JP3627878B2 - Epoxy resin, epoxy resin composition and cured product thereof - Google Patents

Epoxy resin, epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP3627878B2
JP3627878B2 JP29499495A JP29499495A JP3627878B2 JP 3627878 B2 JP3627878 B2 JP 3627878B2 JP 29499495 A JP29499495 A JP 29499495A JP 29499495 A JP29499495 A JP 29499495A JP 3627878 B2 JP3627878 B2 JP 3627878B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
bromine
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29499495A
Other languages
Japanese (ja)
Other versions
JPH09110962A (en
Inventor
健一 窪木
泰昌 赤塚
芳郎 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP29499495A priority Critical patent/JP3627878B2/en
Publication of JPH09110962A publication Critical patent/JPH09110962A/en
Application granted granted Critical
Publication of JP3627878B2 publication Critical patent/JP3627878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は高信頼性半導体封止用を始めとする電気・電子部品絶縁材料用、及びダイボンディングペースト、積層板(プリント配線板)やCFRP(炭素繊維強化プラスチック)を始めとする各種複合材料用、接着剤、塗料等に有用な臭素含有エポキシ樹脂組成物及びその硬化物に関する。
【0002】
【従来の技術】
エポキシ樹脂は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
【0003】
【発明が解決しようとする課題】
しかし、近年特に電気・電子分野においてはその発展に伴い、高純度化をはじめ耐熱性、密着性、フィラー高充填のための低粘度性等の諸特性の一層の向上が求められている。また、航空宇宙材料、レジャー・スポーツ器具用途などにおいて使用される構造材の製造時に於て、炭素繊維等に樹脂を含浸させる際に使用する溶剤の量を減らすために低粘度の樹脂が求められる。これらの要求に対し、エポキシ樹脂組成物について多くの提案がなされてはいるが、未だ充分とはいえない。
【0004】
【課題を解決するための手段】
本発明者らは前記のような要求を満たすエポキシ樹脂について鋭意研究の結果、本発明を完成した。
【0005】
即ち、本発明は、
(1)式(1)
【0006】
【化3】

Figure 0003627878
【0007】
(式中nは正数であり、平均値を表し、n=0〜1である。)
で表されるフェノールノボラックあって、式(2)
【0008】
【化4】
Figure 0003627878
【0009】
で表される2核体の含有量が70重量%以上であるフェノールノボラックを臭素化して得られる臭素化フェノールノボラックをグリシジル化することにより得られるエポキシ樹脂、
(2)臭素含有率が50重量%以下である上記(1)記載のエポキシ樹脂,
(3)臭素含有率が20〜40重量%である上記(1)記載のエポキシ樹脂、
(4)過酸化水素を使用して臭素化した臭素化フェノールノボラックを使用して得られる上記(1)、(2)または(3)記載のエポキシ樹脂、
(5)上記(1)〜(4)のいずれか1項に記載のエポキシ樹脂、硬化剤、必要により硬化促進剤を含有するエポキシ樹脂組成物、
(6)上記(1)〜(5)のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物
に関する。
【0010】
【発明の実施の形態】
上記(1)記載のエポキシ樹脂の原料である臭素化フェノールノボラックは、式(2)で表される2核体成分が70重量%以上の式(1)のフェノールノボラックを臭素化することにより得られ、その臭素含有率は好ましくは60重量%以下、より好ましくは28〜51重量%の範囲である。本発明のエポキシ樹脂は、例えば下式(3)で表される分子を含有し、その粘度は通常150℃におけるICI粘度が1.0ポイズ以下である。
【0011】
【化5】
Figure 0003627878
【0012】
(式中Gはグリシジル基を表す。pは正数であり平均値を表しp=0〜1である。mは0〜4の整数を表すが、全てのmが0であることはない。)
【0013】
尚、前記及び下記において臭素含有率とは、樹脂(臭素化フェノールノボラック及び臭素化フェノールノボラックエポキシ樹脂)の全重量に対して臭素置換基が占める割合をいう。また、前記において2核体成分が70重量%以上のフェノールノボラックは、例えばビスフェノールFとして一般に知られているものである。
【0014】
フェノールノボラックの臭素化は公知の方法により行うことが出来る。例えば、フェノールノボラックをメタノール、四塩化炭素などの臭素と反応しない溶媒に溶かし、臭素の沸点以下の温度、好ましくは10〜50℃で臭素と反応させる。
この際、臭素は、例えばフェノールノボラックXgを臭素含有率K重量%の臭素化フェノールノボラックにする場合、2×(K×X/(100−K))g前後使用すればよい。反応終了後、系内で副生する臭化水素は苛性ソーダ等で中和する。以上のように得られた臭素化フェノールノボラック溶液は、そのまま、あるいは必要により樹脂分を回収後、公知の方法によりエポキシ化を行う。
【0015】
また、副生する臭化水素を過酸化水素を添加することによって臭素に変換して、効率よく無駄なく臭素を反応させる方法も採れる。この製造法の場合、臭素は、例えばフェノールノボラックXgを臭素含有率K重量%の臭素化フェノールノボラックにする場合、(K×X/(100−K))g前後使用すればよい。過酸化水素水は副生する臭化水素の当量もしくは僅かに少ない量を使用することが好ましい。
また、過酸化水素水の添加時期は、必ずしも所定量の臭素量を全量添加した後である必要はなく、全臭素を分割しながら添加しこれと交互に行ってもよいし、臭素と過酸化水素水の添加を同時に行っても良い。
以上のように臭素化されたフェノールノボラック溶液は、僅かな未反応の臭化水素を含有しているので、予め苛性ソーダ等で中和しておくことが望ましい。ついで還元剤を添加して還元処理を行う。還元剤としては、特に限定されないが、ハイドロサルファイト、ジ亜燐酸、尿素、チオ尿素、トリフェニルホスフィン、アスコルビン酸、ヒドラジン類等が有効であるが、特にハイドロサルファイト、ジ亜燐酸、ヒドラジン類が有効である。
還元剤の使用量は特に限定されないが、使用した過酸化水素に対して通常2重量%〜30重量%、好ましくは5〜25重量%である。
還元処理は、室温〜溶媒の沸点付近で実施すればよく、例えば還元剤を使用した過酸化水素に対して所定量添加した後、30〜60℃の温度で約30分〜2時間処理することにより実施できる。
以上のように還元処理を施された臭素化フェノールノボラック溶液は、そのまま、あるいは必要により樹脂分を回収後、公知の方法によりエポキシ化を行う。
【0016】
本発明のエポキシ樹脂は上記の方法で得られた臭素化フェノールノボラックにエピハロヒドリンを反応させることによって得られる。この反応に使用されるエピハロヒドリンとしては、エピクロルヒドリン、エピブロムヒドリン、エピヨードヒドリン等があるが、工業的に入手し易く安価なエピクロルヒドリンが好ましい。この反応は従来公知の方法に準じて行うことが出来る。
【0017】
例えば臭素化フェノールノボラックとエピハロヒドリンの混合物に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる。この際アルカリ金属水酸化物は水溶液を使用してもよく、その場合は該アルカリ金属水酸化物を連続的に添加すると共に反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリンを留出せしめ更に分液し水は除去しエピハロヒドリンは反応混合物中に連続的に戻す方法でもよい。
上記の方法においてエピハロヒドリンの使用量は臭素化フェノールノボラックの水酸基1当量に対して通常0.5〜20モル、好ましくは0.7〜10モルである。アルカリ金属水酸化物の使用量は臭素化フェノールノボラック中の水酸基1当量に対し通常0.5〜1.5モル、好ましくは0.7〜1.2モルである。
【0018】
また臭素化フェノールノボラックとエピハロヒドリンの混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライドなどの第四級アンモニウム塩を触媒として使用し、50〜150℃で1〜10時間反応させ、得られる臭素化フェノールノボラックのハロヒドリンエーテルに水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体または水溶液を加え、20〜120℃の温度で1〜10時間反応させてハロヒドリンエーテルを閉環させて本発明のエポキシ樹脂を得ることもできる。この場合の第四級アンモニウム塩の使用量は臭素化フェノールノボラックの水酸基1当量に対して0.001〜0.2モル、好ましくは0.05〜0.1モルである。
また、メタノール、エタノールなどのアルコール類や、トルエン、キシレン等の有機溶剤を使用することにより、反応を円滑に進めることが出来る。これらの有機溶剤の添加量は、使用するエピハロヒドリンの0.02〜10重量倍の範囲が好ましい。
【0019】
通常、これらの反応生成物は水洗後、または水洗無しに加熱減圧下過剰のエピハロヒドリンや、その他使用した溶媒を除去した後、トルエン、メチルイソブチルケトン等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて再び反応を行う。この場合アルカリ金属水酸化物の使用量は臭素化フェノールノボラックの水酸基1当量に対して0.01〜0.2モル、好ましくは0.05〜0.15モルである。反応温度は通常50〜120℃の間で行われ、反応時間は通常0.5〜2時間である。
【0020】
反応終了後副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下でトルエン、メチルイソブチルケトン等の溶媒を留去することにより加水分解性ハロゲン量の少ない本発明中のエポキシ樹脂を得ることができる。
このようにして得られた本発明のエポキシ樹脂は、その臭素含有率が50重量%以下のものが好ましく、20〜40重量%以下のものが特に好ましい。
【0021】
本発明のエポキシ樹脂組成物において本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は5重量%以上が好ましく、特に10重量%以上が好ましい。
【0022】
本発明のエポキシ樹脂と併用しうる他のエポキシ樹脂の具体例としては、ビスフェノール類、フェノール類ノボラック、ビフェノール類、アルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、ポリブタジエンのエポキシ化物及び脂環式エポキシ樹脂、またはグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
【0023】
本発明のエポキシ樹脂組成物は、硬化剤を含有する。使用しうる硬化剤の例としてはアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが使用できる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノ−ルノボラック、及びこれらの変性物、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体などが挙げられる。硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量が好ましく、0.6〜1.2当量が特に好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
【0024】
また本発明のエポキシ樹脂組成物に硬化促進剤を含有せしめても差し支えない。用いうる硬化促進剤の具体例としては例えば2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズなどの金属化合物、BFの各種錯体などが挙げられる。硬化促進剤はエポキシ樹脂100重量部に対して0.01〜15重量部が必要に応じ用いられる。
さらに、本発明のエポキシ樹脂組成物には、必要に応じてシリカ、アルミナ、窒化アルミ、タルク、金属粉末等の充填材や三酸化アンチモン、シランカップリング剤、離型剤、顔料等の種々の配合剤を添加することができる。
【0025】
本発明のエポキシ樹脂組成物は、前記各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。例えば本発明のエポキシ樹脂と硬化剤、必要により硬化促進剤、充填材並びにその他の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル、ミキサー等を用いて均一になるまで充分に混合して本発明のエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を溶融後注型あるいはトランスファ−成型機などを用いて成形、あるいは被着体等に塗布し、80〜200℃で2〜10時間に加熱することにより本発明の硬化物を得ることができる。
【0026】
また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させ、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して本発明の硬化物を得ることもできる。
【0027】
その際溶剤は本発明のエポキシ樹脂組成物と溶剤の合計重量に対し溶剤の占める割合が、通常10〜70重量%、好ましくは15〜65重量%となる量使用する。
【0028】
【実施例】
以下本発明を実施例により更に詳細に説明する。尚、本発明はこれら実施例に限定されるものではない。また実施例において、2核体の含有量、エポキシ当量、粘度、軟化点、加水分解性塩素濃度、臭素含有率は以下の条件で測定した。
1)2核体の含有量
試料をGPC分析装置により分析し、各成分に相当するピークの面積百分率から求めた。
・GPC分析条件
カラム:Shodex KF−803(2本)
+KF−802.5(2本)
溶剤 :テトラヒドロフラン
検出 :UV(254nm)
流量 :1ml/min.
2)エポキシ当量
JIS K−7236に準じた方法で測定し、単位はg/eqである。
3)粘度
B型粘度計で52℃で測定した。
4)加水分解性塩素濃度
試料のジオキサン溶液に1N−KOHメタノール溶液を添加し、30分間還流することにより遊離する塩素量を硝酸銀滴定法により測定し、試料の重量で除した値
5)臭素含有率
試料を水酸化カリウムと強熱して臭化カリウムを生成させMohr法にて定量した。
【0029】
実施例1
フェノールノボラック(2核体含有量90重量%)100g及びメタノール80gを温度計、撹拌機付4つ口フラスコに仕込、窒素ガスを吹き込みながら溶解する。これに臭素88g(0.55モル)を反応温度25〜30℃で滴下する。臭素滴下終了後、35%過酸化水素水48g(0.49モル)を反応温度25〜30℃で滴下し、滴下後、反応液をそのままの温度で30分撹拌を続けた。その後、30%苛性ソーダ水溶液を徐々に添加し、中和後、還元剤としてヒドラジンヒドラード(80%)1.0gを添加し、50℃に加温して1時間撹拌した。
この反応液を激しく撹拌している水5L中に滴下し、粒状の臭素化フェノールノボラックを得た。この臭素化フェノールノボラックをエピクロルヒドリン555g(6モル)に溶解し、減圧下(100mmHg)で共沸脱水により系内の水分を除去した。脱水後、48%苛性ソーダ水溶液83gを6時間で滴下した。この間、苛性ソーダ水溶液に含まれる水及び反応により生成する水を減圧下(150〜200mmHg)で共沸脱水しながら反応温度を75〜80℃に保った。苛性ソーダ水溶液滴下終了後、そのままの温度で、更に1時間撹拌した。
反応終了後、副成した塩を濾過し、更に濾液を水100gで水洗した後、油層を減圧下で濃縮し、過剰のエピクロルヒドリンを除去した。次いで残留物をメチルイソブチルケトン500gに溶解して、70℃に昇温後、30%苛性ソーダ水溶液を20g添加し、70℃で1時間反応を行い、中性になるまで水洗を数回繰り返した後、加熱減圧下でメチルイソブチルケトンを留去した結果、本発明のエポキシ樹脂(E1)227gを得た。得られたエポキシ樹脂のエポキシ当量は250、粘度は250センチポイズ、加水分解性塩素濃度は500ppm、臭素含有率は35重量%であった。
【0030】
実施例2
実施例1に於て臭素の量を128g、35%過酸化水素水を69g、ヒドラジンヒドラードを1.2gに代えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E2)264gを得た。得られたエポキシ樹脂のエポキシ当量は304、粘度は620センチポイズ、加水分解性塩素濃度は530ppm、臭素含有率は43重量%であった。
【0031】
実施例3
実施例1に於て臭素の量を176g、35%過酸化水素水を96g、ヒドラジンヒドラードを2.0gに代えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E3)294gを得た。このエポキシ樹脂は徐々に結晶化した。得られたエポキシ樹脂のエポキシ当量は331、加水分解性塩素濃度は570ppmであり、150℃でのICI粘度は0.7ポイズ、臭素含有率は50重量%であった。
【0032】
実施例4
実施例1に於て臭素の量を44g、35%過酸化水素水を35g、ヒドラジンヒドラードを0.8gに代えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E4)294gを得た。得られたエポキシ樹脂のエポキシ当量は222、加水分解性塩素濃度は480ppm、粘度は200センチポイズ、臭素含有率は20重量%であった。
【0033】
実施例5〜10、比較例1〜3
エポキシ樹脂としてエポキシ樹脂(E1)〜(E3)及びこれ以外のエポキシ樹脂、硬化剤を表1、表2の配合物の組成の欄に示す組成で配合し、更に硬化促進剤(トリフェニルホスフィン)0.2重量部配合し、均一に混合した後、注型もしくはトランスファー成型により樹脂成形体を調製し、160℃で2時間、更に180℃で8時間で硬化させた。
【0034】
このようにして得られた硬化物の物性を測定した結果を表1、表2に併せて示す。 尚、物性値の測定は以下の方法で行った。
・銅箔剥離強度:180℃剥離試験測定温度;30℃引っ張り速度;200mm/min銅箔;日鉱グールド(株)製 JTC箔 厚さ70μm
【0035】
【表1】
Figure 0003627878
【0036】
【表2】
Figure 0003627878
【0037】
尚、表1、表2及び下記表3、表4においてエポキシ樹脂等の種類は以下のものを表す。
YX−4000 :油化シェルエポキシ(株)製 YX−4000 (エポキシ樹脂)
XYLOK :三井東圧化学(株)製 ミレックスXL−225−3L (硬化剤)
PN:明和化成(株)製 HF−1(フェノールノボラック、硬化剤)
EPPN−501:日本化薬(株)製 EPPN−501(エポキシ樹脂)
BREN:日本化薬(株)製 BREN−S(臭素化エポキシ樹脂)
EOCN:日本化薬(株)製 EOCN−1020 (軟化点65℃、エポキシ樹脂)
【0038】
実施例11〜16、比較例4〜6
エポキシ樹脂として、エポキシ樹脂(E1)〜(E3)及びこれ以外のエポキシ樹脂、硬化剤、充填材(電気化学工業株式会社製 FB−48)を表3、表4の配合物の組成の欄に示す組成で配合し、更に硬化促進剤(トリフェニルホスフィン)0.2重量部、シランカップリング剤(信越化学工業株式会社製 KBM403)0.8重量部、離型剤(東亜化成株式会社製 微粉カルナバ)0.5重量部、顔料(三菱化学工業株式会社製 CK45)、三酸化アンチモン2.0重量部の割合で配合し、2軸ロールにより混練し、粉砕、タブレット化後、スパイラルフロー値を以下の条件で測定した。
測定条件
金型温度:170℃
トランスファー圧力:70kg/cm
【0039】
【表3】
Figure 0003627878
【0040】
【表4】
Figure 0003627878
【0041】
表1〜4より明らかなとおり、本発明のエポキシ樹脂を含有するエポキシ樹脂組成物はスパイラルフロー値に優れ、また本発明の硬化物は銅剥離強度に優れている。
【0042】
【発明の効果】
本発明のエポキシ樹脂及びそれを含有するエポキシ樹脂組成物は低粘度であり、その硬化物において優れた接着性を有するため、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に使用する場合に極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is for insulating materials for electric and electronic parts including those for highly reliable semiconductor sealing, and for various composite materials including die bonding paste, laminated board (printed wiring board) and CFRP (carbon fiber reinforced plastic). The present invention relates to a bromine-containing epoxy resin composition useful for adhesives, paints, and the like, and a cured product thereof.
[0002]
[Prior art]
Epoxy resins are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. Yes.
[0003]
[Problems to be solved by the invention]
However, in recent years, especially in the electric / electronic field, further improvements in various properties such as high purity, heat resistance, adhesion, and low viscosity for high filler filling are required. Also, when manufacturing structural materials used in aerospace materials, leisure / sports equipment applications, etc., low-viscosity resins are required to reduce the amount of solvent used when impregnating carbon fibers with resin. . Many proposals for epoxy resin compositions have been made to meet these requirements, but they are still not sufficient.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have completed the present invention as a result of intensive studies on epoxy resins that satisfy the above requirements.
[0005]
That is, the present invention
(1) Formula (1)
[0006]
[Chemical 3]
Figure 0003627878
[0007]
(In the formula, n is a positive number and represents an average value, where n = 0 to 1.)
There is a phenol novolak represented by the formula (2)
[0008]
[Formula 4]
Figure 0003627878
[0009]
An epoxy resin obtained by glycidylating a brominated phenol novolac obtained by brominating a phenol novolak having a binuclear content of 70% by weight or more represented by:
(2) The epoxy resin according to (1), wherein the bromine content is 50% by weight or less,
(3) The epoxy resin according to (1), wherein the bromine content is 20 to 40% by weight,
(4) The epoxy resin according to the above (1), (2) or (3), obtained using a brominated phenol novolak brominated using hydrogen peroxide,
(5) The epoxy resin composition according to any one of (1) to (4) above, a curing agent, and an epoxy resin composition containing a curing accelerator if necessary,
(6) It is related with the hardened | cured material formed by hardening | curing the epoxy resin composition of any one of said (1)-(5).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The brominated phenol novolak which is a raw material of the epoxy resin described in the above (1) is obtained by brominating the phenol novolak of the formula (1) in which the dinuclear component represented by the formula (2) is 70% by weight or more. The bromine content is preferably 60% by weight or less, more preferably in the range of 28 to 51% by weight. The epoxy resin of the present invention contains, for example, a molecule represented by the following formula (3), and the viscosity thereof is usually an ICI viscosity at 150 ° C. of 1.0 poise or less.
[0011]
[Chemical formula 5]
Figure 0003627878
[0012]
(In the formula, G represents a glycidyl group. P is a positive number and represents an average value, and p = 0 to 1. m represents an integer of 0 to 4, but not all m is 0. )
[0013]
In the above and the following, the bromine content refers to the ratio of the bromine substituent to the total weight of the resin (brominated phenol novolac and brominated phenol novolac epoxy resin). In the above, the phenol novolak having a binuclear component of 70% by weight or more is generally known as bisphenol F, for example.
[0014]
The bromination of phenol novolac can be performed by a known method. For example, phenol novolac is dissolved in a solvent that does not react with bromine, such as methanol or carbon tetrachloride, and reacted with bromine at a temperature equal to or lower than the boiling point of bromine, preferably 10 to 50 ° C.
At this time, bromine may be used around 2 × (K × X / (100−K)) g when, for example, phenol novolak Xg is brominated phenol novolak having a bromine content of K wt%. After completion of the reaction, hydrogen bromide by-produced in the system is neutralized with caustic soda or the like. The brominated phenol novolak solution obtained as described above is epoxidized by a known method as it is or after recovering the resin as necessary.
[0015]
Further, a method of converting hydrogen bromide by-product into bromine by adding hydrogen peroxide and reacting bromine efficiently without waste can be employed. In the case of this production method, bromine may be used around (K × X / (100−K)) g when, for example, phenol novolak Xg is converted to brominated phenol novolak having a bromine content of K wt%. The hydrogen peroxide solution is preferably used in an amount equivalent to or slightly less than the amount of hydrogen bromide by-produced.
The hydrogen peroxide solution does not necessarily have to be added after the entire amount of bromine has been added. The bromine may be added alternately while being divided, or bromine and peroxide. Hydrogen water may be added simultaneously.
Since the brominated phenol novolak solution contains a slight amount of unreacted hydrogen bromide, it is desirable to neutralize with caustic soda or the like in advance. Next, a reducing agent is added to perform a reduction treatment. The reducing agent is not particularly limited, but hydrosulfite, diphosphorous acid, urea, thiourea, triphenylphosphine, ascorbic acid, hydrazines and the like are effective, but hydrosulfite, diphosphorous acid, hydrazines are particularly effective. Is effective.
Although the usage-amount of a reducing agent is not specifically limited, It is 2 to 30 weight% normally with respect to the used hydrogen peroxide, Preferably it is 5 to 25 weight%.
The reduction treatment may be performed from room temperature to the vicinity of the boiling point of the solvent. For example, after a predetermined amount is added to hydrogen peroxide using a reducing agent, the treatment is performed at a temperature of 30 to 60 ° C. for about 30 minutes to 2 hours. Can be implemented.
The brominated phenol novolak solution subjected to the reduction treatment as described above is epoxidized by a known method as it is or after collecting the resin component as necessary.
[0016]
The epoxy resin of the present invention can be obtained by reacting a brominated phenol novolak obtained by the above method with an epihalohydrin. Examples of the epihalohydrin used in this reaction include epichlorohydrin, epibromohydrin, epiiodohydrin, and the like, but industrially easily available and inexpensive epichlorohydrin is preferable. This reaction can be performed according to a conventionally known method.
[0017]
For example, a mixture of brominated phenol novolak and epihalohydrin is reacted at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding or gradually adding a solid of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. . At this time, the alkali metal hydroxide may be used in the form of an aqueous solution. In this case, the alkali metal hydroxide is continuously added and water and epihalohydrin are continuously added from the reaction mixture under reduced pressure or normal pressure. A method may be employed in which the distillate is further separated, the water is removed, and the epihalohydrin is continuously returned to the reaction mixture.
In said method, the usage-amount of epihalohydrin is 0.5-20 mol normally with respect to 1 equivalent of hydroxyl groups of brominated phenol novolak, Preferably it is 0.7-10 mol. The usage-amount of an alkali metal hydroxide is 0.5-1.5 mol normally with respect to 1 equivalent of hydroxyl groups in brominated phenol novolak, Preferably it is 0.7-1.2 mol.
[0018]
In addition, a mixture of brominated phenol novolac and epihalohydrin was used by using a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst, and reacted at 50 to 150 ° C. for 1 to 10 hours. A halohydrin ether obtained by adding a solid or aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide to a halohydrin ether of brominated phenol novolak to be reacted at a temperature of 20 to 120 ° C. for 1 to 10 hours. Can be closed to obtain the epoxy resin of the present invention. In this case, the amount of the quaternary ammonium salt used is 0.001 to 0.2 mol, preferably 0.05 to 0.1 mol, per 1 equivalent of the hydroxyl group of the brominated phenol novolak.
Moreover, reaction can be advanced smoothly by using alcohols, such as methanol and ethanol, and organic solvents, such as toluene and xylene. The addition amount of these organic solvents is preferably in the range of 0.02 to 10 times by weight of the epihalohydrin used.
[0019]
Usually, these reaction products are dissolved in a solvent such as toluene and methyl isobutyl ketone after removing excess epihalohydrin and other used solvents under water heating or without washing with water or without water washing, and then sodium hydroxide, hydroxide. The reaction is carried out again by adding an aqueous solution of an alkali metal hydroxide such as potassium. In this case, the amount of alkali metal hydroxide used is 0.01 to 0.2 mol, preferably 0.05 to 0.15 mol, per 1 equivalent of hydroxyl group of brominated phenol novolac. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
[0020]
After completion of the reaction, the by-produced salt is removed by filtration, washing with water, etc., and further the solvent such as toluene and methyl isobutyl ketone is distilled off under reduced pressure by heating to obtain the epoxy resin in the present invention having a low hydrolyzable halogen content. be able to.
The epoxy resin of the present invention thus obtained preferably has a bromine content of 50% by weight or less, particularly preferably 20 to 40% by weight.
[0021]
In the epoxy resin composition of the present invention, the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 5% by weight or more, particularly preferably 10% by weight or more.
[0022]
Specific examples of other epoxy resins that can be used in combination with the epoxy resin of the present invention include glycidyl ether epoxy resins obtained by glycidylation of bisphenols, phenols novolaks, biphenols, alcohols, etc., polybutadiene epoxidized products, and alicyclic types. Examples thereof include, but are not limited to, epoxy resins, glycidylamine epoxy resins, glycidyl ester epoxy resins, and the like. These may be used alone or in combination of two or more.
[0023]
The epoxy resin composition of the present invention contains a curing agent. Examples of the curing agent that can be used include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Merit acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac, and modified products thereof, Examples include imidazole, BF 3 -amine complex, and guanidine derivatives. 0.5-1.5 equivalent is preferable with respect to 1 equivalent of epoxy groups of an epoxy resin, and, as for the usage-amount of a hardening | curing agent, 0.6-1.2 equivalent is especially preferable. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
[0024]
Further, a curing accelerator may be contained in the epoxy resin composition of the present invention. Specific examples of the curing accelerator that can be used include, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, and 1,8-diaza. -Tertiary amines such as bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, metal compounds such as tin octylate, various complexes of BF 3 and the like. If necessary, the curing accelerator is used in an amount of 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin.
Furthermore, the epoxy resin composition of the present invention includes various fillers such as silica, alumina, aluminum nitride, talc, and metal powder, antimony trioxide, silane coupling agents, mold release agents, and pigments as necessary. A compounding agent can be added.
[0025]
The epoxy resin composition of the present invention can be obtained by uniformly mixing the above components. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the epoxy resin of the present invention and a curing agent, and if necessary, a curing accelerator, a filler, and other compounding agents are sufficient until uniform using an extruder, kneader, roll, mixer, etc. as necessary. To obtain an epoxy resin composition of the present invention. After melting, the epoxy resin composition is molded using a casting or transfer molding machine, or applied to an adherend and the like. The cured product of the present invention can be obtained by heating for 10 hours.
[0026]
In addition, the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., and is applied to a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. The cured product of the present invention can also be obtained by hot press molding a prepreg obtained by impregnation and heat drying.
[0027]
At that time, the solvent is used in such an amount that the ratio of the solvent to the total weight of the epoxy resin composition of the present invention and the solvent is usually 10 to 70% by weight, preferably 15 to 65% by weight.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples. In the examples, the content of the binuclear body, epoxy equivalent, viscosity, softening point, hydrolyzable chlorine concentration, and bromine content were measured under the following conditions.
1) Content sample of binuclear body was analyzed by a GPC analyzer, and obtained from the area percentage of the peak corresponding to each component.
・ GPC analysis condition column: Shodex KF-803 (2)
+ KF-802.5 (2 pieces)
Solvent: Tetrahydrofuran detection: UV (254 nm)
Flow rate: 1 ml / min.
2) Epoxy equivalent It measures by the method according to JIS K-7236, and a unit is g / eq.
3) Viscosity It was measured at 52 ° C. with a B-type viscometer.
4) Add 1N-KOH methanol solution to dioxane solution of hydrolyzable chlorine concentration sample and measure the amount of chlorine liberated by refluxing for 30 minutes by silver nitrate titration method. The rate sample was ignited with potassium hydroxide to produce potassium bromide, which was quantified by the Mohr method.
[0029]
Example 1
100 g of phenol novolak (dinuclear content 90% by weight) and 80 g of methanol are charged into a thermometer and a four-necked flask equipped with a stirrer, and dissolved while blowing nitrogen gas. To this, 88 g (0.55 mol) of bromine is added dropwise at a reaction temperature of 25 to 30 ° C. After the completion of the bromine addition, 48 g (0.49 mol) of 35% hydrogen peroxide solution was added dropwise at a reaction temperature of 25 to 30 ° C. After the addition, the reaction solution was continuously stirred at the same temperature for 30 minutes. Thereafter, 30% aqueous sodium hydroxide solution was gradually added, and after neutralization, 1.0 g of hydrazine hydrade (80%) was added as a reducing agent, heated to 50 ° C. and stirred for 1 hour.
This reaction solution was dropped into 5 L of vigorously stirred water to obtain granular brominated phenol novolac. This brominated phenol novolak was dissolved in 555 g (6 mol) of epichlorohydrin, and water in the system was removed by azeotropic dehydration under reduced pressure (100 mmHg). After dehydration, 83 g of 48% sodium hydroxide aqueous solution was added dropwise over 6 hours. During this time, the reaction temperature was maintained at 75-80 ° C. while azeotropically dehydrating water contained in the aqueous caustic soda solution and water produced by the reaction under reduced pressure (150-200 mmHg). After the caustic soda aqueous solution was dropped, the mixture was further stirred for 1 hour at the same temperature.
After completion of the reaction, the by-produced salt was filtered, and the filtrate was further washed with 100 g of water, and then the oil layer was concentrated under reduced pressure to remove excess epichlorohydrin. Next, the residue was dissolved in 500 g of methyl isobutyl ketone, heated to 70 ° C., added with 20 g of a 30% aqueous sodium hydroxide solution, reacted at 70 ° C. for 1 hour, and washed with water several times until neutral. As a result of distilling off methyl isobutyl ketone under heating and reduced pressure, 227 g of the epoxy resin (E1) of the present invention was obtained. The obtained epoxy resin had an epoxy equivalent of 250, a viscosity of 250 centipoise, a hydrolyzable chlorine concentration of 500 ppm, and a bromine content of 35% by weight.
[0030]
Example 2
The same operation as in Example 1 was carried out except that the amount of bromine was changed to 128 g, 35% hydrogen peroxide solution 69 g and hydrazine hydride 1.2 g in Example 1. As a result, 264 g of the epoxy resin (E2) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin was 304, the viscosity was 620 centipoise, the hydrolyzable chlorine concentration was 530 ppm, and the bromine content was 43% by weight.
[0031]
Example 3
The same operation as in Example 1 was performed except that the amount of bromine in Example 1 was changed to 176 g, 35% hydrogen peroxide water was changed to 96 g, and hydrazine hydride was changed to 2.0 g. As a result, 294 g of the epoxy resin (E3) of the present invention was obtained. This epoxy resin gradually crystallized. The epoxy equivalent of the obtained epoxy resin was 331, the hydrolyzable chlorine concentration was 570 ppm, the ICI viscosity at 150 ° C. was 0.7 poise, and the bromine content was 50% by weight.
[0032]
Example 4
The same operation as in Example 1 was carried out except that the amount of bromine in Example 1 was changed to 44 g, 35% hydrogen peroxide solution to 35 g, and hydrazine hydride to 0.8 g. As a result, 294 g of the epoxy resin (E4) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin was 222, the hydrolyzable chlorine concentration was 480 ppm, the viscosity was 200 centipoise, and the bromine content was 20% by weight.
[0033]
Examples 5-10, Comparative Examples 1-3
Epoxy resins (E1) to (E3) and other epoxy resins and curing agents as the epoxy resin are blended in the composition shown in the column of the composition in Tables 1 and 2, and further a curing accelerator (triphenylphosphine). After blending 0.2 parts by weight and mixing uniformly, a resin molded body was prepared by casting or transfer molding, and cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours.
[0034]
The results of measuring the physical properties of the cured product thus obtained are also shown in Tables 1 and 2. The physical property values were measured by the following methods.
Copper foil peel strength: 180 ° C. peel test measurement temperature; 30 ° C. tensile speed; 200 mm / min copper foil; Nikko Gould Co., Ltd. JTC foil thickness 70 μm
[0035]
[Table 1]
Figure 0003627878
[0036]
[Table 2]
Figure 0003627878
[0037]
In Tables 1 and 2 and Tables 3 and 4 below, the types of epoxy resins and the like represent the following.
YX-4000: YX-4000 (epoxy resin) manufactured by Yuka Shell Epoxy Co., Ltd.
XYLOK: Millex XL-225-3L (hardening agent) manufactured by Mitsui Toatsu Chemical Co., Ltd.
PN: HF-1 (phenol novolac, curing agent) manufactured by Meiwa Kasei Co., Ltd.
EPPN-501: Nippon Kayaku Co., Ltd. EPPN-501 (epoxy resin)
BREN: Nippon Kayaku Co., Ltd. BREN-S (brominated epoxy resin)
EOCN: Nippon Kayaku Co., Ltd. EOCN-1020 (softening point 65 ° C., epoxy resin)
[0038]
Examples 11-16, Comparative Examples 4-6
As epoxy resins, epoxy resins (E1) to (E3) and other epoxy resins, curing agents, and fillers (FB-48 manufactured by Denki Kagaku Kogyo Co., Ltd.) are listed in the column of the composition of the formulations in Tables 3 and 4. In addition, 0.2 parts by weight of a curing accelerator (triphenylphosphine), 0.8 parts by weight of a silane coupling agent (KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.), a release agent (fine powder manufactured by Toa Kasei Co., Ltd.) Carnauba) 0.5 parts by weight, pigment (CK45 manufactured by Mitsubishi Chemical Co., Ltd.), 2.0 parts by weight of antimony trioxide, kneaded with a biaxial roll, pulverized, tableted, spiral flow value Measurement was performed under the following conditions.
Measurement conditions Mold temperature: 170 ° C
Transfer pressure: 70 kg / cm 2
[0039]
[Table 3]
Figure 0003627878
[0040]
[Table 4]
Figure 0003627878
[0041]
As is clear from Tables 1 to 4, the epoxy resin composition containing the epoxy resin of the present invention is excellent in spiral flow value, and the cured product of the present invention is excellent in copper peel strength.
[0042]
【The invention's effect】
Since the epoxy resin of the present invention and the epoxy resin composition containing the epoxy resin have a low viscosity and have excellent adhesiveness in the cured product, insulating materials for electrical and electronic parts (such as highly reliable semiconductor sealing materials) and laminates This is extremely useful when used for various composite materials such as boards (printed wiring boards, etc.), CFRP, adhesives, paints, and the like.

Claims (5)

式(1)
Figure 0003627878
(式中nは正数であり、平均値を表し、n=0〜1である。)で表されるフェノールノボラックあって、式(2)
Figure 0003627878
で表される2核体の含有量が70重量%以上であるフェノールノボラックを臭素化して得られる臭素化フェノールノボラックをグリシジル化することにより得られるエポキシ樹脂(ただし、臭素原子の置換数がフェニル核1個当たり1個であるものを除く)、硬化剤、必要により硬化促進剤を含有するエポキシ樹脂組成物。
Formula (1)
Figure 0003627878
(Wherein n is a positive number, represents an average value, and n = 0 to 1), and is represented by the formula (2)
Figure 0003627878
An epoxy resin obtained by glycidylation of a brominated phenol novolac obtained by brominating a phenol novolak having a binuclear content of 70 wt% or more (provided that the number of bromine atoms substituted is a phenyl nucleus) An epoxy resin composition containing a curing agent and, if necessary, a curing accelerator.
エポキシ樹脂の臭素含有率が50重量%以下である請求項1記載のエポキシ樹脂組成物The epoxy resin composition according to claim 1, wherein the epoxy resin has a bromine content of 50% by weight or less. エポキシ樹脂の臭素含有率が20〜40重量%である請求項1記載のエポキシ樹脂組成物The epoxy resin composition according to claim 1, wherein the bromine content of the epoxy resin is 20 to 40% by weight. エポキシ樹脂が過酸化水素を使用して臭素化した臭素化フェノールノボラックを使用して得られたものである請求項1、2または3記載のエポキシ樹脂組成物Claim 1, 2 or 3 epoxy resin composition according epoxy resin is obtained by using a brominated phenol novolak was brominated using hydrogen peroxide. 請求項1〜のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物。Hardened | cured material formed by hardening | curing the epoxy resin composition of any one of Claims 1-4 .
JP29499495A 1995-10-19 1995-10-19 Epoxy resin, epoxy resin composition and cured product thereof Expired - Fee Related JP3627878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29499495A JP3627878B2 (en) 1995-10-19 1995-10-19 Epoxy resin, epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29499495A JP3627878B2 (en) 1995-10-19 1995-10-19 Epoxy resin, epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPH09110962A JPH09110962A (en) 1997-04-28
JP3627878B2 true JP3627878B2 (en) 2005-03-09

Family

ID=17814978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29499495A Expired - Fee Related JP3627878B2 (en) 1995-10-19 1995-10-19 Epoxy resin, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3627878B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY119604A (en) * 1998-12-24 2005-06-30 Chang Chun Plastics Co Ltd Epoxy resin and resin-sealed type semiconductor apparatus.

Also Published As

Publication number Publication date
JPH09110962A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP3659532B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
KR100444348B1 (en) Epoxy Resin, Epoxy Resin Compositions And Cured Its
JP5142180B2 (en) Epoxy resin composition and cured product thereof
JP3659533B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3627878B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH08239454A (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JPH093162A (en) Epoxy resin mixture, epoxy resin composition, and its cured product
JP3907140B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JPH10251362A (en) Novolak type resin, epoxy resin, epoxy resin composition and cured product thereof
JP2587739B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP3441020B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH08193110A (en) Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom
JPH09268219A (en) Novolak type resin, epoxy resin, epoxy resin composition and its cured material
JP3939000B2 (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JPH11147929A (en) Epoxy resin, production of epoxy resin, epoxy resin composition, and cured product of the composition
JP3886060B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3729472B2 (en) Production method of epoxy resin
JP3651702B2 (en) Modified phenolic novolak resin, epoxy resin, epoxy resin composition and cured product thereof
JP4311587B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3736700B2 (en) Polyphenols, epoxy resins, epoxy resin compositions and cured products thereof
JP3238196B2 (en) Epoxy resin, resin composition and cured product
JP3938592B2 (en) Phenolic compounds
JPH08325361A (en) Phenolic resin, epoxy resin, epoxy resin composition and its cured product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees