉弁
タイミングを吸入下死点付近に制御する始動時バルブ制
御を行うことを特徴とする内燃機関の可変バルブ制御装
置。
1. A variable valve control device for an internal combustion engine, comprising: a valve control means for controlling an opening / closing operation of an intake valve of an internal combustion engine, wherein the valve control means has a valve closing timing of the intake valve at the time of starting. A variable valve control device for an internal combustion engine, characterized in that valve control at start-up is performed to control the vicinity of a point.
【請求項2】 前記バルブ制御手段は、前記始動時バル
ブ制御中に、前記吸気バルブの作用角を小さくして排気
バルブとのバルブオーバーラップ量を減らす又は無くす
ように制御することを特徴とする請求項1に記載の内燃
機関の可変バルブ制御装置。
2. The valve control means controls during the valve control at the time of start-up to reduce the working angle of the intake valve to reduce or eliminate the valve overlap amount with the exhaust valve. A variable valve control device for an internal combustion engine according to claim 1.
【請求項3】 内燃機関の吸気バルブの開閉動作を制御
するバルブ制御手段を備えた内燃機関の可変バルブ制御
装置において、 前記バルブ制御手段は、始動後の暖機運転時に前記吸気
バルブの作用角及び/又はリフト量を通常運転時よりも
小さくするように制御する暖機運転時バルブ制御を行う
ことを特徴とする内燃機関の可変バルブ制御装置。
3. A variable valve control device for an internal combustion engine, comprising: a valve control means for controlling an opening / closing operation of an intake valve of an internal combustion engine, wherein the valve control means has a working angle of the intake valve during a warm-up operation after starting. And / or a variable valve control device for an internal combustion engine, which performs valve control during warm-up operation for controlling the lift amount to be smaller than during normal operation.
【請求項4】 前記暖機運転時バルブ制御中に、スロッ
トルバルブの開度を通常のアイドル運転時よりも開側に
補正するスロットル開度補正手段を備えていることを特
徴とする請求項3に記載の内燃機関の可変バルブ制御装
置。
4. The throttle opening correction means for correcting the opening of the throttle valve to the open side during normal warm-up during valve control during warm-up operation. A variable valve control device for an internal combustion engine as set forth in.
【請求項5】 前記暖機運転時バルブ制御中に、トルク
減少分を補うように燃料噴射量を増量補正する燃料噴射
量補正手段を備えていることを特徴とする請求項3又は
4に記載の内燃機関の可変バルブ制御装置。
5. The fuel injection amount correcting means for increasing and correcting the fuel injection amount so as to compensate for the torque decrease during the warm-up operation valve control is provided. Variable valve control device for internal combustion engine.
【請求項6】 前記バルブ制御手段は、前記暖機運転時
バルブ制御中に、前記吸気バルブの開弁タイミングを吸
入上死点付近又はそれよりも進角側に制御することを特
徴とする請求項3乃至5のいずれかに記載の内燃機関の
可変バルブ制御装置。
6. The valve control means controls the valve opening timing of the intake valve near the intake top dead center or on the advance side of the intake valve during the warm-up operation valve control. Item 6. A variable valve control device for an internal combustion engine according to any one of items 3 to 5.
【請求項7】 前記バルブ制御手段は、機関温度又はそ
れと相関関係のあるパラメータに応じて前記吸気バルブ
の作用角及び/又はリフト量を可変することを特徴とす
る請求項3乃至6のいずれかに記載の内燃機関の可変バ
ルブ制御装置。
7. The valve control means varies the working angle and / or the lift amount of the intake valve according to the engine temperature or a parameter correlated with the engine temperature. A variable valve control device for an internal combustion engine as set forth in.
JP2001220547A 2001-07-19 2001-07-19 Variable valve control device for internal combustion engine Pending JP2003035167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220547A JP2003035167A (en) 2001-07-19 2001-07-19 Variable valve control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220547A JP2003035167A (en) 2001-07-19 2001-07-19 Variable valve control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2003035167A true JP2003035167A (en) 2003-02-07

Family

ID=19054351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220547A Pending JP2003035167A (en) 2001-07-19 2001-07-19 Variable valve control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2003035167A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233913A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Variable valve system control device for internal combustion engine
JP2006241997A (en) * 2005-02-28 2006-09-14 Toyota Motor Corp Control device for internal combustion engine
JP2006266200A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Valve characteristic control device for internal combustion engine
JP2008267300A (en) * 2007-04-23 2008-11-06 Hitachi Ltd Variable valve gear for internal combustion engine
JP2011099399A (en) * 2009-11-06 2011-05-19 Toyota Motor Corp Control method and control device of internal combustion engine
JP2011185277A (en) 2005-12-28 2011-09-22 Hitachi Automotive Systems Ltd Variable valve system of internal combustion engine
US8210141B2 (en) 2007-09-20 2012-07-03 Hitachi, Ltd. Variable valve system of internal combustion engine
JP2013050061A (en) * 2011-08-30 2013-03-14 Nippon Soken Inc Valve timing control device for internal combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324314U (en) * 1986-07-31 1988-02-17
JPS6480711A (en) * 1987-09-22 1989-03-27 Honda Motor Co Ltd Valve system controller for internal combustion engine
JPH02296542A (en) * 1989-05-10 1990-12-07 Honda Motor Co Ltd Controller for power unit
JPH0791219A (en) * 1993-09-28 1995-04-04 Toyota Motor Corp Valve timing controller of internal combustion engine
JPH1077870A (en) * 1996-09-04 1998-03-24 Nissan Motor Co Ltd Engine with supercharger
JP2000130195A (en) * 1998-10-30 2000-05-09 Nissan Motor Co Ltd Controller for variable valve system engine
JP2000257455A (en) * 1999-03-04 2000-09-19 Honda Motor Co Ltd Internal combustion engine controller
JP2001152884A (en) * 1999-11-29 2001-06-05 Toyota Motor Corp Variable valve system of internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324314U (en) * 1986-07-31 1988-02-17
JPS6480711A (en) * 1987-09-22 1989-03-27 Honda Motor Co Ltd Valve system controller for internal combustion engine
JPH02296542A (en) * 1989-05-10 1990-12-07 Honda Motor Co Ltd Controller for power unit
JPH0791219A (en) * 1993-09-28 1995-04-04 Toyota Motor Corp Valve timing controller of internal combustion engine
JPH1077870A (en) * 1996-09-04 1998-03-24 Nissan Motor Co Ltd Engine with supercharger
JP2000130195A (en) * 1998-10-30 2000-05-09 Nissan Motor Co Ltd Controller for variable valve system engine
JP2000257455A (en) * 1999-03-04 2000-09-19 Honda Motor Co Ltd Internal combustion engine controller
JP2001152884A (en) * 1999-11-29 2001-06-05 Toyota Motor Corp Variable valve system of internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233913A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Variable valve system control device for internal combustion engine
JP4525385B2 (en) * 2005-02-25 2010-08-18 トヨタ自動車株式会社 Variable valve mechanism control apparatus for internal combustion engine
JP2006241997A (en) * 2005-02-28 2006-09-14 Toyota Motor Corp Control device for internal combustion engine
DE102006000095B4 (en) * 2005-02-28 2015-09-24 Toyota Jidosha Kabushiki Kaisha Control unit for an internal combustion engine
JP2006266200A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Valve characteristic control device for internal combustion engine
JP4525406B2 (en) * 2005-03-25 2010-08-18 トヨタ自動車株式会社 Valve characteristic control device for internal combustion engine
JP2011185277A (en) 2005-12-28 2011-09-22 Hitachi Automotive Systems Ltd Variable valve system of internal combustion engine
JP2008267300A (en) * 2007-04-23 2008-11-06 Hitachi Ltd Variable valve gear for internal combustion engine
US8061311B2 (en) 2007-04-23 2011-11-22 Hitachi, Ltd. Variable valve actuating apparatus for internal combustion engine
US8210141B2 (en) 2007-09-20 2012-07-03 Hitachi, Ltd. Variable valve system of internal combustion engine
JP2011099399A (en) * 2009-11-06 2011-05-19 Toyota Motor Corp Control method and control device of internal combustion engine
JP2013050061A (en) * 2011-08-30 2013-03-14 Nippon Soken Inc Valve timing control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4321497B2 (en) Starter for internal combustion engine
JP5310733B2 (en) Control device for internal combustion engine
JP2006214284A (en) Intake air quantity control device of internal combustion engine
US7063068B2 (en) Variable valve timing controller for an engine
US7806105B2 (en) Idle speed control apparatus for internal combustion engine
US7168410B2 (en) Idle speed controller for internal combustion engine
JP3852389B2 (en) Engine starter
JP4506414B2 (en) Valve characteristic control device for internal combustion engine
JP2003035167A (en) Variable valve control device for internal combustion engine
JP5029517B2 (en) Control device for internal combustion engine
US7316210B2 (en) Control apparatus and control method for variable valve actuation mechanism of internal combustion engine
JP4419800B2 (en) Engine starter
JP2001280228A (en) Ignition timing control device for variable valve engine
JP4258453B2 (en) Intake control device for internal combustion engine
JP2008163792A (en) Stop position control device for internal combustion engine
JP4577178B2 (en) Multi-cylinder engine starter
JP2007247588A (en) Control device and control method for reciprocating internal combustion engine
JP4407505B2 (en) Valve characteristic control device for internal combustion engine
JP2009216035A (en) Control device of internal combustion engine
JP2009127485A (en) Internal combustion engine
JP2004076706A (en) Variable valve mechanism control system for internal combustion engine
JP2002235593A (en) Controller for internal combustion engine
JP4200937B2 (en) Engine starter
JP2008063956A (en) Control device of internal combustion engine
JP2010121587A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427