JP3628080B2 - Electronic clock - Google Patents

Electronic clock Download PDF

Info

Publication number
JP3628080B2
JP3628080B2 JP24136495A JP24136495A JP3628080B2 JP 3628080 B2 JP3628080 B2 JP 3628080B2 JP 24136495 A JP24136495 A JP 24136495A JP 24136495 A JP24136495 A JP 24136495A JP 3628080 B2 JP3628080 B2 JP 3628080B2
Authority
JP
Japan
Prior art keywords
pulse
drive
voltage
circuit
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24136495A
Other languages
Japanese (ja)
Other versions
JPH0990062A (en
Inventor
文雄 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP24136495A priority Critical patent/JP3628080B2/en
Priority to EP96306841A priority patent/EP0764894B1/en
Priority to DE69621392T priority patent/DE69621392T2/en
Priority to US08/717,260 priority patent/US5933392A/en
Publication of JPH0990062A publication Critical patent/JPH0990062A/en
Priority to HK98102524A priority patent/HK1003454A1/en
Priority to US09/801,356 priority patent/USRE40370E1/en
Application granted granted Critical
Publication of JP3628080B2 publication Critical patent/JP3628080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electromechanical Clocks (AREA)

Description

【0001】
【発明が属する技術分野】
本発明はステップモ−タの逆回転機能を有する電子時計に関するものである。
【0002】
【従来の技術】
通常の電子時計用ステップモ−タは、入力信号に応じてロ−タが正方向にのみ回転し、逆方向には回転しない様な構成になっている。そのため指針位置変更等のためにロ−タを逆回転させたい場合には、特殊な逆回転用パルスにより駆動する必要がある。この特殊な逆回転用パルスについては特開昭52−80063号公報に、2個の交番パルスを1組とする逆回転パルス及び3個の交番パルスを1組とする逆回転パルスとしての例が開示されている。
【0003】
一方最近になり、ソ−ラセル(太陽電池)を有し、このソ−ラセルに入射される光エネルギを電気エネルギに変換してコンデンサや2次電池に蓄え、このコンデンサや2次電池を動力源とした時計、いわゆるソ−ラセル時計と呼ばれる時計が数多く出現する様になった。
【0004】
このソ−ラセル時計は主に昼間に電気エネルギを蓄え、夜間に電気エネルギを放出し、コンデンサや2次電池の電圧は一日の内でもかなり変化する。従って特にこの様なソ−ラセル時計では出来るだけ低い電圧でステップモ−タが正常に動作することが望まれる。
【0005】
【発明が解決しようとする課題】
しかしながら前記したステップモ−タの逆回転動作は正回転動作に比べ正常に動作する動作電圧幅が狭く、特に低い電圧で正常に動作させることが難しい。また正回転の早送り駆動も駆動周波数が早いためにパルス幅を狭くする必要があることから、低い電圧で正常動作させることが難しい。 本発明の目的は、外部操作部材の操作時に所定の電圧よりも低い電圧ではステップモ−タの逆回転動作を禁止し、且つ幅広で駆動周波数の低いパルスでステップモ−タを正回転駆動する電子時計を提供することにある。
【0006】
【課題を解決するための手段】
前記目的を達成するための本発明の構成は、通常運針用の運針パルスを発生する運針パルス発生回路と、正回転早送りパルスを発生する早送りパルス発生回路と、逆回転パルスを発生する逆回転パルス発生回路と、これらのパルスに応じて通常回転、早送り正回転、逆回転の各動作を行なうステップモ−タを有する電子時計に於いて、電源電圧のレベルを判別する電圧レベル判別回路と、該電圧レベル判別回路の出力信号により制御され、該各パルス発生回路の出力信号を選択通過させる制御回路とを設け、電源電圧が所定の電圧範囲外となり該電圧レベル判別回路から電圧判別信号が発生すると、該制御回路は該逆回転パルスの通過を禁止することを特徴とする。
【0007】
【発明の実施の形態】
以下図面により本発明の一実施例を詳述する。実施例では1秒毎に運針するソ−ラセル時計で、ステップモ−タの正回転早送り動作及び逆回転動作は時刻表示用指針の位置修正を例にして説明する。
【0008】
図1は本発明による電子時計の回路ブロック図である。図1に於いて、1は発振回路、2は分周回路で、発振回路1の出力を基にして時計の動作に必要な信号を得る迄分周する。
【0009】
3は通常運針用のパルスを発生する運針パルス発生回路で、通常運針時は図2(a)に示す如きパルス幅5msの運針パルスを1秒毎に出力している。4は低電圧用運針パルス発生回路で、図2(b)に示す如きパルス幅6msの2個の運針パルスを2秒毎に出力している。尚、現在では一般的技術であるが、運針パルスによる駆動後にロ−タ22の回転、非回転検出を行ない、非回転検出時にパルス幅の広い補正駆動パルスを運針パルス発生回路3から出力する様にすれば、この低電圧用運針パルス発生回路4は必ずしも必要ではない。5は早送りパルス発生回路で、後記する外部操作部材34を押し続けると図2(c)に示す如きパルス幅4msの早送りパルスを1秒間に64個の割りで出力する。通常運針用のパルスよりもパルス幅を狭くしたのは駆動周波数を高くするためである。但し、パルス幅が狭いため低い電圧ではステップモ−タは正常動作しにくい。6は低電圧用早送りパルス発生回路で、後記する外部操作部材34または外部操作部材35を押し続けると図2(d)に示す如きパルス幅6msの早送りパルスを1秒間に32個の割りで出力する。早送りパルス発生回路5の出力に比し駆動周波数が半分でパルス幅は広い。従って早送りパルス発生回路5の出力信号で駆動出来ない低い電圧でもステップモ−タを正常に動作させることが出来る。7は逆回転パルス発生回路で、後記する外部操作部材35を押し続けると図2(e)に示す如き3個のパルスを一組として1秒間に32組の割りでパルスを出力する。
【0010】
8はソ−ラセルで、光エネルギを電気エネルギに変換し、電源としてのコンデンサまたは2次電池を充電する。9は電圧レベル判別回路で、電源電圧が所定の電圧、例えば1.2V以上の時にはHIGH信号(以下H信号と記載する)を出力し、1.2V未満の時にはLOW信号(以下L信号と記載する)を出力する。尚、この電圧レベル判別回路9は電源電圧が1.8V以上になると強制的に電流を流し、電源電圧が1. 8V以上になることを防止する様に構成されている。10は制御回路で、ANDゲ−ト11、12、13、14、15とORゲ−ト16により構成されている。ANDゲ−ト11には運針パルス発生回路3の出力信号が印加され、またANDゲ−ト12には低電圧用運針パルス発生回路4の出力信号が、ANDゲ−ト13には早送りパルス発生回路5の出力信号が、ANDゲ−ト14には低電圧用早送りパルス発生回路6の出力信号が、ANDゲ−ト15には逆回転パルス発生回路7の出力信号がそれぞれ印加されている。ANDゲ−ト11、ANDゲ−ト13及びANDゲ−ト15は電圧レベル判別回路9の直接の出力信号により制御され、ANDゲ−ト12とANDゲ−ト14は電圧レベル判別回路9のインバ−タ23を介した出力信号により制御され、ANDゲ−ト11、12、13、14、15の出力信号はそれぞれORゲ−ト16に印加され、ORゲ−ト16の出力信号はトグルフリップフロップ17のT端子とANDゲ−ト18、19に印加されている。
【0011】
17はトグルフリップフロップで、ORゲ−ト16の出力信号の立ち上がり時にQ及びQbarの出力信号がそれぞれ反転し、Q出力信号はANDゲ−ト18を制御し、Qbar出力信号はANDゲ−ト19を制御している。20は駆動回路で、公知の如く2つのPチャンネルMOSトランジスタと2つのNチャンネルMOSトランジスタとにより構成されている。21はステップモ−タのコイルで、駆動回路20の出力端に接続されている。22はステップモ−タのロ−タで、このロ−タ22の回転は時刻表示用輪列(図示せず)を介して図3に示した秒針30、分針31、時針32に伝達される。
【0012】
S1、S2、S3はそれぞれスイッチであり、通常運針時にはそれぞれ電源のVSSに接続されている。
【0013】
上記構成に於いて、先ず電源電圧が1. 2V以上の通常運針時の動作について説明する。
【0014】
通常運針時には運針パルス発生回路3と低電圧用運針パルス発生回路4から信号が出力しているが、電源電圧が1.2V以上であるためANDゲ−ト11がオン状態、ANDゲ−ト12がオフ状態となっている。そのため運針パルス発生回路3からの出力信号である運針パルスがORゲ−ト16を介してトグルフリップフロップ17、ANDゲ−ト18及びANDゲ−ト19に印加される。最初の運針パルスでトグルフリップフロップ17のQ出力がH信号になったとするとANDゲ−ト18がオン状態となり、ANDゲ−ト18を介して運針パルスが駆動回路20に印加される。そのためコイル21には電流が流れ、ロ−タ22は1ステップ正方向に回転する。次の運針パルスではトグルフリップフロップ17のQbar出力がH信号になるためANDゲ−ト19がオン状態となり、ANDゲ−ト19を介して運針パルスが駆動回路20に印加される。そのためコイル21には前とは逆向きの電流が流れ、ロ−タ22はさらに1ステップ正方向に回転する。この様にしてステップモ−タは1ステップずつ正方向に回転し、この回転により図3に示した秒針30、分針31、時針32が駆動されて時刻表示が行なわれる。
【0015】
次に電源電圧が1.2V以上の時の指針位置修正動作について説明するが、先ずステップモ−タが正回転して指針位置が修正される場合について説明する。
【0016】
先ず、図3に示した第一の外部操作部材であるリュ−ズ33を第一段目に引き出すと、図1で示したスイッチS1が電源のVDDに接続され、分周回路2の後段がリセットされて運針パルス発生回路3及び低電圧用運針パルス発生回路4の出力信号は発生しなくなる。次に図3で示した第二の外部操作部材であるプッシュボタン34を押し込むとスイッチS2がVDDに接続され、H信号が早送りパルス発生回路5及びORゲ−ト24を介して低電圧用早送りパルス発生回路6に印加される。1秒以上押し続けると早送りパルス発生回路5及び低電圧用早送りパルス発生回路6から出力信号が連続して発生し、それぞれANDゲ−ト13、ANDゲ−ト14に印加される。しかしながら電源電圧が1.2V以上であるためANDゲ−ト13がオン状態、ANDゲ−ト14がオフ状態となっており、早送りパルス発生回路5の出力信号がORゲ−ト16及びANDゲ−ト18またはANDゲ−ト19を介して駆動回路20に印加される。そのためロ−タ22は正回転で早送りされ指針位置が修正される。プッシュボタン34の押し込み状態を解除すると、バネ(図示せず)により付勢されてスイッチS2は再びVSSに接続され、指針位置修正動作は行なわれなくなる。尚、プッシュボタン34の押し込み動作を1秒未満で解除した時には1個のパルスしか発生しない。その後リュ−ズ33を押し込むとスイッチS1が再びVSSに接続され、分周回路2のリセットが解除されて通常の運針状態となる。尚、リュ−ズ33を第二段目に引き出して回転させた場合には、一般的な時計と同様に裏廻り輪列を介して分針31、時針32のみの位置修正を行なうことが出来る。また、リュ−ズ33を第二段目に引き出した場合にはレバ−類(図示せず)の働きによりプッシュボタン34、35の押し込み動作は出来なくなる。
【0017】
次にステップモ−タが逆回転して指針位置を修正する場合について説明する。
【0018】
図3に示した第一の外部操作部材であるリュ−ズ33を引き出した後、図3に示した第三の外部操作部材であるプッシュボタン35を押し込むとスイッチS3がVDDに接続され、H信号が逆回転パルス発生回路7及びORゲ−ト24を介して低電圧用早送りパルス発生回路6に印加される。1秒以上押し続けると逆回転パルス発生回路7及び低電圧用早送りパルス発生回路6から出力信号が連続して発生してそれぞれANDゲ−ト15及びANDゲ−ト14に印加される。しかしながら電源電圧が1. 2V以上であるためANDゲ−ト14がオフ状態、ANDゲ−ト15がオン状態となっており、逆回転パルス発生回路7の出力信号のみがORゲ−ト16及びANDゲ−ト18またはANDゲ−ト19を介して駆動回路20に印加される。そのためロ−タ22は逆回転で早送りされて指針位置が修正される。プッシュボタン35の押し込み状態を解除すると、バネ(図示せず)により付勢されてスイッチS3は再びVSSに接続され、指針位置修正動作は行なわれなくなる。尚、プッシュボタン35の押し込み動作を1秒以内で解除した場合には1組の逆回転パルスしか発生しない。その後リュ−ズ33を押し込むとスイッチS1が再びVSSに接続され、分周回路2のリセットが解除されて通常の運針状態となる。
【0019】
次に電源電圧が1.2V未満の時の通常運針の動作について説明する。
【0020】
電源電圧が1.2V未満になると、電圧レベル判別回路9からはL信号、即ち、低電圧判別信号が発生し、制御回路10のANDゲ−ト11がオフ状態、ANDゲ−ト12がオン状態となるため、今度は低電圧用運針パルス発生回路4の出力信号である運針パルスがORゲ−ト16等をを介して駆動回路20に印加される。そのためコイル21には交互に逆向きの電流が流れ、ロ−タ22は2秒毎の変則送りをされて正方向に回転する。この回転により図3に示した秒針30、分針31、時針32が駆動される。2秒毎の変則運針であるため使用者には電源電圧が低くなったことがわかる。
【0021】
次に電源電圧が1.2V未満の時の指針位置修正動作について説明するが、先ずプッシュボタン34を押し込んで指針位置修正を行なう場合について説明する。
【0022】
図3に示したリュ−ズ33を第一段目に引き出すと、前述した様に運針パルス発生回路3及び低電圧用運針回路4の出力信号は発生しなくなる。次に図3で示したプッシュボタン34を押し続けると、前述した様に早送りパルス発生回路5及び低電圧用早送りパルス発生回路6から出力信号が連続して発生してそれぞれANDゲ−ト13、ANDゲ−ト14に印加される。しかしながら電源電圧が1.2V未満であるため今度はANDゲ−ト13がオフ状態、ANDゲ−ト14がオン状態となっており、低電圧用早送りパルス発生回路6の出力信号がORゲ−ト16等を介して駆動回路20に印加される。そのためロ−タ22は正回転で早送りされて指針位置が修正される。この時のパルス幅は1.2V以上の時のパルス幅よりも広く、且つ駆動周波数が低いためにほぼ0.8V迄ステップモ−タは正常に動作する。プッシュボタン34の押し込み状態を解除するとスイッチS2は再びVSSに接続され、指針位置修正動作は行なわれなくなる。その後リュ−ズ33を押し込むとスイッチS1が再びVSSに接続され、分周回路2のリセットが解除されて2秒毎の変則運針状態となる。
【0023】
次に電源電圧が1.2V未満の時にプッシュボタン35を押し込んで指針位置修正を行なう場合について説明する。
【0024】
図3に示したリュ−ズ33を引き出した後プッシュボタン35を押し続けると、前述した様に低電圧用早送りパルス発生回路6及び逆回転パルス発生回路7から出力信号が連続して発生してそれぞれANDゲ−ト14、ANDゲ−ト15に印加される。しかしながら電源電圧が1.2V未満であるためANDゲ−ト14がオン状態、ANDゲ−ト15がオフ状態となっており、低電圧用早送りパルス発生回路6の出力信号のみがORゲ−ト16等を介して駆動回路20に印加される。そのためロ−タ22は正回転で早送りされて指針位置が修正される。即ちプッシュボタン35を押し込んでも1.2V未満の電圧では逆回転動作は行なわれない。プッシュボタン35の押し込み状態を解除するとスイッチS3は再びVSSに接続され、指針位置修正動作は行なわれなくなる。その後リュ−ズ33を押し込むとスイッチS1が再びVSSに接続され、分周回路2のリセットが解除されて2秒毎の変則運針状態となる。
【0025】
上記の実施例でのステップモ−タの正回転早送り動作及び逆回転動作は時刻表示用指針の位置修正の場合を例にして説明したが、本発明の要旨はかならずしもこれに限定されず、本発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、アラ−ム時刻表示用指針の位置修正、ストップウオッチ機能を有する電子時計に於けるストップウオッチ用指針の初期位置復帰等への応用は本発明の要旨に含まれる。
【0026】
【発明の効果】
以上の説明で明らかな様に本発明よれば、電源電圧が所定の電圧以下になると低電圧での正常動作のし難いステップモ−タの逆回転動作は禁止され、さらに正回転の駆動パルス幅を広げ、且つ駆動速度が遅くなる様にしたため、低電圧でもステップモ−タは安定して動作し、その効果は大なるものがある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す電子時計の回路ブロック図である。
【図2】図1に示した回路ブロック図の要部の出力波形図である。
【図3】本発明の一実施例を示す電子時計の外観図である。
【符号の説明】
3 運針パルス発生回路
5 早送りパルス発生回路
6 低電圧用早送りパルス発生回路
7 逆回転パルス発生回路
9 電圧レベル判別回路
10 制御回路
[0001]
[Technical field to which the invention belongs]
The present invention relates to an electronic timepiece having a reverse rotation function of a step motor.
[0002]
[Prior art]
A normal electronic timepiece step motor is configured such that the rotor rotates only in the forward direction and does not rotate in the reverse direction in response to an input signal. Therefore, when it is desired to reversely rotate the rotor for changing the pointer position, etc., it is necessary to drive the rotor with a special reverse rotation pulse. Regarding this special reverse rotation pulse, Japanese Patent Application Laid-Open No. 52-80063 discloses examples of a reverse rotation pulse having two alternating pulses as one set and a reverse rotation pulse having three alternating pulses as one set. It is disclosed.
[0003]
On the other hand, recently, a solar cell (solar cell) is provided, and light energy incident on the solar cell is converted into electrical energy and stored in a capacitor or secondary battery. The capacitor or secondary battery is used as a power source. Many watches, so-called solar cell watches, have appeared.
[0004]
This solar cell clock mainly stores electric energy during the day and releases electric energy at night, and the voltage of the capacitor and the secondary battery changes considerably even during the day. Accordingly, it is desired that the step motor operates normally with a voltage as low as possible particularly in such a solar cell timepiece.
[0005]
[Problems to be solved by the invention]
However, the reverse rotation operation of the step motor described above has a narrower operating voltage range than normal operation, and it is difficult to operate normally at a low voltage. In addition, since the fast-forward drive of the forward rotation also has a high drive frequency, it is necessary to narrow the pulse width, and it is difficult to operate normally at a low voltage. An object of the present invention is to provide an electronic timepiece that prohibits reverse rotation of a step motor at a voltage lower than a predetermined voltage when operating an external operation member, and forward-rotates the step motor with a wide pulse having a low drive frequency. Is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the configuration of the present invention includes a hand movement pulse generating circuit for generating a normal hand movement pulse, a fast feed pulse generating circuit for generating a forward rotation fast feed pulse, and a reverse rotation pulse for generating a reverse rotation pulse. A voltage level determination circuit for determining a level of a power supply voltage in an electronic timepiece having a generation circuit and a step motor that performs normal rotation, fast forward forward rotation, and reverse rotation in response to these pulses; A control circuit that is controlled by the output signal of the level determination circuit and selectively passes the output signal of each pulse generation circuit, and when the power supply voltage is outside a predetermined voltage range and a voltage determination signal is generated from the voltage level determination circuit, The control circuit prohibits passage of the reverse rotation pulse.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the embodiment, a solar cell timepiece that moves the hands every second, the forward rotation fast-forward operation and the reverse rotation operation of the step motor will be described by taking the position correction of the time display hand as an example.
[0008]
FIG. 1 is a circuit block diagram of an electronic timepiece according to the present invention. In FIG. 1, reference numeral 1 is an oscillation circuit, and 2 is a frequency dividing circuit, which divides the frequency until a signal necessary for the operation of the timepiece is obtained based on the output of the oscillation circuit 1.
[0009]
Reference numeral 3 denotes a hand movement pulse generating circuit for generating pulses for normal hand movement. During normal hand movement, a hand movement pulse having a pulse width of 5 ms as shown in FIG. 2A is output every second. Reference numeral 4 denotes a low voltage hand movement pulse generation circuit which outputs two hand movement pulses having a pulse width of 6 ms as shown in FIG. 2B every 2 seconds. Although it is a general technique at present, the rotation and non-rotation of the rotor 22 is detected after driving by the hand movement pulse, and a correction drive pulse having a wide pulse width is output from the hand movement pulse generation circuit 3 when the non-rotation is detected. In this case, the low voltage hand movement pulse generation circuit 4 is not necessarily required. Reference numeral 5 denotes a fast-forward pulse generation circuit. When the external operation member 34 to be described later is continuously pressed, a fast-forward pulse having a pulse width of 4 ms as shown in FIG. 2C is output at a rate of 64 per second. The reason why the pulse width is made narrower than that of the normal pulse is to increase the drive frequency. However, since the pulse width is narrow, the step motor is difficult to operate normally at a low voltage. 6 is a low-voltage fast-forward pulse generation circuit. When the external operation member 34 or the external operation member 35, which will be described later, is continuously pressed, a fast-forward pulse with a pulse width of 6 ms as shown in FIG. To do. Compared with the output of the fast-forwarding pulse generation circuit 5, the driving frequency is half and the pulse width is wide. Therefore, the step motor can be operated normally even at a low voltage that cannot be driven by the output signal of the fast-forwarding pulse generation circuit 5. Reference numeral 7 denotes a reverse rotation pulse generation circuit. When an external operation member 35 to be described later is continuously pushed, three pulses as shown in FIG. 2 (e) are set as one set, and pulses are output at a rate of 32 sets per second.
[0010]
A solar cell 8 converts light energy into electrical energy and charges a capacitor or a secondary battery as a power source. Reference numeral 9 denotes a voltage level discrimination circuit, which outputs a HIGH signal (hereinafter referred to as H signal) when the power supply voltage is a predetermined voltage, for example, 1.2 V or higher, and a LOW signal (hereinafter referred to as L signal) when it is less than 1.2 V. Output). The voltage level discrimination circuit 9 forcibly passes a current when the power supply voltage becomes 1.8 V or higher. It is configured to prevent over 8V. A control circuit 10 includes AND gates 11, 12, 13, 14, 15 and an OR gate 16. The AND gate 11 is applied with the output signal of the hand movement pulse generation circuit 3, the AND gate 12 is supplied with the output signal of the low voltage hand movement pulse generation circuit 4, and the AND gate 13 is supplied with the fast-forward pulse. The output signal of the circuit 5 is applied to the AND gate 14 and the output signal of the low-voltage fast-forward pulse generating circuit 6 is applied to the AND gate 15, and the output signal of the reverse rotation pulse generating circuit 7 is applied to the AND gate 15. The AND gate 11, the AND gate 13, and the AND gate 15 are controlled by a direct output signal of the voltage level discriminating circuit 9. The AND gate 12 and the AND gate 14 are controlled by the voltage level discriminating circuit 9. The output signals of the AND gates 11, 12, 13, 14, and 15 are respectively applied to the OR gate 16 and the output signal of the OR gate 16 is toggled. The voltage is applied to the T terminal of the flip-flop 17 and the AND gates 18 and 19.
[0011]
A toggle flip-flop 17 inverts the Q and Qbar output signals at the rising edge of the OR gate 16 output signal, the Q output signal controls the AND gate 18, and the Qbar output signal is an AND gate. 19 is controlled. A drive circuit 20 is composed of two P-channel MOS transistors and two N-channel MOS transistors as is well known. A step motor coil 21 is connected to the output terminal of the drive circuit 20 . Reference numeral 22 denotes a step motor rotor, and the rotation of the rotor 22 is transmitted to the second hand 30, the minute hand 31, and the hour hand 32 shown in FIG. 3 via a time display train wheel (not shown).
[0012]
S1, S2, and S3 are switches, and are connected to the VSS of the power source during normal operation.
[0013]
In the above configuration, first, the power supply voltage is 1. The operation at the time of normal operation of 2V or more will be described.
[0014]
During normal hand movement, signals are output from the hand movement pulse generation circuit 3 and the low voltage hand movement pulse generation circuit 4, but since the power supply voltage is 1.2 V or higher, the AND gate 11 is in an ON state, and the AND gate 12 Is off. For this reason, a hand movement pulse which is an output signal from the hand movement pulse generating circuit 3 is applied to the toggle flip-flop 17, the AND gate 18 and the AND gate 19 through the OR gate 16. If the Q output of the toggle flip-flop 17 becomes the H signal at the first hand movement pulse, the AND gate 18 is turned on, and the hand movement pulse is applied to the drive circuit 20 via the AND gate 18. Therefore, a current flows through the coil 21, and the rotor 22 rotates in the positive direction by one step. At the next hand movement pulse, the Qbar output of the toggle flip-flop 17 becomes an H signal, so that the AND gate 19 is turned on, and the hand movement pulse is applied to the drive circuit 20 via the AND gate 19. Therefore, a current in the opposite direction flows through the coil 21, and the rotor 22 further rotates in the forward direction by one step. In this way, the step motor rotates in the positive direction step by step, and this rotation drives the second hand 30, the minute hand 31, and the hour hand 32 shown in FIG. 3 to display the time.
[0015]
Next, the operation of correcting the pointer position when the power supply voltage is 1.2 V or higher will be described. First, the case where the pointer position is corrected by forward rotation of the step motor will be described.
[0016]
First, when the crown 33 which is the first external operation member shown in FIG. 3 is pulled out to the first stage, the switch S1 shown in FIG. When reset, the output signals of the hand movement pulse generation circuit 3 and the low voltage hand movement pulse generation circuit 4 are not generated. Next, when the push button 34 which is the second external operation member shown in FIG. 3 is pushed, the switch S2 is connected to VDD, and the H signal is fast-forwarded for low voltage via the fast-forwarding pulse generation circuit 5 and the OR gate 24. Applied to the pulse generation circuit 6. When the button is kept pressed for 1 second or longer, output signals are continuously generated from the fast-forward pulse generating circuit 5 and the low-voltage fast-forward pulse generating circuit 6 and applied to the AND gate 13 and the AND gate 14, respectively. However, since the power supply voltage is 1.2 V or more, the AND gate 13 is in the on state and the AND gate 14 is in the off state, and the output signal of the fast-forward pulse generating circuit 5 is the OR gate 16 and the AND gate. Applied to drive circuit 20 via gate 18 or AND gate 19 Therefore, the rotor 22 is fast-forwarded by normal rotation and the pointer position is corrected. When the push button 34 is released, it is urged by a spring (not shown) and the switch S2 is connected to VSS again, and the pointer position correcting operation is not performed. Note that when the pushing operation of the push button 34 is released in less than 1 second, only one pulse is generated. Thereafter, when the crown 33 is pushed in, the switch S1 is connected to VSS again, the reset of the frequency dividing circuit 2 is released, and the normal hand movement state is obtained. When the crown 33 is pulled out to the second stage and rotated, the position of only the minute hand 31 and the hour hand 32 can be corrected through a reverse wheel train as in a general timepiece. Further, when the crown 33 is pulled out to the second stage, the push buttons 34 and 35 cannot be pushed in by the action of levers (not shown).
[0017]
Next, the case where the step motor reversely rotates to correct the pointer position will be described.
[0018]
After pulling out the crown 33 as the first external operation member shown in FIG. 3, when the push button 35 as the third external operation member shown in FIG. 3 is pushed, the switch S3 is connected to VDD and H The signal is applied to the low-voltage fast-forward pulse generating circuit 6 via the reverse rotation pulse generating circuit 7 and the OR gate 24. When the button is kept pressed for 1 second or longer, output signals are continuously generated from the reverse rotation pulse generation circuit 7 and the low-voltage fast-forward pulse generation circuit 6 and applied to the AND gate 15 and the AND gate 14 , respectively. However, since the power supply voltage is 1.2 V or more, the AND gate 14 is in the off state and the AND gate 15 is in the on state, and only the output signal of the reverse rotation pulse generating circuit 7 is the OR gate 16 and The voltage is applied to the drive circuit 20 via the AND gate 18 or the AND gate 19. Therefore, the rotor 22 is fast-forwarded by reverse rotation and the pointer position is corrected. When the pushing state of the push button 35 is released, the push button 35 is biased by a spring (not shown), the switch S3 is connected to VSS again, and the pointer position correcting operation is not performed. When the push-in operation of the push button 35 is released within 1 second, only one set of reverse rotation pulses is generated. Thereafter, when the crown 33 is pushed in, the switch S1 is connected to VSS again, the reset of the frequency dividing circuit 2 is released, and the normal hand movement state is obtained.
[0019]
Next, the operation of normal hand movement when the power supply voltage is less than 1.2V will be described.
[0020]
When the power supply voltage becomes less than 1.2 V, the L signal, that is, the low voltage discrimination signal is generated from the voltage level discrimination circuit 9, the AND gate 11 of the control circuit 10 is turned off, and the AND gate 12 is turned on. Therefore, this time, a hand movement pulse which is an output signal of the low voltage hand movement pulse generating circuit 4 is applied to the drive circuit 20 via the OR gate 16 and the like. Therefore, a reverse current flows alternately through the coil 21, and the rotor 22 rotates in the forward direction with an irregular feed every 2 seconds. This rotation drives the second hand 30, the minute hand 31, and the hour hand 32 shown in FIG. Since it is an irregular movement every 2 seconds, the user knows that the power supply voltage has been lowered.
[0021]
Next, the pointer position correcting operation when the power supply voltage is less than 1.2 V will be described. First, the case where the push button 34 is pushed in to correct the pointer position will be described.
[0022]
When the crown 33 shown in FIG. 3 is pulled out to the first stage, the output signals of the hand movement pulse generation circuit 3 and the low voltage hand movement circuit 4 are not generated as described above. Next, when the push button 34 shown in FIG. 3 is continuously pressed, output signals are continuously generated from the fast-forwarding pulse generation circuit 5 and the low-voltage fast-forwarding pulse generation circuit 6 as described above, and the AND gate 13, Applied to the AND gate 14. However, since the power supply voltage is less than 1.2 V, the AND gate 13 is turned off and the AND gate 14 is turned on, and the output signal of the low-voltage fast-forward pulse generating circuit 6 is OR gate. Applied to the drive circuit 20 via the gate 16 and the like. For this reason, the rotor 22 is fast-forwarded in the forward rotation to correct the pointer position. Since the pulse width at this time is wider than the pulse width at 1.2V or more and the drive frequency is low, the step motor operates normally up to about 0.8V. When the push button 34 is released, the switch S2 is again connected to VSS, and the pointer position correcting operation is not performed. Thereafter, when the crown 33 is pushed in, the switch S1 is again connected to VSS, the reset of the frequency dividing circuit 2 is released, and an irregular hand movement state is made every 2 seconds.
[0023]
Next, a case where the push button 35 is pushed in to correct the pointer position when the power supply voltage is less than 1.2V will be described.
[0024]
When the push button 35 is continuously pushed after the crown 33 shown in FIG. 3 is pulled out, output signals are continuously generated from the low-voltage fast-forward pulse generation circuit 6 and the reverse rotation pulse generation circuit 7 as described above. The voltages are applied to the AND gate 14 and the AND gate 15, respectively. However, since the power supply voltage is less than 1.2 V, the AND gate 14 is in the on state and the AND gate 15 is in the off state, and only the output signal of the low-voltage fast-forward pulse generating circuit 6 is the OR gate. 16 is applied to the drive circuit 20 via 16 or the like. For this reason, the rotor 22 is fast-forwarded in the forward rotation to correct the pointer position. That is, even if the push button 35 is depressed, the reverse rotation operation is not performed at a voltage lower than 1.2V. When the push button 35 is released, the switch S3 is again connected to VSS, and the pointer position correcting operation is not performed. Thereafter, when the crown 33 is pushed in, the switch S1 is again connected to VSS, the reset of the frequency dividing circuit 2 is released, and an irregular hand movement state is made every 2 seconds.
[0025]
Although the forward rotation fast forward operation and the reverse rotation operation of the step motor in the above embodiment have been described by taking the case of correcting the position of the time display hand as an example, the gist of the present invention is not necessarily limited to this, and the present invention is not limited thereto. Various modifications can be made without departing from the scope of the present invention. For example, application to correction of the position of an alarm time display hand, return to the initial position of a hand for a stopwatch in an electronic timepiece having a stopwatch function, is included in the gist of the present invention.
[0026]
【The invention's effect】
As is apparent from the above description, according to the present invention, when the power supply voltage becomes a predetermined voltage or lower, the reverse rotation operation of the step motor, which is difficult to operate normally at a low voltage, is prohibited, and the forward drive pulse width is further increased. Since it is widened and the driving speed is slow, the step motor operates stably even at a low voltage, and the effect is great.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram of an electronic timepiece showing an embodiment of the present invention.
FIG. 2 is an output waveform diagram of a main part of the circuit block diagram shown in FIG. 1;
FIG. 3 is an external view of an electronic timepiece showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 Hand movement pulse generation circuit 5 Rapid feed pulse generation circuit 6 Low voltage rapid feed pulse generation circuit 7 Reverse rotation pulse generation circuit 9 Voltage level discrimination circuit 10 Control circuit

Claims (7)

通常運針用の運針パルス、および少なくとも正回転早送りパルスと逆回転パルスを発生するパルス発生手段と、これらのパルスに応じて通常回転、早送り正回転、逆回転の各動作を行なうステップモ−タと、前記複数のパルスのいずれかを選択的に該ステップモ−タに供給する制御手段とを有する電子時計に於いて、電源電圧のレベルを判別する電圧レベル判別回路を設け、電源電圧が所定の電圧範囲外となり該電圧レベル判別回路から電圧判別信号が発生すると、該制御手段前記逆回転パルスの前記ステップモ−タへの供給を禁止するとともに、該逆回転パルスに代えて前記正回転早送りパルスを前記ステップモ−タへ供給可能なごとく構成したことを特徴とする電子時計。 A pulse operation means for generating a normal hand movement pulse , at least a forward rotation fast-forward pulse and a reverse rotation pulse , and a step motor for performing normal rotation, fast-forward normal rotation and reverse rotation in accordance with these pulses ; wherein the plurality of selectively said stepper either pulse - in the electronic timepiece and a control means for supplying the motor, the voltage level discriminating circuit for discriminating the level of the power supply voltage provided, the supply voltage is a predetermined voltage If the voltage determination signal from the voltage level discriminating circuit out of range occurs, the control means the stepper of the reverse rotation pulse - while prohibiting the supply of the motor, the forward rotation fast-forward pulse in place of the reverse rotation pulse An electronic timepiece characterized in that it can be supplied to the step motor . 前記制御手段が前記逆回転パルスに代えて前記ステップモ−タへ供給する正回転早送りパルスは、前記電源電圧が前記所定の電圧範囲内の正回転早送りパルスよりも幅広で、かつ周波数が低いことを特徴とする請求項1に記載の電子時計。The forward rotation fast-forward pulse supplied to the step motor instead of the reverse rotation pulse by the control means is such that the power supply voltage is wider and lower in frequency than the forward rotation fast-forward pulse within the predetermined voltage range. The electronic timepiece according to claim 1. 通常運針用の運針パルスと、正回転早送りパルスと、逆回転パルスと、低電圧用運針パルスと、低電圧用正回転早送りパルスとを発生するパルス発生手段と、これらのパルスに応じて通常回転、早送り正回転、逆回転の各動作を行なうステップモ−タと、これらのパルスを選択的に該ステップモータに供給する制御手段と、電源電圧のレベルを判別し前記制御手段を制御する電圧レベル判別回路とを有し、Pulse generating means for generating a normal hand movement pulse, a forward rotation fast-forwarding pulse, a reverse rotation pulse, a low-voltage hand movement pulse, and a low-voltage forward rotation fast-forwarding pulse, and normal rotation according to these pulses , A step motor for performing each of the forward feed forward rotation and the reverse rotation, a control means for selectively supplying these pulses to the step motor, and a voltage level discrimination for discriminating the level of the power supply voltage and controlling the control means Circuit and
電源電圧が所定の電圧範囲にある時は、前記制御手段は前記運針パルス、正回転早送りパルス、逆回転パルスのうちのいずれか1を前記モータに供給し、電源電圧が所定の電圧範囲外となり該電圧レベル判別回路から電圧判別信号が発生すると、前記制御手段は前記低電圧用運針パルス、低電圧用正回転早送りパルスのいずれか1を前記モータに供給するように構成したことを特徴とする電子時計。When the power supply voltage is in a predetermined voltage range, the control means supplies any one of the hand movement pulse, forward rotation fast-forward pulse, and reverse rotation pulse to the motor, and the power supply voltage is out of the predetermined voltage range. When a voltage determination signal is generated from the voltage level determination circuit, the control means supplies either one of the low-voltage hand movement pulse and the low-voltage forward rotation fast-forward pulse to the motor. Electronic clock.
電源、発振回路、駆動パルス発生手段、当該駆動パルス発生手段の出力する駆動パルスに応答して指針を駆動する駆動モータ、当該駆動モータの駆動を制御する駆動回路、当該駆動回路を制御する駆動回路制御手段とから構成される電子時計であって、当該駆動パルス発生手段は通常運針駆動パルスを発生する通常運針駆動パルス発生回路と、当該通常運針駆動パルスとは異なる非通常運針駆動パルスを発生する非通常運針駆動パルス発生回路とを有し、所定の条件の下で、当該駆動モータの適正な駆動が不可能であるという状態の発生を検知する非適正状態検出手段と、当該非適正状態検出手段から出力される検出信号に応答して、当該駆動回路制御手段に対して当該非通常運針駆動パルスの出力を禁止するよう指示する制御モード変更指示手段とを有し、当該非通常運針駆動パルスは逆回転パルスである事を特徴とする電子時計。Power supply, oscillation circuit, drive pulse generating means, drive motor for driving the pointer in response to the drive pulse output from the drive pulse generating means, drive circuit for controlling the drive of the drive motor, drive circuit for controlling the drive circuit An electronic timepiece comprising a control means, wherein the drive pulse generating means generates a normal hand drive drive pulse generating circuit for generating a normal hand drive drive pulse, and generates a non-normal hand drive drive pulse different from the normal hand drive drive pulse. A non-ordinary hand movement drive pulse generation circuit, and a non-appropriate state detection means for detecting the occurrence of a state in which the drive motor cannot be driven properly under a predetermined condition; In response to the detection signal output from the means, the control mode change instruction that instructs the drive circuit control means to prohibit the output of the non-normal hand movement drive pulse. Have a means, the non-normal hand driving pulse is characterized that it is a reverse rotation pulse electronic timepiece. さらに代替非通常運針駆動パルスを発生する代替非通常運針駆動パルス発生回路を有し、前記非通常運針駆動パルスの出力を禁止した場合は該代替非通常運針駆動パルスを前記モータに供給するよう構成し、該代替非通常運針駆動パルスは正回転早送りパルスとした事を特徴とする請求項4に記載の電子時計。 Further, an alternative non-normal hand movement drive pulse generation circuit for generating an alternative non-normal hand movement drive pulse is provided, and when the output of the non-normal hand movement drive pulse is prohibited, the alternative non-normal hand movement drive pulse is supplied to the motor. 5. The electronic timepiece according to claim 4 , wherein the alternative non-normal hand movement drive pulse is a forward rotation rapid feed pulse . 通常運針用の運針パルス、および少なくとも正回転早送りパルスと逆回転パルスを発生するパルス発生手段と、これらのパルスに応じて通常回転、早送り正回転、逆回転の各動作を行なうステップモ−タと、前記複数のパルスのいずれかを選択的に該ステップモ−タに供給する制御手段とを有する電子時計に於いて、電源電圧のレベルを判別する電圧レベル判別回路を設け、電源電圧が所定の電圧範囲外となり該電圧レベル判別回路から電圧判別信号が発生すると、該制御手段は前記逆回転パルスの前記ステップモ−タへの供給を禁止すると同時に、前記正回転早送りパルスを前記電源電圧が前記所定の電圧範囲内の正回転早送りパルスよりも幅広で、かつ周波数が低いパルスとすることを特徴とする電子時計。 A pulse operation means for generating a normal hand movement pulse, at least a forward rotation fast-forward pulse and a reverse rotation pulse, and a step motor for performing normal rotation, fast-forward normal rotation and reverse rotation in accordance with these pulses; An electronic timepiece having control means for selectively supplying any one of the plurality of pulses to the step motor is provided with a voltage level determination circuit for determining the level of the power supply voltage, and the power supply voltage is in a predetermined voltage range. When a voltage discrimination signal is generated from the voltage level discrimination circuit, the control means prohibits the supply of the reverse rotation pulse to the step motor, and at the same time the forward rotation fast-forwarding pulse is changed from the power supply voltage to the predetermined voltage. An electronic timepiece characterized in that the pulse is wider and lower in frequency than the forward rotation fast-forward pulse within the range . 動力源として2次電池を備えた事を特徴とする請求項1ないし6に記載の電子時計。7. The electronic timepiece according to claim 1, further comprising a secondary battery as a power source .
JP24136495A 1995-09-20 1995-09-20 Electronic clock Expired - Lifetime JP3628080B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24136495A JP3628080B2 (en) 1995-09-20 1995-09-20 Electronic clock
EP96306841A EP0764894B1 (en) 1995-09-20 1996-09-20 Electronic watch
DE69621392T DE69621392T2 (en) 1995-09-20 1996-09-20 Electronic clock
US08/717,260 US5933392A (en) 1995-09-20 1996-09-20 Electronic watch
HK98102524A HK1003454A1 (en) 1995-09-20 1998-03-24 Electronic watch
US09/801,356 USRE40370E1 (en) 1995-09-20 2001-03-07 Electronic watch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24136495A JP3628080B2 (en) 1995-09-20 1995-09-20 Electronic clock

Publications (2)

Publication Number Publication Date
JPH0990062A JPH0990062A (en) 1997-04-04
JP3628080B2 true JP3628080B2 (en) 2005-03-09

Family

ID=17073197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24136495A Expired - Lifetime JP3628080B2 (en) 1995-09-20 1995-09-20 Electronic clock

Country Status (1)

Country Link
JP (1) JP3628080B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6759543B2 (en) * 2015-09-11 2020-09-23 カシオ計算機株式会社 Drive device, electronic clock, and control method of drive device
JP7379128B2 (en) * 2019-12-11 2023-11-14 セイコーウオッチ株式会社 Clock, clock control program, and clock control method

Also Published As

Publication number Publication date
JPH0990062A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
USRE40370E1 (en) Electronic watch
US6580665B1 (en) Electronic timepiece having power generating function
US8873344B2 (en) Power consumption control device, timepiece device, electronic device, power consumption control method, power consumption control program
GB1434947A (en) Control device for a step-by-step motor
US6301198B1 (en) Electronic timepiece
EP0241219B1 (en) Electronic timepiece
GB1592892A (en) Electronic timepieces
US4115706A (en) Integrated circuit having one-input terminal with selectively varying input levels
JP2001249192A (en) Timepiece and method for controlling it
GB2038512A (en) Stepping motor driven electronic timepieces
JP3628080B2 (en) Electronic clock
US6144621A (en) Charging type electronic timepiece
JP3515958B2 (en) Electronic clock
GB2158274A (en) Electronic timepiece
JPS6363874B2 (en)
US4440502A (en) Electronic timepiece
JPH08278380A (en) Electronic timepiece
WO2000073857A1 (en) Electronic apparatus and method of controlling electronic apparatus
JPH0142395B2 (en)
JP2001166076A5 (en)
CN111338201B (en) Electronic timepiece, movement, and motor control circuit
JP4351193B2 (en) Electronic clock
GB2101367A (en) Improvements in or relating to stepping electric motor driven electronic timepieces
JPH10115689A (en) Hand indication type electronic clock
JPS5872082A (en) Electronic timepiece

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

EXPY Cancellation because of completion of term