JP3628368B2 - Method for anodizing aluminum materials - Google Patents

Method for anodizing aluminum materials Download PDF

Info

Publication number
JP3628368B2
JP3628368B2 JP06550095A JP6550095A JP3628368B2 JP 3628368 B2 JP3628368 B2 JP 3628368B2 JP 06550095 A JP06550095 A JP 06550095A JP 6550095 A JP6550095 A JP 6550095A JP 3628368 B2 JP3628368 B2 JP 3628368B2
Authority
JP
Japan
Prior art keywords
oxide film
anion
comparative example
rating
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06550095A
Other languages
Japanese (ja)
Other versions
JPH08260197A (en
Inventor
一 宮坂
英明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP06550095A priority Critical patent/JP3628368B2/en
Priority to US08/621,294 priority patent/US5775892A/en
Priority to CN96107241.5A priority patent/CN1213174C/en
Publication of JPH08260197A publication Critical patent/JPH08260197A/en
Application granted granted Critical
Publication of JP3628368B2 publication Critical patent/JP3628368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明はSiを含むアルミニウム材、特にSi,Cu,Feなどを多く含むアルミニウム合金鋳鍛材を対象に、この種の材料に陽極酸化処理を施す技術の改良に関する。
【0002】
【従来の技術】
例えば、特開平6−167243号公報「エンジンシリンダの摺動部材」に、アルミニウム母材に含まれるSiの処理を主旨とした発明が開示されている。
即ち、Siを8〜12%含むアルミニウム材に通常の硫酸浴中での直流定電解法で陽極酸化処理すると、Siがメッキ電流の通電を阻害し、その結果、薄く軟らかな被膜しか得られない。そこで、特開平6−167243号では電流反転法を採用してSiを破砕し、通電を良好にし、厚い硬い被膜を得るというものである。
【0003】
【発明が解決しようとする課題】
しかし、上記技術では針状のSiを破砕して微細化することはできるが、母材及び酸化膜中にはSi粒は当然残留する。このため、酸化膜は耐食性が低下し、好ましくない。
そこで、本発明の目的は陽極酸化膜中に、母材のSiを残留させない若しくは影響が無い程度まで排除することのできる技術を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するために本発明は、Siを含むアルミニウム材に、下記▲1▼〜▲3▼からなる電解液を用いて陽極酸化処理を施すことを特徴とする。
▲1▼錯化能を有する陰イオンを含む化合物
▲2▼酸素酸アニオンを含む有機酸
▲3▼ハロゲン化物
なお、「錯化能」とは金属イオンに配位子として配位して錯体をつくる能力のことをいう。
「錯体」とは金属又は金属類似元素の原子を中心原子として、それに他の原子又は原子団すなわち配位子が結合して1つの原子団をつくるとき、その原子団を錯体という。
「アニオン」は陰イオンを意味する。
【0005】
前記錯化能を有する陰イオンを含む化合物は、リン酸水素ナトリウム、リン酸3ナトリウムから選ばれた少なくとも1つであり、前記酸素酸アニオンを含む有機酸は、クエン酸ナトリウム、酒石酸ナトリウム、ソルビトールから選ばれた少なくとも1つであり、前記ハロゲン化物は、フッ化カリウム、フッ化ナトリウムから選ばれた少なくとも1つであことを特徴とする
【0006】
【作用】
上記▲1▼〜▲3▼からなる電解液を用いて陽極酸化すると、アルミニウム材の表面に所望の酸化膜が形成できる。
この際に、電解液中の▲1▼〜▲3▼は各々次の作用をなす。
▲2▼酸素酸アニオンは、OH−イオンを陽極に供給し、被膜の生成効率を向上させる。
▲3▼ハロゲン化物は、酸素酸アニオンとともに、Siなどの介在物、その他添加金属、金属間化合物を選択的に溶解し、酸化膜から除去する。
▲1▼錯化能を有する陰イオンを含む化合物は、酸化膜を平坦にする作用をなす。即ち、生成途中に酸化膜の外表面に凹凸があるとすると、前記陰イオンを含む化合物は、凹部に厚く、凸部に薄く付着する。見掛け上、Alイオンの溶出速度は凹部で遅く、凸部で早くなることから、結果的に酸化膜の外表面は平坦になる。
【0007】
なお、上記▲1▼〜▲3▼の具体的化合物及びその好適濃度範囲は次の通りである。
▲1▼錯化能を有する陰イオンを含む化合物;
好適化合物;リン酸水素ナトリウム、リン酸3ナトリウム
好適濃度;リン酸水素ナトリウムは、0.2〜0.5モル
リン酸3ナトリウムは、0.2〜0.4モル
下限値より少ないと酸化膜の生成速度が例えば0.01μm/分の如く遅くなり、生産性が悪化する。また、上限値を超えると過飽和となり浴中に沈殿してしまい意味が無くなる。
【0008】
▲2▼酸素酸アニオンを含む有機酸;
好適化合物;クエン酸ナトリウム、酒石酸ナトリウム、ソルビトール
好適濃度;クエン酸ナトリウムは0.1〜0.75モル
酒石酸ナトリウムは0.1〜0.55モル
ソルビトールは0.25〜0.75モル
下限値より少ないと増膜効果がなくなり、また、上限値を超えるとバーニング(焼け)が発生して膜の成長が止まる。
【0009】
▲3▼ハロゲン化物:
好適化合物;フッ化カリウム、フッ化ナトリウム
好適濃度;フッ化カリウムは、0.1〜0.75モル
フッ化ナトリウムは、0.1〜0.75モル
下限値より少ないと合金成分の残存量が過多となり、また、上限値を超えると膜の成長が止まる。
【0010】
【実施例】
以下、本発明の実施例を示すが、本発明はこれに限定されるものではない。
表1は次に述べる実施例及び比較例を対象とした前処理の条件を示す。すなわち、陽極酸化処理の前に母材(アルミニウム材)の表面から油脂などを除去する処置を施す。
【0011】
【表1】

Figure 0003628368
【0012】
実施例1及び比較例1;
実施例1及び比較例1での母材は、アルミニウム合金ダイカスト材のADC12−JISH5302であり、その主成分は表2に示す通り、1.5〜3.5wt%のCu、9.6〜12.0wt%ものSi、0.3〜0.6wt%のFeを含むアルミニウム合金である。
【0013】
【表2】
Figure 0003628368
【0014】
実施例1は、前記前処理を施したADC12−JIS材に、表3に示す通りのリン酸3ナトリウム0.3モル、ソルビトール0.5モル及びフッ化カリウム0.5モルからなる電解液を用いて、陽極酸化を施す。液温は20℃、電圧は50V(直流)とし、通電時間を20〜90minの範囲で時間を変更しつつ6個のサンプルを得、更にこれらを市販の封孔剤を添加した95℃の湯水中に20分間放置し、その後水洗いし、自然乾燥させて、サンプルとした。
【0015】
【表3】
Figure 0003628368
【0016】
図1は本発明方法に係る実施例1及び比較例1で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフである。
レイティングNoとは、JISH8681「アルミニウム及びアルミニウム合金の陽極酸化被膜の耐食性試験方法」で規定される試験方法の1つでる、キャス法で規定する耐食性指標である。
【0017】
キャス法は、キャス試験機を用いて、銅塩を含む酢酸酸性の塩水溶液を規定時間サンプルに噴霧し、腐食の発生状態によって酸化膜の耐食性を調べる方法である。実施例及び比較例ではキャス試験時間を16時間に定めた。
レイティングNoは、No10が腐食なしであり、No9.5が腐食面積率0.05%以下、No9が同0.10%以下、以降Noが小さくなるほど腐食面積率は大きくなる。すなわち、Noが大きいほど耐食性があるということを示す。一般に通常の使用に耐えるレイティングNoは9と言われているので、本発明では基準レイティングNoを9とした。
【0018】
実施例1の方法で得られたサンプル6個にキャス試験を施した結果を、図1に○で示した。すると、レイティングNo9を満足する酸化膜厚は3〜4μmでよいことが分かった。そして、酸化膜の成分をEPMA(X線マイクロアナライザ)で分析したところ、Siの含有量は8wt%であった。
【0019】
比較例1は、前記前処理を施したADC12−JIS材に、表3に示す通りの15wt%硫酸からなる電解液を用いて、陽極酸化を施す。液温は20℃、電圧は10V(直流)とし、通電時間を10〜60minの範囲で時間を変更しつつ5個のサンプルを得、更にこれらを市販の封孔剤を添加した95℃の湯水中に20分間放置し、その後水洗いし、自然乾燥させて、サンプルとした。
【0020】
これらのサンプルにキャス試験を施した結果を、図1に△で示した。すると、レイティングNo9を満足する酸化膜厚は13μmであることが分かった。そして、酸化膜の成分をEPMAで分析したところ、Siの含有量は17wt%であった。
実施例1は比較例1の1/4程度の膜厚で、同等の耐食性を発揮すると言え、この差は酸化膜に含まれるSiの量(実施例1は8wt%、比較例1は17wt%)に依存すると考える。
【0021】
実施例2及び比較例2;
実施例2及び比較例2での母材は、アルミニウム合金鋳物材のAC4C−JISH5202であり、その主成分は表4に示す通り、0.05wt%以下のCu、6.5〜7.5wt%のSi、0.3〜0.45wt%のMg、0.3wt%以下のFe、0.2wt%以下のTiを含むアルミニウム合金である。
【0022】
【表4】
Figure 0003628368
【0023】
実施例2は、前記前処理を施したAC4C−JIS材に、表5に示す通りのリン酸3ナトリウム0.3モル、ソルビトール0.5モル及びフッ化カリウム0.5モルからなる電解液を用いて、陽極酸化を施す。液温は20℃、電圧は50V(直流)とし、通電時間を20〜60minの範囲で時間を変更しつつ6個のサンプルを得、更にこれらを市販の封孔剤を添加した95℃の湯水中に20分間放置し、その後水洗いし、自然乾燥させて、サンプルとした。
【0024】
【表5】
Figure 0003628368
【0025】
図2は本発明方法に係る実施例2及び比較例2で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフである。
実施例2の方法で得られたサンプル6個にキャス試験を施した結果を、図2に○で示した。すると、レイティングNo9を満足する酸化膜厚は3μmでよいことが分かった。そして、酸化膜の成分をEPMAで分析したところ、Siの含有量は7wt%であった。
【0026】
比較例2は、前記前処理を施したAC4C材に、表5に示す通りの15wt%硫酸からなる電解液を用いて、陽極酸化を施す。液温は20℃、電圧は15V(直流)とし、通電時間を10〜60minの範囲で時間を変更しつつ5個のサンプルを得、更にこれらを市販の封孔剤を添加した95℃の湯水中に20分間放置し、その後水洗いし、自然乾燥させて、サンプルとした。
【0027】
これらのサンプルにキャス試験を施した結果を、図2に△で示した。すると、レイティングNo9を満足する酸化膜厚は13μmであることが分かった。
実施例2は比較例2の1/4程度の膜厚で、同等の耐食性を発揮すると言える。この差は酸化膜に含まれるSiの量(実施例2は7wt%、比較例1は17wt%)に依存すると考える。
【0028】
実施例3、実施例4及び比較例3;
実施例3、実施例4及び比較例3での母材は、前記表2に示したアルミニウム合金ダイカスト材のADC12−JISH5302である。
【0029】
実施例3は、前記前処理を施したADC12−JIS材に、表6に示す通りのリン酸3ナトリウム0.2モル、ソルビトール0.5モル及びフッ化カリウム0.5モルからなる電解液を用いて、陽極酸化を施す。液温は20℃、電圧は50V(直流)とし、通電時間を20〜90minの範囲で時間を変更しつつ5個のサンプルを得、更にこれらを市販の封孔剤を添加した95℃の湯水中に20分間放置し、その後水洗いし、自然乾燥させて、サンプルとした。
【0030】
【表6】
Figure 0003628368
【0031】
図3は本発明方法に係る実施例3及び比較例3で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフである。
実施例3の方法で得られたサンプル5個にキャス試験を施した結果を、図3に○で示した。すると、レイティングNo9を満足する酸化膜厚は2.5μmでよいことが分かった。そして、酸化膜の成分をEPMAで分析したところ、Siの含有量は7wt%であった。
【0032】
比較例3は、前記前処理を施したADC12材に、表6に示す通りの15wt%硫酸からなる電解液を用いて、陽極酸化を施す。液温は20℃、電圧は15V(直流)とし、通電時間を10〜60minの範囲で時間を変更しつつ5個のサンプルを得、更にこれらを市販の封孔剤を添加した95℃の湯水中に20分間放置し、その後水洗いし、自然乾燥させて、サンプルとした。
【0033】
これらのサンプルにキャス試験を施した結果を、図3に△で示した。すると、レイティングNo9を満足する酸化膜厚は13μmであることが分かった。
実施例3は比較例3の1/4程度の膜厚で、同等の耐食性を発揮すると言える。この差は酸化膜に含まれるSiの量(実施例3は7wt%、比較例3は17wt%)に依存すると考える。
【0034】
実施例4は、前記前処理を施したADC12−JIS材に、前記表6に示す通りのリン酸3ナトリウム0.3モル、酒石酸ナトリウム0.3モル及びフッ化ナトリウム0.3モルからなる電解液を用いて、陽極酸化を施す。液温は20℃、電圧は50V(直流)とし、通電時間を20〜90minの範囲で時間を変更しつつ4個のサンプルを得、更にこれらを市販の封孔剤を添加した95℃の湯水中に20分間放置し、その後水洗いし、自然乾燥させて、サンプルとした。
【0035】
図4は本発明方法に係る実施例4及び比較例3で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフである。
実施例4の方法で得られたサンプル4個にキャス試験を施した結果を、図4に○で示した。すると、レイティングNo9を満足する酸化膜厚は4μmでよいことが分かった。そして、酸化膜の成分をEPMAで分析したところ、Siの含有量は8wt%であった。
【0036】
図4に示した比較例3は、図3のものと同じでありレイティングNo9を満足する酸化膜厚は13μmである。
実施例4は比較例3の1/3程度の膜厚で、同等の耐食性を発揮すると言える。この差は酸化膜に含まれるSiの量(実施例4は8wt%、比較例3は17wt%)に依存すると考える。
【0037】
以上のことから、本発明の電解液は母材から酸化膜へ見掛け上移動するSiを溶解する作用をなすので酸化膜中のSi含有量が減り、耐食性が増すことが明かとなった。
尚、本発明の電解液はSiのみならず、Cu,Feなどの合金金属やその他金属間介在物をも溶解するので、酸化膜の改良が図れる。
しかし、本発明方法を合金成分の比較的少ないアルミニウム材の陽極酸化処理に適用することは差支えない。
【0038】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の方法は、Siを含むアルミニウム材に、▲1▼錯化能を有する陰イオンを含む化合物+▲2▼酸素酸アニオンを含む有機酸+▲3▼ハロゲン化物からなる電解液を用いて陽極酸化処理を施すようにしたもので、▲3▼のハロゲン化物は、▲2▼の酸素酸アニオンとともに、Siなどの介在物、その他添加金属、金属間化合物を選択的に溶解し、酸化膜から除去するから、酸化膜の耐食性が大いに向上する。また、▲1▼の錯化能を有する陰イオンを含む化合物は、酸化膜を平坦にする作用をなす。即ち、生成途中に酸化膜の外表面に凹凸があるとすると、前記陰イオンを含む化合物は、凹部に厚く、凸部に薄く付着する。見掛け上、Alイオンの溶出速度は凹部で遅く、凸部で早くなることから、結果的に酸化膜の外表面は平坦になる。
【0039】
以上に加えて請求項1の方法は、前記錯化能を有する陰イオンを含む化合物をリン酸水素ナトリウム、リン酸3ナトリウムから選ばれた少なくとも1つとし、前記酸素酸アニオンを含む有機酸をクエン酸ナトリウム、酒石酸ナトリウム、ソルビトールから選ばれた少なくとも1つとし、また前記ハロゲン化物をフッ化カリウム、フッ化ナトリウムから選ばれた少なくとも1としたので、これら化合物の選定を容易になせ、指定品目内での代替も可能であるから、準備が簡単になり処理作業の効率化が図れる。
【図面の簡単な説明】
【図1】本発明方法に係る実施例1及び比較例1で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフ
【図2】本発明方法に係る実施例2及び比較例2で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフ
【図3】本発明方法に係る実施例3及び比較例3で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフ
【図4】本発明方法に係る実施例4及び比較例3で得たサンプルにおける酸化膜厚さとレイティングNoとの関係をまとめたグラフ[0001]
[Industrial application fields]
The present invention relates to an improvement in technology for subjecting this type of material to an anodizing treatment for an aluminum material containing Si, particularly an aluminum alloy cast forging material containing a large amount of Si, Cu, Fe and the like.
[0002]
[Prior art]
For example, Japanese Patent Laid-Open No. 6-167243 “Sliding member of engine cylinder” discloses an invention whose main purpose is treatment of Si contained in an aluminum base material.
That is, when anodizing is performed on an aluminum material containing 8 to 12% of Si by an ordinary direct current electrolysis method in a sulfuric acid bath, Si impedes conduction of a plating current, and as a result, only a thin and soft film can be obtained. . Japanese Patent Application Laid-Open No. 6-167243 adopts a current reversal method to crush Si, improve current flow, and obtain a thick hard coating.
[0003]
[Problems to be solved by the invention]
However, in the above technique, acicular Si can be crushed and refined, but Si particles naturally remain in the base material and the oxide film. For this reason, an oxide film is not preferable because the corrosion resistance is lowered.
SUMMARY OF THE INVENTION An object of the present invention is to provide a technique capable of eliminating the Si base material from the anodic oxide film to the extent that it does not remain or is not affected.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is characterized in that an aluminum material containing Si is subjected to an anodic oxidation treatment using an electrolytic solution comprising the following (1) to (3).
(1) Compound containing anion having complexing ability (2) Organic acid containing oxygenate anion (3) Halide Note that "complexing ability" means coordination with metal ion as a ligand. The ability to make.
The term “complex” refers to a complex when an atom of a metal or a metal-like element is used as a central atom and another atom or atomic group, that is, a ligand is bonded to form one atomic group.
“Anion” means an anion.
[0005]
The compound containing an anion having complexing ability is at least one selected from sodium hydrogen phosphate and trisodium phosphate, and the organic acid containing the oxygen acid anion is sodium citrate, sodium tartrate, sorbitol is at least one selected from the halide, characterized in that Ru least Tsudea selected potassium fluoride, sodium fluoride.
[0006]
[Action]
A desired oxide film can be formed on the surface of the aluminum material by anodizing using the electrolytic solution comprising the above (1) to (3).
At this time, (1) to (3) in the electrolyte have the following functions.
(2) Oxygen acid anion supplies OH- ions to the anode and improves the film formation efficiency.
(3) The halide selectively dissolves inclusions such as Si, other added metals, and intermetallic compounds together with the oxygen acid anion, and removes them from the oxide film.
(1) A compound containing an anion having a complexing ability serves to flatten the oxide film. That is, if there are irregularities on the outer surface of the oxide film during the generation, the compound containing anions is thick in the concave portions and thinly attached to the convex portions. Apparently, the elution rate of Al ions is slow at the concave portion and fast at the convex portion, and as a result, the outer surface of the oxide film becomes flat.
[0007]
Specific compounds of the above (1) to (3) and preferred concentration ranges thereof are as follows.
(1) A compound containing an anion having complexing ability;
Preferred compound; Sodium hydrogen phosphate, Trisodium phosphate preferred concentration; Sodium hydrogen phosphate is 0.2 to 0.5 moles Trisodium phosphate is less than 0.2 to 0.4 moles lower limit value. The production rate becomes slow, for example, 0.01 μm / min, and the productivity is deteriorated. On the other hand, if it exceeds the upper limit, it becomes supersaturated and precipitates in the bath, which makes it meaningless.
[0008]
(2) Organic acids containing oxygenate anions;
Preferred compounds; sodium citrate, sodium tartrate, sorbitol preferred concentration; sodium citrate 0.1-0.75 mol sodium tartrate 0.1-0.55 mol sorbitol from 0.25-0.75 mol lower limit If the amount is too small, the film increasing effect is lost, and if the upper limit is exceeded, burning occurs and film growth stops.
[0009]
(3) Halides:
Preferable compound; potassium fluoride, sodium fluoride preferred concentration; potassium fluoride is 0.1 to 0.75 mol Sodium fluoride is less than 0.1 to 0.75 mol lower limit value, and the remaining amount of alloy components is excessive. When the upper limit is exceeded, film growth stops.
[0010]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto.
Table 1 shows the pretreatment conditions intended for the examples and comparative examples described below. That is, before the anodizing treatment, a treatment for removing oils and fats from the surface of the base material (aluminum material) is performed.
[0011]
[Table 1]
Figure 0003628368
[0012]
Example 1 and Comparative Example 1;
The base material in Example 1 and Comparative Example 1 is an aluminum alloy die-cast material ADC12-JISH5302, and the main component is 1.5 to 3.5 wt% Cu, 9.6 to 12 as shown in Table 2. It is an aluminum alloy containing 0.0 wt% Si and 0.3 to 0.6 wt% Fe.
[0013]
[Table 2]
Figure 0003628368
[0014]
In Example 1, an electrolyte solution composed of 0.3 mol of trisodium phosphate, 0.5 mol of sorbitol and 0.5 mol of potassium fluoride as shown in Table 3 was applied to the ADC12-JIS material subjected to the pretreatment. And anodizing. The liquid temperature was 20 ° C., the voltage was 50 V (direct current), and 6 samples were obtained while changing the energization time in the range of 20 to 90 min, and these were further added to a commercially available sealant at 95 ° C. The sample was left in it for 20 minutes, then washed with water and air-dried to obtain a sample.
[0015]
[Table 3]
Figure 0003628368
[0016]
FIG. 1 is a graph summarizing the relationship between the oxide film thickness and the rating No. in the samples obtained in Example 1 and Comparative Example 1 according to the method of the present invention.
Rating No. is a corrosion resistance index defined by the CAS method, which is one of the test methods defined in JISH8681 “Method for testing corrosion resistance of anodized films of aluminum and aluminum alloys”.
[0017]
The cast method is a method in which an acetic acid acidic salt solution containing a copper salt is sprayed onto a sample for a specified time using a cast tester, and the corrosion resistance of the oxide film is examined according to the state of occurrence of corrosion. In the examples and comparative examples, the cast test time was set to 16 hours.
As for the rating No, No10 is no corrosion, No9.5 is a corrosion area ratio of 0.05% or less, No9 is 0.10% or less, and thereafter, the smaller the No is, the larger the corrosion area ratio is. That is, it shows that there is corrosion resistance, so that No is large. In general, the rating No. 9 that can withstand normal use is said to be 9. Therefore, the reference rating No. is set to 9 in the present invention.
[0018]
The results of performing the cast test on six samples obtained by the method of Example 1 are indicated by ◯ in FIG. Then, it was found that the oxide film thickness satisfying the rating No. 9 may be 3 to 4 μm. And when the component of the oxide film was analyzed by EPMA (X-ray microanalyzer), the Si content was 8 wt%.
[0019]
In Comparative Example 1, an anodic oxidation is performed on the ADC12-JIS material that has been subjected to the pretreatment, using an electrolytic solution composed of 15 wt% sulfuric acid as shown in Table 3. The liquid temperature was 20 ° C., the voltage was 10 V (direct current), and five samples were obtained while changing the energization time in the range of 10 to 60 min. These were further added to a commercially available sealing agent at 95 ° C. The sample was left in it for 20 minutes, then washed with water and air-dried to obtain a sample.
[0020]
The results of the cast test on these samples are indicated by Δ in FIG. Then, it turned out that the oxide film thickness which satisfies rating No9 is 13 micrometers. And when the component of the oxide film was analyzed by EPMA, the Si content was 17 wt%.
In Example 1, it can be said that the film thickness is about 1/4 of that of Comparative Example 1 and exhibits equivalent corrosion resistance. This difference is the amount of Si contained in the oxide film (Example 1 is 8 wt%, Comparative Example 1 is 17 wt%). ).
[0021]
Example 2 and Comparative Example 2;
The base material in Example 2 and Comparative Example 2 is an aluminum alloy casting material AC4C-JISH5202, and the main component is 0.05 wt% or less of Cu, 6.5 to 7.5 wt% as shown in Table 4. This is an aluminum alloy containing Si, 0.3 to 0.45 wt% Mg, 0.3 wt% or less Fe, and 0.2 wt% or less Ti.
[0022]
[Table 4]
Figure 0003628368
[0023]
In Example 2, an electrolytic solution composed of 0.3 mol of trisodium phosphate, 0.5 mol of sorbitol, and 0.5 mol of potassium fluoride as shown in Table 5 was added to the AC4C-JIS material subjected to the pretreatment. And anodizing. The liquid temperature was 20 ° C., the voltage was 50 V (direct current), and six samples were obtained while changing the energization time in the range of 20 to 60 min, and these were further added to a commercially available sealing agent at 95 ° C. The sample was left in it for 20 minutes, then washed with water and air-dried to obtain a sample.
[0024]
[Table 5]
Figure 0003628368
[0025]
FIG. 2 is a graph summarizing the relationship between the oxide film thickness and the rating No. in the samples obtained in Example 2 and Comparative Example 2 according to the method of the present invention.
The results of performing the cast test on six samples obtained by the method of Example 2 are indicated by ◯ in FIG. Then, it was found that the oxide film thickness satisfying the rating No. 9 may be 3 μm. And when the component of the oxide film was analyzed by EPMA, the Si content was 7 wt%.
[0026]
In Comparative Example 2, an anodic oxidation is performed on the pretreated AC4C material using an electrolytic solution made of 15 wt% sulfuric acid as shown in Table 5. The liquid temperature was 20 ° C., the voltage was 15 V (direct current), and five samples were obtained while changing the energization time in the range of 10 to 60 min. These were further added to a commercially available sealing agent at 95 ° C. The sample was left in it for 20 minutes, then washed with water and air-dried to obtain a sample.
[0027]
The results of the cast test on these samples are indicated by Δ in FIG. Then, it turned out that the oxide film thickness which satisfies rating No9 is 13 micrometers.
In Example 2, it can be said that the film thickness is about ¼ that of Comparative Example 2 and exhibits equivalent corrosion resistance. This difference is considered to depend on the amount of Si contained in the oxide film (Example 2 is 7 wt%, Comparative Example 1 is 17 wt%).
[0028]
Example 3, Example 4 and Comparative Example 3;
The base material in Example 3, Example 4, and Comparative Example 3 is ADC12-JISH5302 which is an aluminum alloy die-cast material shown in Table 2 above.
[0029]
In Example 3, an electrolyte solution composed of 0.2 mol of trisodium phosphate, 0.5 mol of sorbitol and 0.5 mol of potassium fluoride as shown in Table 6 was applied to the ADC12-JIS material subjected to the pretreatment. And anodizing. The liquid temperature was 20 ° C., the voltage was 50 V (direct current), and five samples were obtained while changing the energization time in the range of 20 to 90 min. These were further added to a commercially available sealing agent at 95 ° C. The sample was left in it for 20 minutes, then washed with water and air-dried to obtain a sample.
[0030]
[Table 6]
Figure 0003628368
[0031]
FIG. 3 is a graph summarizing the relationship between the oxide film thickness and the rating No. in the samples obtained in Example 3 and Comparative Example 3 according to the method of the present invention.
The result of performing the cast test on five samples obtained by the method of Example 3 is indicated by ◯ in FIG. Then, it was found that the oxide film thickness satisfying the rating No. 9 may be 2.5 μm. And when the component of the oxide film was analyzed by EPMA, the Si content was 7 wt%.
[0032]
In Comparative Example 3, anodic oxidation is performed on the ADC12 material that has been subjected to the pretreatment, using an electrolytic solution made of 15 wt% sulfuric acid as shown in Table 6. The liquid temperature was 20 ° C., the voltage was 15 V (direct current), and five samples were obtained while changing the energization time in the range of 10 to 60 min. These were further added to a commercially available sealing agent at 95 ° C. The sample was left in it for 20 minutes, then washed with water and air-dried to obtain a sample.
[0033]
The results of the cast test on these samples are indicated by Δ in FIG. Then, it turned out that the oxide film thickness which satisfies rating No9 is 13 micrometers.
In Example 3, it can be said that the film thickness is about ¼ that of Comparative Example 3 and exhibits the same corrosion resistance. This difference is considered to depend on the amount of Si contained in the oxide film (7 wt% in Example 3 and 17 wt% in Comparative Example 3).
[0034]
In Example 4, the ADC12-JIS material subjected to the pretreatment was electrolyzed with 0.3 mol of trisodium phosphate, 0.3 mol of sodium tartrate and 0.3 mol of sodium fluoride as shown in Table 6 above. Anodization is performed using the liquid. The liquid temperature was 20 ° C., the voltage was 50 V (direct current), and four samples were obtained while changing the energization time in the range of 20 to 90 min. These were further added to a commercially available sealant at 95 ° C. The sample was left in it for 20 minutes, then washed with water and air-dried to obtain a sample.
[0035]
FIG. 4 is a graph summarizing the relationship between the oxide film thickness and the rating No. in the samples obtained in Example 4 and Comparative Example 3 according to the method of the present invention.
The results of performing the cast test on four samples obtained by the method of Example 4 are indicated by ◯ in FIG. Then, it was found that the oxide film thickness satisfying the rating No. 9 may be 4 μm. And when the component of the oxide film was analyzed by EPMA, the Si content was 8 wt%.
[0036]
The comparative example 3 shown in FIG. 4 is the same as that of FIG. 3, and the oxide film thickness that satisfies the rating No. 9 is 13 μm.
In Example 4, it can be said that the film thickness is about 1/3 that of Comparative Example 3 and the same corrosion resistance is exhibited. This difference is considered to depend on the amount of Si contained in the oxide film (Example 4 is 8 wt%, Comparative Example 3 is 17 wt%).
[0037]
From the above, it has been clarified that the electrolytic solution of the present invention acts to dissolve Si that apparently moves from the base material to the oxide film, so that the Si content in the oxide film is reduced and the corrosion resistance is increased.
In addition, since the electrolytic solution of the present invention dissolves not only Si but also alloy metals such as Cu and Fe and other intermetallic inclusions, the oxide film can be improved.
However, the method of the present invention can be applied to anodizing of an aluminum material having a relatively small alloy component.
[0038]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
The method of claim 1 uses an electrolytic solution consisting of (1) a compound containing an anion having complexing ability + (2) an organic acid containing an oxygen acid anion + (3) a halide on an aluminum material containing Si. The anodizing treatment is performed, and the halide (3) selectively dissolves inclusions such as Si, other added metals, and intermetallic compounds together with the oxygen acid anion (2). Since it is removed from the film, the corrosion resistance of the oxide film is greatly improved. Further, the compound containing an anion having the complexing ability (1) functions to flatten the oxide film. That is, if there are irregularities on the outer surface of the oxide film during generation, the compound containing anions is thick in the concave portions and thinly attached to the convex portions. Apparently, the elution rate of Al ions is slow at the concave portion and fast at the convex portion, and as a result, the outer surface of the oxide film becomes flat.
[0039]
In addition to the above, in the method of claim 1, the compound containing an anion having complexing ability is at least one selected from sodium hydrogen phosphate and trisodium phosphate, and the organic acid containing the oxyacid anion is used. At least one selected from sodium citrate, sodium tartrate, and sorbitol, and the halide is at least one selected from potassium fluoride and sodium fluoride. Can be replaced, so the preparation is simplified and the efficiency of the processing work can be improved.
[Brief description of the drawings]
FIG. 1 is a graph summarizing the relationship between oxide film thickness and rating No. in samples obtained in Example 1 and Comparative Example 1 according to the method of the present invention. FIG. 2 is Example 2 and Comparative Example 2 according to the method of the present invention. 3 is a graph summarizing the relationship between the oxide film thickness and the rating No. in the sample obtained in FIG. 3. FIG. 3 summarizes the relationship between the oxide film thickness and the rating No. in the sample obtained in Example 3 and Comparative Example 3 according to the method of the present invention. FIG. 4 is a graph summarizing the relationship between oxide film thickness and rating No. in the samples obtained in Example 4 and Comparative Example 3 according to the method of the present invention.

Claims (1)

Siを含むアルミニウム材に、錯化能を有する陰イオンを含む化合物、酸素酸アニオンを含む有機酸及びハロゲン化物からなる電解液を用いて陽極酸化処理を施すアルミニウム材の陽極酸化方法において、
前記錯化能を有する陰イオンを含む化合物は、リン酸水素ナトリウム、リン酸3ナトリウムから選ばれた少なくとも1つであり、前記酸素酸アニオンを含む有機酸は、クエン酸ナトリウム、酒石酸ナトリウム、ソルビトールから選ばれた少なくとも1つであり、前記ハロゲン化物は、フッ化カリウム、フッ化ナトリウムから選ばれた少なくとも1つであことを特徴とするアルミニウム材の陽極酸化方法。
In the anodic oxidation method of an aluminum material, an anodizing treatment is performed on an aluminum material containing Si by using an electrolytic solution composed of a compound containing an anion having complexing ability, an organic acid containing an oxyacid anion, and a halide.
The compound containing an anion having complexing ability is at least one selected from sodium hydrogen phosphate and trisodium phosphate, and the organic acid containing the oxygen acid anion is sodium citrate, sodium tartrate, sorbitol is at least one selected from the halides, potassium fluoride, anodized method of aluminum material, characterized in that Ru least Tsudea selected from sodium fluoride.
JP06550095A 1995-03-24 1995-03-24 Method for anodizing aluminum materials Expired - Fee Related JP3628368B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP06550095A JP3628368B2 (en) 1995-03-24 1995-03-24 Method for anodizing aluminum materials
US08/621,294 US5775892A (en) 1995-03-24 1996-03-22 Process for anodizing aluminum materials and application members thereof
CN96107241.5A CN1213174C (en) 1995-03-24 1996-03-24 Process for anodizing aluminum materials and application members whereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06550095A JP3628368B2 (en) 1995-03-24 1995-03-24 Method for anodizing aluminum materials

Publications (2)

Publication Number Publication Date
JPH08260197A JPH08260197A (en) 1996-10-08
JP3628368B2 true JP3628368B2 (en) 2005-03-09

Family

ID=13288872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06550095A Expired - Fee Related JP3628368B2 (en) 1995-03-24 1995-03-24 Method for anodizing aluminum materials

Country Status (1)

Country Link
JP (1) JP3628368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685208B2 (en) * 2000-03-29 2011-05-18 本田技研工業株式会社 Suspension coupling mechanism for motorcycles
KR20160049119A (en) 2014-10-24 2016-05-09 현대자동차주식회사 Electrolyte and method for surface treatment of aluminum alloys for casting

Also Published As

Publication number Publication date
JPH08260197A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
Lunder et al. The effect of alkaline-etch pretreatment on the pitting corrosion of wrought aluminum
CA1131160A (en) Electrolytic colouring of anodised aluminium by means of optical interference effects
JPH0641621B2 (en) Aluminum alloy core material for brazing clad material
JPH04297595A (en) Method of zinc electroplating on aluminum strip
JP5732721B2 (en) Chrome plating method
JP2000226692A (en) Surface treatment of aluminum body through anode discharge precipitation
JP3628368B2 (en) Method for anodizing aluminum materials
JP3132714B2 (en) Surface treatment method for aluminum material
Páez et al. Effect of benzotriazole on the efficiency of anodizing of Al Cu alloys
CN110685000B (en) High-corrosion-resistance coating, preparation method, electrolyte and application thereof
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
JPS633038B2 (en)
EP3696299A1 (en) Method for producing a corrosion-resistant aluminum-silicon alloy casting, corresponding corrosion-resistant aluminum-silicon alloy casting and its use
US4363705A (en) Passivating and silver removal method
JPH09137292A (en) Cylinder block for internal combustion engine
JP2639846B2 (en) Liquid composition for cleaning surface of aluminum or aluminum alloy
JP7291858B2 (en) Electrolytic processor for preparing plastic parts to be metallized and method for etching plastic parts
Razzouk et al. Critical Challenges in the Anodizing Process of Aluminium–Silicon Cast Alloys—A Review
JPH09111495A (en) Ornamental cover made of aluminum alloy
JP2004277866A (en) Sealing treatment method for aluminum or aluminum alloy
JP7311105B2 (en) FASTENING MEMBER AND MANUFACTURING METHOD THEREOF
SU1114712A1 (en) Electrolyte for chromium plating of titanium alloys
TW202302883A (en) Fastening member and manufacturing method thereof
JPH05195284A (en) Copper alloy plating liquid
Yoo et al. Effects of Metal Anion Complexes in Electrolyte on the Properties of Anodic Oxide Films on ADC12 Al Alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees