JP3629952B2 - Method for producing cyclohexanedimethanol - Google Patents

Method for producing cyclohexanedimethanol Download PDF

Info

Publication number
JP3629952B2
JP3629952B2 JP16337798A JP16337798A JP3629952B2 JP 3629952 B2 JP3629952 B2 JP 3629952B2 JP 16337798 A JP16337798 A JP 16337798A JP 16337798 A JP16337798 A JP 16337798A JP 3629952 B2 JP3629952 B2 JP 3629952B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
copper
zinc
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16337798A
Other languages
Japanese (ja)
Other versions
JP2000001447A (en
Inventor
泰一郎 岩村
安久 吉田
伊藤  博
幹郎 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP16337798A priority Critical patent/JP3629952B2/en
Publication of JP2000001447A publication Critical patent/JP2000001447A/en
Application granted granted Critical
Publication of JP3629952B2 publication Critical patent/JP3629952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、シクロヘキサンジメタノール(以下「CHDM」と略記する)の製造方法に関する。CHDMは、ポリエステル樹脂、ポリウレタン樹脂及びポリカーボネート樹脂等のジオール成分として適用することにより、これらの樹脂の耐熱性、透明性、耐候性及び成形性の向上等に有効である。特に近年PETの改質に有用な化合物として注目されている。
【0002】
【従来の技術】
CHDMの製造方法としては、フタル酸ジアルキルエステルを出発原料として、第1段階目に芳香環の核水素化を行いシクロヘキサンジカルボン酸ジアルキルエステルとする工程(以下、「前段反応」という)、次いでエステル部分の水素化によるアルコールへの水素化還元する工程(以下、「後段反応」という)の2工程により製造される方法が一般的である。
【0003】
CHDM製造時の後段反応の触媒に銅−亜鉛系成型触媒を用いる技術は従来から知られており、例えば、特開平10−45645号では、前段反応により得た1,4−シクロヘキサンジカルボン酸ジアルキルを銅−亜鉛−アルミナ成型触媒の存在下、160〜300℃、50〜300kg/cmGの条件下で水素化反応を行い1,4−CHDMを製造している。
【0004】
又、アルミニウム、マグネシウム、ジルコニウム、あるいはそれらの混合物の酸化物を第三成分として含む銅−亜鉛系成型触媒を用いて、150〜350℃、204bar以下の条件下で1,4−シクロヘキサンジカルボン酸ジアルキルの水素化反応を行い、1,4−CHDMを得る方法も開示されている(米国特許第5334779号)。
【0005】
しかしながら、上記方法では、使用される銅−亜鉛系成型触媒の圧壊強度の保持率が非常に低く、触媒活性の持続性も悪いために触媒寿命が短い等の欠点がある。従って、反応装置から使用済み触媒を抜き出したり、新触媒を充填したりする非定常操作が短期間で必要となるため、CHDMの生産性が低下し、工業的に不利である。
【0006】
一方、銅−亜鉛系触媒以外では銅−クロム系成型触媒を用いてジカルボン酸エステルを相当するジオール(CHDMを含む)に水素化還元する技術も知られている(米国特許第5030771号実施例4)。銅−クロム系触媒を用いるエステル水素化還元反応では、触媒が高活性であり、且つ活性の持続性が良好といわれているが、毒性の高いクロムを含有しており、使用後の廃棄物処理の点で問題となっている。
【0007】
【発明が解決しようとする課題】
本発明は、銅−亜鉛系触媒の耐久性を向上させることにより、生産性に優れ、しかも環境面においても安全で、工業的に実用性のあるCHDMの製造プロセスを確立することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、シクロヘキサンジカルボン酸ジアルキルを水素化し、シクロヘキサンジメタノールを製造するに際し、触媒として銅−亜鉛−シリカ成型触媒を選択することにより、従来の銅−亜鉛系触媒或いは銅−亜鉛−アルミナ成型触媒と比して触媒の強度及び活性保持を飛躍的に改善できることを見い出し、更に、水素化の際の副生成物の抑制にも効果があることを見いだし、かかる知見に基づいて本発明を完成するに至った。
【0009】
即ち、本発明に係るCHDMの製造方法は、シクロヘキサンジカルボン酸ジアルキルを水素化してシクロヘキサンジメタノールを得るに際し、水素化を銅−亜鉛−シリカ成型触媒の存在下で行うことを特徴とする。
【0010】
【発明の実施の形態】
本発明で用いる反応装置としては、固定床連続反応装置であり、単管式の反応塔であっても良いし、更には複数の反応塔を並列にセットした多管式の反応塔であっても良い。
【0011】
本発明で原料として用いるシクロヘキサンジカルボン酸ジアルキルは、通常、フタル酸ジアルキルの核水素化により得られるが、その製法としては特に限定されず、いずれの製法で調製したものでも本発明の原料として利用可能である。そのような製造方法としては、例えば、特開昭54−163554号、特開平6−192146号、特開平7−149694号、特開平8−187432号、特開平10−45645号、WO9429261号、WO9800383号、米国特許第3334149号、米国特許第5319129号、米国特許第5286898号、米国特許第5399742号等が知られている。
【0012】
例えば、WO9800383号の方法では、反応温度120〜180℃、圧力30〜100kg/cmG、ルテニウム/アルミナ触媒存在下、芳香族ジカルボン酸ジアルキルの濃度を30重量%以上に調製した溶液を原料とし、送液速度F/V=0.1〜5h−1(Fは基質の供給速度を表し、Vは反応装置の容量を表す)、及び水素の供給速度は空塔ガス線速度として1〜40cm/sの範囲で水素化を行うことによりシクロヘキサンジカルボン酸ジアルキルを得ている。
【0013】
本発明で用いる水素化触媒としては、銅−亜鉛−シリカ成型触媒であり、その成分としては、酸化銅100重量部に対し、酸化亜鉛5重量部〜1000重量部、シリカ0.5重量部〜500重量部が例示され、好ましくは酸化亜鉛10〜800重量部、及びシリカ1〜300重量部である。酸化亜鉛が、5重量部未満又は1000重量部を越えると触媒強度、及び活性が低下し、しかも副生物の生成が多くなる。また、シリカが0.5重量部未満では触媒強度が低下する傾向にあり、500重量部を越えると触媒活性が低下する傾向にあり、しかも副生物が多くなりやすい。
【0014】
更に、触媒強度保持のために各種バインダーを添加して成型処理したものでも良い。用いられるバインダーとしては、ポリ酢酸ビニル、ポリメチルメタクリレート、ベントナイト、ゼオライト、グラファイト、モレキュラーシーブス等が例示される。
【0015】
触媒の調製方法としては、銅及び亜鉛の金属塩(例えば、硫酸塩、硝酸塩、塩酸塩等)水溶液を調製し、これにケイ酸塩(例えば、ケイ酸ナトリウム、ケイ酸カリウム等)水溶液を混ぜて懸濁液を得る。もしくは、ケイ素のアルコキシド化合物(例えば、テトラメトキシシラン、テトラエトキシシラン等)やハロゲン化合物(例えば、テトラクロロシラン、テトラブロモシラン等)の溶液を加水分解して得たケイ素の水酸化物液に、前記銅及び亜鉛の金属塩水溶液を混ぜて懸濁液を得る。これらどちらかの方法で調製した懸濁液に、さらに沈殿剤として、アンモニア、水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液を加える。そこで生成した沈殿を濾過、水洗浄、乾燥し、焼成する。このようにして得られた粉末を、タブレットマシンにより打錠成型して、固定床用触媒とする。
【0016】
一方、反応スタート時の急激な発熱を制御させたり、触媒活性を効果的に発現させたりするためには、銅−亜鉛−シリカ成型触媒に対し、予備還元処理を常法に従って施すことが有効である。
【0017】
本発明で用いる銅−亜鉛−シリカ成型触媒の表面積としては10m/g〜200m/gが例示され、好ましくは20m/g〜100m/gである。10m/g未満では反応速度が遅く、200m/gを越えると反応速度の促進効果少なくなり、圧壊強度も低く、しかも反応中における強度の保持率が低下しやすい。
【0018】
銅−亜鉛−シリカ成型触媒の形状は、特に限定されないが、工業的に入手が容易な円筒状のものが推奨される。またサイズは、使用する反応塔の内径により決定されるが、円筒状で直径2〜6mm、高さ2〜6mmの範囲のものが好ましい。
【0019】
水素化の反応条件は、原料となるシクロヘキサンジカルボン酸ジアルキルの種類によって適宜選択し得るが、一般的には次のような条件が提示できる。
【0020】
反応温度としては、200〜280℃の範囲が例示され、特に230〜260℃の範囲が好ましい。200℃未満では反応速度が遅く、280℃を越えると副生物が生成し、いずれの場合も実用性に欠ける。
【0021】
反応圧力としては、160〜300kg/cmGの範囲が例示され、特に200〜250kg/cmGの範囲が好ましい。160kg/cmG未満では反応速度が遅く、300kg/mGを越えても反応速度は上がらず、設備の面でも経済的ではない。
【0022】
具体的なシクロヘキサンジカルボン酸ジアルキルとしては、1,2−シクロヘキサンジカルボン酸ジメチル、1,2−シクロヘキサンジカルボン酸ジエチル、1,2−シクロヘキサンジカルボン酸ジプロピル、1,3−シクロヘキサンジカルボン酸ジメチル、1,3−シクロヘキサンジカルボン酸ジエチル、1,3−シクロヘキサンジカルボン酸ジプロピル、1,4−シクロヘキサンジカルボン酸ジメチル、1,4−シクロヘキサンジカルボン酸ジエチル及び1,4−シクロヘキサンジカルボン酸ジプロピル等が例示される。
【0023】
反応溶媒は、通常必要としないが、原料となるシクロヘキサンジカルボン酸ジアルキルの融点が高く、取り扱いが困難な場合や、反応熱の除去を容易にする場合には、アルコール類を併用しても良い。
【0024】
アルコール類としては、炭素数1〜8の直鎖状、分岐鎖状及び環状アルコールが例示でき、具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2−エチルヘキサノール等が例示される。特に、後段反応の原料がシクロヘキサンジカルボン酸ジメチルである場合には、反応溶媒としてメタノールが好ましい。
【0025】
更に、水素化反応の生成物であるシクロヘキサンジメタノール或いは高沸点物を含むシクロヘキサンジメタノール粗物を反応溶媒として用いても差し支えない。
【0026】
反応溶媒の使用量は、適宜選択され、系中のシクロヘキサンジカルボン酸ジアルキルの濃度としては5〜80重量%の範囲が推奨され、特に10〜50重量%の範囲になるように調製されるのが好ましい。5重量%未満では生産性が向上されず、80重量%以上では融点がそれほど下がらず、いずれの場合も反応溶媒を使用する効果がない。
【0027】
後段反応に関する固定床水素化反応の形態としては、前記成型触媒を充填した固定床反応装置の上部、または下部から水素ガスとともに原料を供給する流下法、または上昇法のいずれの方式でも良い。
【0028】
原料のシクロヘキサンジカルボン酸ジアルキルの送液速度(F/V)としては、0.1〜5.0h−1の範囲が推奨され、特に0.1〜2.0h−1の範囲が好ましい。
【0029】
また水素の供給速度としては、反応条件下での空塔ガス線速度で1〜40cm/sの範囲が推奨され、特に、2〜20cm/sの範囲が好ましい。
【0030】
かくして得られるCHDMは、蒸留など従来公知の方法により精製することも可能である。
【0031】
【実施例】
以下に、実施例を掲げて本発明を詳しく説明する。尚、各例における表面積は、BET法により測定した。また、触媒横方向の圧壊強度は、(株)木屋製作所製デジタル硬度計(KHT−20型)を用いて測定した。
【0032】
製造例1
内径20mm、塔長1mの固定床反応装置(0.314L)に、円筒状(3.2mmφ×3.2mm)の0.5%ルテニウム/アルミナ担持触媒360gを充填した。この装置にテレフタル酸ジメチル30重量%、1,4−シクロヘキサンジカルボン酸ジメチル70重量%に調製した溶液を、温度160℃、圧力50kg/cmGの反応条件下、500mL/h(F/V=0.48h−1)の送液速度で、反応塔の上部から水素ガス1.4Nm/h(空筒ガス線速度4cm/s)とともに供給し、核水素化反応を連続的に行った。この固定床連続核水素化反応で10時間後に得られる反応粗液の組成をガスクロマトグラフィーにより測定した。得られた結果を以下に示す。
【0033】
1,4−シクロヘキサンジカルボン酸ジメチル 94.5 重量%
低沸点物 2.4
4−ヒドロキシメチルシクロヘキサンカルボン酸メチル 2.7
テレフタル酸ジメチル 0.4
【0034】
[予備還元処理] 製造例1と同一反応装置に、円筒状(3.2mmφ×3.2mm)の銅−亜鉛−シリカ成型触媒(酸化銅39重量%、酸化亜鉛49重量%、シリカ12重量%、表面積36.6m/g)499gを充填し、温度100〜200℃、常圧〜100kg/cmG、及び水素濃度1〜100%の条件下、予備還元処理を行った。
【0035】
実施例1
前記予備還元処理後、製造例1で得られた反応粗液を、温度245℃、圧力205kg/cmGの反応条件下、345mL/h(F/V=1.10 h−1)の送液速度で、反応塔の上部から水素ガス7.3Nm/h(空筒ガス線速度6cm/s)とともに供給し、水素化反応を連続的に行った。
【0036】
この固定床連続水素化反応で10時間後、1.5ヶ月後、及び3ヶ月後に得られる原料、副生成物であるヒドロキシメチルシクロヘキサンカルボン酸メチル、CHDM、低沸点物、高沸点物の組成をガスクロマトグラフィーにより測定した。更に、使用した銅−亜鉛−シリカ成型触媒強度の経時変化も併せて測定した。得られた結果を第1表に示す。
【0037】
実施例2
製造例1で得られた反応粗液の送液速度440mL/h(F/V=1.4h−1)、反応温度265℃、水素ガス7.1Nm/h(空筒ガス線速度6cm/s)、及び円筒状(3.2mmφ×3.2mm)の銅−亜鉛−シリカ成型触媒(酸化銅43重量%、酸化亜鉛53重量%、シリカ4重量%、表面積59.7m/g)484gを充填した以外は実施例1の後段反応と同様に水素化反応を連続的に行った。得られた結果を第1表に示す。
【0038】
製造例2
[前段反応] 円筒状(3.2mmφ×3.2mm)0.5%ルテニウム/アルミナ担持触媒378gを用い、原料として、イソフタル酸ジメチル50重量%、1,3−シクロヘキサンジカルボン酸ジメチル50重量%からなる溶液を用いた以外は製造例1と同様に核水素反応を行った。この固定床連続核水素化反応で10時間後に得られた反応粗物の組成をガスクロマトグラフィーにより測定した。得られた結果を以下に示す。
【0039】
1,3−シクロヘキサンジカルボン酸ジメチル 95.9重量%
低沸点物 1.7
3−ヒドロキシメチルシクロヘキサンカルボン酸メチル 2.1
イソフタル酸ジメチル 0.3
【0040】
実施例3
円筒状(3.2mmφ×3.2mm)の銅−亜鉛−シリカ成型触媒(酸化銅41重量%、酸化亜鉛51重量%、シリカ8重量%、表面積57.3m/g)454gを充填し、製造例2で得られた反応粗液の送液速度を370mL/h(F/V=1.18h−1)とした以外は、実施例1と同様に水素化反応を連続的に行った。得られた結果を第1表に示す。
【0041】
実施例4
円筒状(3.2mmφ×3.2mm)の銅−亜鉛−シリカ成型触媒(酸化銅30重量%、酸化亜鉛35重量%、シリカ35重量%、表面積27.0m/g)507gを充填した以外は、実施例1と同様に水素化反応を連続的に行った。得られた結果を第1表に示す。
【0042】
比較例1
円筒状(3.2mmφ×3.2mm)の銅−亜鉛−アルミナ成型触媒(酸化銅47重量%、酸化亜鉛50重量%、アルミナ3重量%、表面積60.0m/g)455gを充填した以外は、実施例1と同様に水素化反応を連続的に行った。得られた結果を第2表に示す。
【0043】
比較例2
円筒状(3.2mmφ×3.2mm)の銅−亜鉛−ジルコニア成型触媒(酸化銅41重量%、酸化亜鉛44重量%、ジルコニア15重量%、表面積26.3m/g)507gを充填した以外は、実施例1と同様に水素化反応を連続的に行った。得られた結果を第2表に示す。
【0044】

Figure 0003629952
【0045】
Figure 0003629952
【0046】
実施例1〜4及び比較例1、2を比較すると、本発明の触媒を用いることによって、高い活性が長期間維持でき、未反応のシクロヘキサンジカルボン酸ジアルキルやヒドロキシメチルシクロヘキサンカルボン酸メチルの副生を抑えることが可能となり、又、高沸点物の生成量を抑えることが可能となった。更に、3ヶ月使用後の触媒の圧壊強度もアルミナ(比較例1)やジルコニア(比較例2)を用いた銅−亜鉛成型触媒と比して強い。
【0047】
【発明の効果】
本発明の方法を適用することにより、シクロヘキサンジカルボン酸ジアルキルの水素化反応に用いる銅−亜鉛系成型触媒の耐久性が大幅に改善され、且つ環境面でも安全な触媒を用いて実施することができ、目的とするシクロヘキサンジメタノールを収率良く、しかも高い生産性で工業的に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing cyclohexanedimethanol (hereinafter abbreviated as “CHDM”). By applying CHDM as a diol component such as a polyester resin, a polyurethane resin, and a polycarbonate resin, CHDM is effective in improving the heat resistance, transparency, weather resistance, and moldability of these resins. In particular, it has recently attracted attention as a compound useful for modifying PET.
[0002]
[Prior art]
As a method for producing CHDM, a process in which a dialkyl phthalate is used as a starting material and a nuclear hydrogenation of an aromatic ring is performed in the first stage to form a cyclohexanedicarboxylic acid dialkyl ester (hereinafter referred to as “pre-stage reaction”), followed by an ester moiety In general, the method is produced by two steps of a hydrogenation reduction of an alcohol to an alcohol (hereinafter referred to as “rear reaction”).
[0003]
A technique of using a copper-zinc-based molded catalyst as a catalyst for the subsequent reaction in the production of CHDM has been known. For example, in JP-A-10-45645, a dialkyl 1,4-cyclohexanedicarboxylate obtained by the previous reaction is used. 1,4-CHDM is produced by performing a hydrogenation reaction in the presence of a copper-zinc-alumina molding catalyst under conditions of 160 to 300 ° C. and 50 to 300 kg / cm 2 G.
[0004]
In addition, a dialkyl 1,4-cyclohexanedicarboxylate is used under a condition of 150 to 350 ° C. and 204 bar or less using a copper-zinc-based molded catalyst containing an oxide of aluminum, magnesium, zirconium, or a mixture thereof as a third component. A method for obtaining 1,4-CHDM by performing a hydrogenation reaction is also disclosed (US Pat. No. 5,334,795).
[0005]
However, the above-described method has disadvantages such as the catalyst life is short because the copper-zinc-based molded catalyst used has a very low crushing strength retention rate and poor catalytic activity. Therefore, unsteady operation of extracting the spent catalyst from the reaction apparatus or filling with a new catalyst is required in a short period of time, which reduces the productivity of CHDM and is industrially disadvantageous.
[0006]
On the other hand, other than the copper-zinc catalyst, there is also known a technique in which a dicarboxylic acid ester is hydroreduced to a corresponding diol (including CHDM) using a copper-chromium molded catalyst (US Pat. No. 5,030,771) Example 4 ). In the ester hydrogenation reduction reaction using a copper-chromium-based catalyst, the catalyst is said to have high activity and good sustainability. However, it contains highly toxic chromium, and waste treatment after use This is a problem.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to establish an industrially practical CHDM production process that is excellent in productivity and environmentally safe by improving the durability of a copper-zinc catalyst. .
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventors of the present invention hydrogenated dialkylcyclohexanedicarboxylate to produce cyclohexanedimethanol, and selected a copper-zinc-silica molded catalyst as a catalyst. It has been found that the strength and activity retention of the catalyst can be drastically improved compared to the copper-zinc-based catalyst or the copper-zinc-alumina molded catalyst, and it is also effective in suppressing by-products during hydrogenation. And the present invention has been completed based on such findings.
[0009]
That is, the method for producing CHDM according to the present invention is characterized in that when hydrogenating a dialkylcyclohexanedicarboxylate to obtain cyclohexanedimethanol, the hydrogenation is carried out in the presence of a copper-zinc-silica shaped catalyst.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The reaction apparatus used in the present invention is a fixed bed continuous reaction apparatus, which may be a single tube reaction tower, or a multi-tube reaction tower in which a plurality of reaction towers are set in parallel. Also good.
[0011]
The dialkyl cyclohexanedicarboxylate used as a raw material in the present invention is usually obtained by nuclear hydrogenation of a dialkyl phthalate, but the production method is not particularly limited, and any of the production methods can be used as the raw material of the present invention. It is. Examples of such a production method include, for example, JP-A-54-163554, JP-A-6-192146, JP-A-7-149694, JP-A-8-187432, JP-A-10-45645, WO9429261, WO9800383. US Pat. No. 3,334,149, US Pat. No. 5,319,129, US Pat. No. 5,286,898, US Pat. No. 5,399,742 and the like are known.
[0012]
For example, in the method of WO9800383, a reaction temperature of 120 to 180 ° C., a pressure of 30 to 100 kg / cm 2 G, a ruthenium / alumina catalyst in the presence of a dialkyl aromatic dicarboxylate concentration adjusted to 30% by weight or more is used as a raw material. , Liquid feed rate F / V = 0.1 to 5 h −1 (F represents the substrate feed rate, V represents the capacity of the reactor), and hydrogen feed rate is 1 to 40 cm as a superficial gas linear velocity. Dialkyl cyclohexanedicarboxylate is obtained by performing hydrogenation in the range of / s.
[0013]
The hydrogenation catalyst used in the present invention is a copper-zinc-silica molding catalyst, and its components are 5 parts by weight to 1000 parts by weight of zinc oxide and 0.5 parts by weight of silica to 100 parts by weight of copper oxide. Examples are 500 parts by weight, preferably 10 to 800 parts by weight of zinc oxide and 1 to 300 parts by weight of silica. When zinc oxide is less than 5 parts by weight or more than 1000 parts by weight, the catalyst strength and activity are lowered, and more by-products are generated. On the other hand, if the silica content is less than 0.5 parts by weight, the catalyst strength tends to decrease. If the silica content exceeds 500 parts by weight, the catalyst activity tends to decrease, and more by-products tend to increase.
[0014]
Further, it may be molded by adding various binders to maintain the catalyst strength. Examples of the binder to be used include polyvinyl acetate, polymethyl methacrylate, bentonite, zeolite, graphite, molecular sieves and the like.
[0015]
The catalyst is prepared by preparing an aqueous solution of copper and zinc metal salts (eg, sulfate, nitrate, hydrochloride, etc.) and mixing this with an aqueous solution of silicate (eg, sodium silicate, potassium silicate, etc.). To obtain a suspension. Alternatively, a silicon hydroxide solution obtained by hydrolyzing a solution of a silicon alkoxide compound (eg, tetramethoxysilane, tetraethoxysilane, etc.) or a halogen compound (eg, tetrachlorosilane, tetrabromosilane, etc.) An aqueous metal salt solution of copper and zinc is mixed to obtain a suspension. An alkaline aqueous solution such as ammonia, sodium hydroxide, potassium hydroxide or the like is further added as a precipitating agent to the suspension prepared by either of these methods. The resulting precipitate is filtered, washed with water, dried and fired. The powder thus obtained is tableted by a tablet machine to obtain a fixed bed catalyst.
[0016]
On the other hand, in order to control the rapid exotherm at the start of the reaction or to effectively exhibit the catalytic activity, it is effective to subject the copper-zinc-silica shaped catalyst to a pre-reduction treatment according to a conventional method. is there.
[0017]
Copper used in the present invention - Zinc - The surface area of the silica molded catalyst is exemplified 10m 2 / g~200m 2 / g, preferably 20m 2 / g~100m 2 / g. If it is less than 10 m 2 / g, the reaction rate is slow, and if it exceeds 200 m 2 / g, the effect of promoting the reaction rate is reduced, the crushing strength is low, and the strength retention during the reaction tends to decrease.
[0018]
The shape of the copper-zinc-silica shaped catalyst is not particularly limited, but a cylindrical one that is industrially easily available is recommended. The size is determined by the inner diameter of the reaction tower to be used, but is preferably cylindrical and has a diameter of 2 to 6 mm and a height of 2 to 6 mm.
[0019]
The reaction conditions for hydrogenation can be appropriately selected depending on the type of dialkyl cyclohexanedicarboxylate used as a raw material, but generally the following conditions can be presented.
[0020]
As reaction temperature, the range of 200-280 degreeC is illustrated, and the range of 230-260 degreeC is especially preferable. If it is less than 200 ° C., the reaction rate is slow, and if it exceeds 280 ° C., a by-product is produced, and in any case, it is not practical.
[0021]
The reaction pressure in the range of 160~300kg / cm 2 G and the like, in particular in the range of 200~250kg / cm 2 G are preferred. If it is less than 160 kg / cm 2 G, the reaction rate is slow, and if it exceeds 300 kg / m 2 G, the reaction rate does not increase, and it is not economical in terms of equipment.
[0022]
Specific examples of the dialkyl cyclohexanedicarboxylate include dimethyl 1,2-cyclohexanedicarboxylate, diethyl 1,2-cyclohexanedicarboxylate, dipropyl 1,2-cyclohexanedicarboxylate, dimethyl 1,3-cyclohexanedicarboxylate, 1,3-cyclohexanedicarboxylate, Examples include diethyl cyclohexanedicarboxylate, dipropyl 1,3-cyclohexanedicarboxylate, dimethyl 1,4-cyclohexanedicarboxylate, diethyl 1,4-cyclohexanedicarboxylate and dipropyl 1,4-cyclohexanedicarboxylate.
[0023]
Although a reaction solvent is not usually required, alcohols may be used in combination when the starting material is a dialkyl cyclohexanedicarboxylate having a high melting point and is difficult to handle or when it is easy to remove reaction heat.
[0024]
Examples of alcohols include linear, branched and cyclic alcohols having 1 to 8 carbon atoms, specifically, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, hexanol, cyclohexanol, octanol, Examples include 2-ethylhexanol. In particular, when the raw material for the subsequent reaction is dimethyl cyclohexanedicarboxylate, methanol is preferable as the reaction solvent.
[0025]
Furthermore, cyclohexanedimethanol, which is a product of the hydrogenation reaction, or crude cyclohexanedimethanol containing a high boiling point substance may be used as the reaction solvent.
[0026]
The amount of reaction solvent used is appropriately selected, and the concentration of dialkyl cyclohexanedicarboxylate in the system is recommended to be in the range of 5 to 80% by weight, and in particular, adjusted to be in the range of 10 to 50% by weight. preferable. If it is less than 5% by weight, the productivity is not improved, and if it is 80% by weight or more, the melting point does not decrease so much, and in any case, there is no effect of using the reaction solvent.
[0027]
As a form of the fixed bed hydrogenation reaction relating to the latter stage reaction, any of a flow-down method in which a raw material is supplied together with hydrogen gas from the upper part or the lower part of the fixed bed reactor filled with the shaped catalyst, or an ascending method may be used.
[0028]
The feed rate of the raw material of the cyclohexanedicarboxylic acid dialkyl (F / V), the range of 0.1~5.0H -1 is recommended, in particular in the range of 0.1~2.0H -1 it is preferred.
[0029]
The hydrogen supply rate is recommended to be in the range of 1 to 40 cm / s in terms of the superficial gas linear velocity under the reaction conditions, and particularly preferably in the range of 2 to 20 cm / s.
[0030]
The CHDM thus obtained can be purified by a conventionally known method such as distillation.
[0031]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. The surface area in each example was measured by the BET method. Moreover, the crushing strength in the lateral direction of the catalyst was measured using a digital hardness meter (KHT-20 type) manufactured by Kiyama Seisakusho.
[0032]
Production Example 1
A cylindrical (3.2 mmφ × 3.2 mm) 0.5% ruthenium / alumina supported catalyst 360 g was charged into a fixed bed reactor (0.314 L) having an inner diameter of 20 mm and a column length of 1 m. A solution prepared in 30% by weight of dimethyl terephthalate and 70% by weight of dimethyl 1,4-cyclohexanedicarboxylate in this apparatus was subjected to 500 mL / h (F / V = F / V = reaction conditions at a temperature of 160 ° C. and a pressure of 50 kg / cm 2 G). 0.48 h −1 ) was fed together with hydrogen gas 1.4 Nm 3 / h (cylinder gas linear velocity 4 cm / s) from the upper part of the reaction tower to continuously carry out the nuclear hydrogenation reaction. The composition of the reaction crude liquid obtained after 10 hours in this fixed bed continuous nuclear hydrogenation reaction was measured by gas chromatography. The obtained results are shown below.
[0033]
Dimethyl 1,4-cyclohexanedicarboxylate 94.5% by weight
Low boiling point 2.4
Methyl 4-hydroxymethylcyclohexanecarboxylate 2.7
Dimethyl terephthalate 0.4
[0034]
[Preliminary reduction treatment] In the same reaction apparatus as in Production Example 1, a cylindrical (3.2 mmφ × 3.2 mm) copper-zinc-silica molding catalyst (copper oxide 39 wt%, zinc oxide 49 wt%, silica 12 wt%) , Surface area 36.6 m 2 / g) was charged with 499 g, and a prereduction treatment was performed under conditions of a temperature of 100 to 200 ° C., a normal pressure of 100 kg / cm 2 G, and a hydrogen concentration of 1 to 100%.
[0035]
Example 1
After the preliminary reduction treatment, the reaction crude liquid obtained in Production Example 1 was fed at 245 mL / h (F / V = 1.10 h −1 ) under the reaction conditions of a temperature of 245 ° C. and a pressure of 205 kg / cm 2 G. Hydrogen solution was continuously supplied from the upper part of the reaction tower with hydrogen gas 7.3 Nm 3 / h (cylinder gas linear velocity 6 cm / s) at a liquid speed.
[0036]
The composition of the raw material obtained by this fixed bed continuous hydrogenation reaction after 10 hours, 1.5 months, and 3 months, methyl hydroxymethylcyclohexanecarboxylate, CHDM, low boilers and high boilers obtained as by-products. Measured by gas chromatography. Furthermore, the time-dependent change of the copper-zinc-silica molded catalyst strength used was also measured. The results obtained are shown in Table 1.
[0037]
Example 2
Liquid feed rate of the reaction crude liquid obtained in Production Example 1 440 mL / h (F / V = 1.4 h −1 ), reaction temperature 265 ° C., hydrogen gas 7.1 Nm 3 / h (cylinder gas linear velocity 6 cm / h) s) and a cylindrical (3.2 mmφ × 3.2 mm) copper-zinc-silica molding catalyst (copper oxide 43 wt%, zinc oxide 53 wt%, silica 4 wt%, surface area 59.7 m 2 / g) 484 g The hydrogenation reaction was continuously carried out in the same manner as in the subsequent reaction of Example 1 except that was charged. The results obtained are shown in Table 1.
[0038]
Production Example 2
[Preliminary reaction] A cylindrical (3.2 mmφ × 3.2 mm) 0.5% ruthenium / alumina supported catalyst (378 g) was used as a raw material from 50% by weight of dimethyl isophthalate and 50% by weight of dimethyl 1,3-cyclohexanedicarboxylate. A nuclear hydrogen reaction was carried out in the same manner as in Production Example 1 except that the resulting solution was used. The composition of the reaction crude obtained after 10 hours in this fixed bed continuous nuclear hydrogenation reaction was measured by gas chromatography. The obtained results are shown below.
[0039]
95.9% by weight of dimethyl 1,3-cyclohexanedicarboxylate
Low boiling point 1.7
Methyl 3-hydroxymethylcyclohexanecarboxylate 2.1
Dimethyl isophthalate 0.3
[0040]
Example 3
Filled with 454 g of a cylindrical (3.2 mmφ × 3.2 mm) copper-zinc-silica molding catalyst (copper oxide 41 wt%, zinc oxide 51 wt%, silica 8 wt%, surface area 57.3 m 2 / g), The hydrogenation reaction was carried out continuously in the same manner as in Example 1 except that the reaction crude liquid obtained in Production Example 2 was fed at a rate of 370 mL / h (F / V = 1.18 h −1 ). The results obtained are shown in Table 1.
[0041]
Example 4
Except for filling 507 g of a cylindrical (3.2 mmφ × 3.2 mm) copper-zinc-silica molding catalyst (copper oxide 30 wt%, zinc oxide 35 wt%, silica 35 wt%, surface area 27.0 m 2 / g). The hydrogenation reaction was carried out continuously in the same manner as in Example 1. The results obtained are shown in Table 1.
[0042]
Comparative Example 1
Except for filling 455 g of cylindrical (3.2 mmφ × 3.2 mm) copper-zinc-alumina molding catalyst (copper oxide 47 wt%, zinc oxide 50 wt%, alumina 3 wt%, surface area 60.0 m 2 / g) The hydrogenation reaction was carried out continuously in the same manner as in Example 1. The results obtained are shown in Table 2.
[0043]
Comparative Example 2
Except for filling 507 g of cylindrical (3.2 mmφ × 3.2 mm) copper-zinc-zirconia molding catalyst (copper oxide 41 wt%, zinc oxide 44 wt%, zirconia 15 wt%, surface area 26.3 m 2 / g) The hydrogenation reaction was carried out continuously in the same manner as in Example 1. The results obtained are shown in Table 2.
[0044]
Figure 0003629952
[0045]
Figure 0003629952
[0046]
Comparing Examples 1 to 4 and Comparative Examples 1 and 2, by using the catalyst of the present invention, high activity can be maintained for a long period of time, and unreacted dialkyl cyclohexanedicarboxylate and methyl hydroxymethylcyclohexanecarboxylate are by-produced. It became possible to suppress, and it became possible to suppress the production amount of high-boiling substances. Furthermore, the crushing strength of the catalyst after three months of use is also stronger than that of a copper-zinc molded catalyst using alumina (Comparative Example 1) or zirconia (Comparative Example 2).
[0047]
【The invention's effect】
By applying the method of the present invention, the durability of the copper-zinc-based molded catalyst used in the hydrogenation reaction of the dialkyl cyclohexanedicarboxylate is greatly improved, and it can be carried out using an environmentally safe catalyst. The desired cyclohexanedimethanol can be industrially produced with good yield and high productivity.

Claims (3)

固定床連続水素化反応において、銅−亜鉛−シリカ成型触媒の存在下、シクロヘキサンジカルボン酸ジアルキルを水素化してシクロヘキサンジメタノールを得るに際し、該触媒の表面積が10mIn the fixed bed continuous hydrogenation reaction, when hydrogenating dialkylcyclohexanedicarboxylate to obtain cyclohexanedimethanol in the presence of a copper-zinc-silica shaped catalyst, the surface area of the catalyst is 10 m. 2 /g〜200m/ G-200m 2 /gであるシクロヘキサンジメタノールの製造方法。/ G production method of cyclohexanedimethanol. 上記触媒の組成が、酸化銅100重量部に対し酸化亜鉛10〜800重量部、シリカ1〜300重量部である請求項1に記載のシクロヘキサンジメタノールの製造方法。The method for producing cyclohexanedimethanol according to claim 1, wherein the composition of the catalyst is 10 to 800 parts by weight of zinc oxide and 1 to 300 parts by weight of silica with respect to 100 parts by weight of copper oxide. 上記触媒の表面積が、20mThe surface area of the catalyst is 20 m 2 /g〜100m/ G-100m 2 /gである請求項1又は請求項2に記載のシクロヘキサンジメタノールの製造方法。It is / g, The manufacturing method of the cyclohexane dimethanol of Claim 1 or Claim 2.
JP16337798A 1998-06-11 1998-06-11 Method for producing cyclohexanedimethanol Expired - Fee Related JP3629952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16337798A JP3629952B2 (en) 1998-06-11 1998-06-11 Method for producing cyclohexanedimethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16337798A JP3629952B2 (en) 1998-06-11 1998-06-11 Method for producing cyclohexanedimethanol

Publications (2)

Publication Number Publication Date
JP2000001447A JP2000001447A (en) 2000-01-07
JP3629952B2 true JP3629952B2 (en) 2005-03-16

Family

ID=15772736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16337798A Expired - Fee Related JP3629952B2 (en) 1998-06-11 1998-06-11 Method for producing cyclohexanedimethanol

Country Status (1)

Country Link
JP (1) JP3629952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173212B2 (en) * 2015-04-01 2019-01-08 Hanwha Chemical Corporation Method for regenerating hydrogenation catalyst for phthalate compound

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919489B1 (en) 2004-03-03 2005-07-19 Eastman Chemical Company Process for a cyclohexanedimethanol using raney metal catalysts
JP5441526B2 (en) 2009-07-01 2014-03-12 三菱瓦斯化学株式会社 Method for producing alicyclic alcohol
US8410317B2 (en) 2011-07-29 2013-04-02 Eastman Chemical Company Process for the preparation of 1,4-cyclohexanedimethanol
US8766017B2 (en) * 2011-07-29 2014-07-01 Eastman Chemical Company Integrated process for the preparation of 1,4-cyclohexanedimethanol from terephthalic acid
US8410318B2 (en) 2011-07-29 2013-04-02 Eastman Chemical Company Process for the preparation of 1,4-cyclohexanedimethanol from terephthalic acid
US8877984B2 (en) 2011-07-29 2014-11-04 Eastman Chemical Company Process for the preparation of 1,3-cyclohexanedimethanol from isophthalic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173212B2 (en) * 2015-04-01 2019-01-08 Hanwha Chemical Corporation Method for regenerating hydrogenation catalyst for phthalate compound

Also Published As

Publication number Publication date
JP2000001447A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US7510591B2 (en) Catalyst and method for the hydration of carbonyl compounds
EP0701479B1 (en) Process for the hydrogenation of carboxylic acid esters
JP4099233B2 (en) Method for purifying butane-1,4-diol
JP2001527056A (en) Method for producing 1,6-hexanediol
TWI403496B (en) Process for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the secondary streams of trimethylolpropane preparation
EP2365952B1 (en) An improved process for hydrogenating alkyl ester(s) in the presence of carbon monoxide
WO1990009239A1 (en) Catalyst compositions and the use thereof in the hydrogenation of carboxylic acid esters
KR20120004513A (en) Method for producing 1,6-hexanediol and caprolactone
JPH07163880A (en) Preparation of copper-containing hydrogenation catalyst and production of alcohol
JP3629952B2 (en) Method for producing cyclohexanedimethanol
JP2017502128A (en) Method for producing polyamide 66
JP2017502949A (en) Method for producing hexamethylenediamine
JP2017504594A (en) Process for producing adipic acid or at least one reaction product of said adipic acid
US6288286B1 (en) Method for producing hexanediol-1,6
JP3763076B2 (en) Method for producing α-hydroxycarboxylic acid ester
JPH08245507A (en) Production of dialkyl ester succinate
JP2639464B2 (en) Process for producing 1,4-butanediol and tetrahydrofuran
EP3400100B1 (en) Process for producing 1,3-butanediol and for optionally further producing (r)-3-hydroxybutyl (r)-3-hydroxybutyrate
JP2639463B2 (en) Method for producing 1,4-butanediol and tetrahydrofuran
JPH05255156A (en) Manufacture of higher alcohol by catalytic hydrogenation of carboxylic acid alkylester
CN102001930A (en) Method for purifying chloroacetic acid by catalytic hydrogenolysis in chloroacetic acid production and application thereof
JP3662063B2 (en) Method for producing alcohol
JPH1045645A (en) Production of 1,4-cyclohexanedimethanol
JPH1045646A (en) Product of 1,4-cyclohexanedimethanol
JP3864642B2 (en) Method for producing alcohols

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees