JP3627447B2 - Radiation antenna for high frequency heating equipment - Google Patents

Radiation antenna for high frequency heating equipment Download PDF

Info

Publication number
JP3627447B2
JP3627447B2 JP15336197A JP15336197A JP3627447B2 JP 3627447 B2 JP3627447 B2 JP 3627447B2 JP 15336197 A JP15336197 A JP 15336197A JP 15336197 A JP15336197 A JP 15336197A JP 3627447 B2 JP3627447 B2 JP 3627447B2
Authority
JP
Japan
Prior art keywords
antenna
enlarged portion
wavelength
electromagnetic wave
frequency heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15336197A
Other languages
Japanese (ja)
Other versions
JPH113776A (en
Inventor
明 阿波根
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP15336197A priority Critical patent/JP3627447B2/en
Publication of JPH113776A publication Critical patent/JPH113776A/en
Application granted granted Critical
Publication of JP3627447B2 publication Critical patent/JP3627447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁波により被加熱物を誘電加熱するときの加熱分布を制御できる放射アンテナを備えた高周波加熱装置に関する。
【0002】
【従来の技術】
以下、従来の高周波加熱装置について説明する。従来、この種の高周波加熱装置は特開平8−138857号公報に開示されているようなものが一般的であった。この高周波加熱装置は、図7に示されているように、ターンテーブル1を備え、電磁波発生手段としてのマグネトロン2から出た電磁波が、導波管3により伝送され、加熱室4の形状と電磁波が放射される開口部5の位置とで決まる定在波となって加熱室4内に分布し、被加熱物6の各部位における電磁波の電界成分と各部位の誘電損失とに応じて加熱する。この従来例では、被加熱物6の加熱分布は概ね電磁波の定在波分布によって決まるため、加熱分布のむらを抑えるためのターンテーブル1を回転駆動して、同心円上の加熱分布の均一化を図っていた。
【0003】
また、特開平7−198147号公報に開示されているように、複数の開口部5を切り替える方法があった。この高周波加熱装置は、図8および図9に示されているように、加熱室4の底面外部に20個の導波管3をマトリックス状に配置し、それぞれの導波管3への給電を選択的に制御するものであった。このとき、どの導波管3へ給電するかは、加熱室4内の局部的な温度を検出する温度検出手段7により制御するもので、各々の開口部5の鉛直上方向に20個のミラー8を備え、5組の凹面ミラー9を介して5組の温度検出手段7に赤外線を導いて局所的な温度を検出していた。
【0004】
【発明が解決しようとする課題】
しかしながら、図7に示したような従来の高周波加熱装置では、導波管3と加熱室4とを接続して電磁波を加熱室4内に導入する場合、被加熱物6の材質や形状ごとに加熱分布を均一にする適切な開口部5の位置が異なるので、1つの開口部5のみではすべての被加熱物6について、均一に加熱できないと言う課題を有していた。たとえば、従来の電子レンジで平面的な被加熱物6を加熱すると、被加熱物6の縁から加熱が進行し、中心は昇温しないと言う加熱むらが起こることが一般に知られている。このとき、図7に示した構成では、ターンテーブル1の回転により同心円上では加熱分布の均一化を図れるが、半径方向や上下方向の加熱分布を改善することはできない。
【0005】
一方、図8および図9に示したような従来の高周波加熱装置では、定在波による加熱よりも放射波による加熱に重点をおき、被加熱物6の近傍下方からの電磁波の放射位置を制御する方法であり、放射位置により被加熱物6の任意の位置を局所的に加熱することができるが、多くの導波管3を設置する必要があり、また、所望の仕上がり状態にするためには、それぞれの導波管3への給電を切り替える必要があるので、構成が複雑になると言う課題を有していた。
【0006】
本発明は上記の課題を解決するもので、構成が簡単で、所望の調理状態に仕上げることができる高周波加熱装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項に係わる本発明は、拡大部の大きさを放射される電磁波の半波長の奇数倍とし、軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなり、前記拡大部の中心における電界強度が最大となるように放射アンテナ上の電界強度分布を設定した高周波加熱装置用アンテナである。
【0008】
この発明によれば、拡大部が電磁波の半波長の奇数倍の放射アンテナとして動作する最適状態に設定することができる。
【0009】
請求項に係わる本発明は、拡大部の大きさを放射される電磁波の1波長の整数倍と軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなる高周波加熱装置用放射アンテナとすることで、前記拡大部の中心における電界強度が最小となるように放射アンテナ上の電界強度分布を設定した高周波加熱装置用アンテナである。
【0010】
この発明によれば、拡大部が電磁波の1波長の整数倍の放射アンテナとして動作する最適状態に設定することができる。
【0011】
本発明は、放射アンテナの拡大部を除いた軸部の軸幅を放射される電磁波の波長の1/4を超えない大きさとした高周波加熱装置用アンテナである。
【0012】
この発明によれば、軸部からの電磁波の放射を抑制して拡大部から電磁波を集中的に効率よく放射することができ、軸部からの放射による所望外の加熱を抑制することができる。
【0013】
【発明の実施の形態】
請求項に係わる高周波加熱装置用アンテナは、拡大部の大きさを放射される電磁波の半波長の奇数倍とし、軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなり、前記拡大部の中心における電界強度が最大となるように放射アンテナ上の電界強度分布を設定した高周波加熱装置用アンテナとする。
【0014】
本発明において、拡大部の中心の電界強度が最大となるように設定し、前記拡大部が半波長の奇数倍のアンテナとして効率よく電磁波を放射するようにするが、実施例においては、円形の拡大部の直径を半波長として中心の電界強度が最大となるように設定し、拡大部を半波長アンテナとしている。
【0015】
請求項に係わる高周波加熱装置用アンテナは、拡大部の大きさを放射される電磁波の1波長の整数倍とし、軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなり、前記拡大部の中心における電界強度が最小となるように放射アンテナ上の電界強度分布を設定した高周波加熱装置用アンテナとする。
【0016】
本発明において、拡大部の中心の電界強度が最小となるように設定し、前記拡大部が1波長の整数倍のアンテナとして効率よく電磁波を放射するようにするが、実施例においては、円形の拡大部の直径を1波長として中心の電界強度が最小となるように設定し、拡大部を全波長アンテナとしている。
【0017】
本発明において、軸部の軸幅を波長の1/4以下に設定し、前記軸部からの電磁波の放射を低減させるが、実施例においては、円形の拡大部の直径よりも細く、かつ1/4波長以下の幅の短冊状の導電体で構成している。
【0018】
以下、実施例について説明する。
【0019】
(実施例1)
以下、本発明の高周波加熱装置の第1の実施例について図面を参照しながら説明する。
【0020】
図1は本実施例の構成を示す断面図である。なお、図7に示した従来例と同じ構成要素には同一番号を付与して詳細な説明を省略する。図において、マグネトロン2から放射した電磁波は導波管3、結合部10、および放射アンテナ11を経由して加熱室4内に侵入し、被加熱物6を加熱する。ここで、ステッピングモータ12の回転軸13は導波管3よりも下部に存在し、結合部10と接続される。本実施例においては、従来例におけるターンテーブル1、皿、およびターンテーブル1を回転させるモータは存在せず、被加熱物6は被加熱物支持板14に載置されているだけである。
【0021】
上記構成においてその動作を説明する。図2は放射アンテナ11の構成を示す平面図、図3は放射アンテナ11の構成を示す側面図である。図において、結合部10から侵入した電磁波は放射アンテナ11の長手方向に強く伝送される。このとき、放射アンテナ11の軸部16が先端まで同じ幅であれば、電磁波は放射アンテナ11のあらゆる場所から放射されるが、本実施例では、放射アンテナ11の表面積を部分的に大きくした拡大部15を設け、拡大部15から集中的に電磁波を放射させる。図7に示した従来の構成では、ターンテーブル1を回転させることにより被加熱物6を均一に加熱しようとしていたが、本実施例の構成では、放射アンテナ11の拡大部15をステッピングモータ12により被加熱物6の最も加熱したい部分に移動させることにより被加熱物6を局所的に加熱することができ、加熱位置を順次に変えることにより所望の状態に仕上げることができる。たとえば、被加熱物6の材質、形状、および大きさなどに対応してあらかじめ設定した移動パターンに従って放射アンテナ11をステッピングモータ12により移動させることが可能である。なお、本実施例の構成では、被加熱物6の任意の箇所の直下に拡大部15を移動させることはできないが、複数のステッピングモータや歯車を使用することにより、被加熱物6の任意の箇所の直下に拡大部15を移動させるようにすることもできる。
【0022】
とくに、放射させる電磁波の波長をλとすると、放射アンテナ11の拡大部15の大きさDをnλ/2(ただし、nは1以上の整数)とすることにより、パッチアンテナのような働きをすることができる。前記パッチアンテナとは、基板に印刷して作られるマイクロストリップアンテナの一種であり、近年は需要が多く、最も信頼性の要する気象衛星レーダのアレイアンテナにも用いられている。
【0023】
図2、および図3に示した構成では、放射アンテナ11の拡大部15の大きさDを(2m−1)λ/2(ただし、mは1以上の整数)とした場合であり、m=1のときには、いわゆる半波長アンテナとして動作する。図4は放射アンテナ11上の電界強度分布を模式的に示す側面図である。図4に示したように、放射アンテナ11の両端では電界強度がゼロとなるため、放射アンテナ11の拡大部15を含めない軸部16の長さA〜Bをkλ/2(ただし、kは1以上の整数)とする必要がある。図4では放射アンテナ11の拡大部15を含めない軸部16の長さA〜Bは3λ/2である。また、放射アンテナ11の拡大部15を含めない結合部10からの軸部16の長さA〜Cは(2k−1)λ/4(ただし、kは1以上の整数)とする必要がある。図4では放射アンテナ11の拡大部15を含めない軸部16の長さA〜Cは5λ/4である。放射アンテナ11の軸部16の長さをこのように設定することにより、電磁波を効率よく軸部16上を伝送することができる。また、放射アンテナ11の拡大部15の大きさDは(2m−1)λ/2(ただし、mは1以上の整数)であるので、拡大部15の中心Eは電界強度が最大となるように拡大部15を軸部16に接続することにより、拡大部15からの電磁波の放射量を増大させることができる。
【0024】
また、放射アンテナ11の軸部16から電磁波の放射量を減少させるために、軸部16の軸幅Fをλ/4以下にすることが効果的である。
【0025】
なお、図2、図3、図4においては、拡大部15が円形である場合を示したが、四角形などの多角形や楕円形、線状、または、それらを組み合せた形状としても同様の効果を得ることができる。
【0026】
(実施例2)
以下、本発明の高周波加熱装置の第2の実施例について図面を参照しながら説明する。図5は本実施例における放射アンテナの構成を示す平面図である。なお、実施例1と同じ構成要素には同一番号を付与して詳細な説明を省略する。また、全体の構成は図1と同じである。本実施例が実施例1と異なる点は、拡大部15の大きさを、半波長の整数倍でなく、1波長の整数倍としたことにある。本実施例における放射アンテナの作用は実施例1と同じであるが、図5に示した本実施例では、放射アンテナ11の拡大部15の大きさDがmλ(ただし、mは1以上の整数)、すなわち波長の整数倍としており、m=1のときには、いわゆる全波長アンテナとして動作する。
【0027】
図6は放射アンテナ11上の電界強度分布を模式的に示す側面図である。図6に示したように、放射アンテナ11の拡大部15の大きさDはmλ(ただし、mは1以上の整数)であるので、拡大部15の中心Eでは電界強度が最小となるように拡大部15を軸部16に接続することにより、拡大部15からの電磁波の放射量を増大させることができる。
【0028】
なお、図5および図6においては、拡大部15が円形の放射アンテナの例を示したが、四角形などの多角形や楕円形、線状、または、それらを組み合せた形状としても同様の効果を得ることができる。
【0029】
【発明の効果】
請求項に係わる本発明は、拡大部の大きさを放射される電磁波の半波長の奇数倍とし軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなる高周波加熱装置用放射アンテナとすることで、前記拡大部の中心における電界強度が最大となるように放射アンテナ上の電界強度分布を設定できる。
【0030】
請求項に係わる本発明は、拡大部の大きさを放射される電磁波の1波長の整数倍と軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなる高周波加熱装置用放射アンテナとすることで、前記拡大部の中心における電界強度が最小となるように放射アンテナ上の電界強度分布を設定できる。
【0031】
この発明によれば、軸部からの電磁波の放射を抑制でき、拡大部から電磁波を効率よく放射することができるとともに、軸部からの放射による所望外の加熱を抑制して、被加熱物を所望の仕上がり状態にすることができる。
【図面の簡単な説明】
【図1】本発明の高周波加熱装置の実施例1の構成を示す断面図
【図2】同実施例における放射アンテナの構成を示す平面図
【図3】同実施例における放射アンテナの構成を示す側面図
【図4】同実施例における放射アンテナ上の電界強度分布を模式的に示す側面図
【図5】本発明の高周波加熱装置の実施例2における放射アンテナの構成を示す平面図
【図6】同実施例における放射アンテナ上の電界強度分布を模式的に示す側面図
【図7】従来の高周波加熱装置の構成を示す断面図
【図8】従来の高周波加熱装置の他の構成を示す斜視図
【図9】同従来例の構成を示す断面図
【符号の説明】
1 ターンテーブル
2 マグネトロン
3 導波管
4 加熱室
5 開口部
6 被加熱物
7 温度検出手段
8 ミラー
9 凹面ミラー
10 結合部
11 放射アンテナ
12 ステッピングモータ
13 回転軸
14 被加熱物支持板
15 拡大部
16 軸部
E 中心
F 軸幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high frequency heating apparatus including a radiation antenna that can control a heating distribution when an object to be heated is dielectrically heated by electromagnetic waves.
[0002]
[Prior art]
Hereinafter, a conventional high-frequency heating apparatus will be described. Conventionally, this type of high-frequency heating device is generally disclosed in Japanese Patent Laid-Open No. 8-138857. As shown in FIG. 7, this high-frequency heating device includes a turntable 1, and electromagnetic waves emitted from a magnetron 2 as electromagnetic wave generating means are transmitted through a waveguide 3, and the shape of the heating chamber 4 and electromagnetic waves are transmitted. Is distributed in the heating chamber 4 as a standing wave determined by the position of the opening 5 from which the light is radiated, and heated according to the electric field component of the electromagnetic wave in each part of the heated object 6 and the dielectric loss in each part. . In this conventional example, the heating distribution of the object to be heated 6 is generally determined by the standing wave distribution of the electromagnetic wave. Therefore, the turntable 1 for rotating the unevenness of the heating distribution is rotationally driven to make the heating distribution on the concentric circle uniform. It was.
[0003]
Further, as disclosed in Japanese Patent Laid-Open No. 7-1981147, there is a method of switching a plurality of openings 5. In this high-frequency heating device, as shown in FIGS. 8 and 9, 20 waveguides 3 are arranged in a matrix outside the bottom surface of the heating chamber 4, and power is supplied to each waveguide 3. It was to be controlled selectively. At this time, which waveguide 3 is supplied with power is controlled by a temperature detecting means 7 for detecting a local temperature in the heating chamber 4, and 20 mirrors vertically above each opening 5. 8, infrared rays were guided to five sets of temperature detection means 7 through five sets of concave mirrors 9 to detect local temperatures.
[0004]
[Problems to be solved by the invention]
However, in the conventional high-frequency heating apparatus as shown in FIG. 7, when the electromagnetic wave is introduced into the heating chamber 4 by connecting the waveguide 3 and the heating chamber 4, the material or shape of the object 6 to be heated is determined. Since the positions of the appropriate openings 5 that make the heating distribution uniform are different, there is a problem that all the objects to be heated 6 cannot be heated uniformly with only one opening 5. For example, it is generally known that when a planar object to be heated 6 is heated in a conventional microwave oven, heating proceeds from the edge of the object to be heated 6 and heating unevenness occurs such that the temperature does not rise at the center. At this time, in the configuration shown in FIG. 7, the heating distribution can be made uniform on the concentric circles by the rotation of the turntable 1, but the heating distribution in the radial direction and the vertical direction cannot be improved.
[0005]
On the other hand, in the conventional high-frequency heating apparatus as shown in FIGS. 8 and 9, the heating position by the radiated wave is emphasized rather than the heating by the standing wave, and the radiation position of the electromagnetic wave from the lower vicinity of the heated object 6 is controlled. Although an arbitrary position of the object to be heated 6 can be locally heated by the radiation position, it is necessary to install many waveguides 3 and to obtain a desired finished state. Has a problem that the configuration becomes complicated because it is necessary to switch the power supply to each waveguide 3.
[0006]
The present invention solves the above-described problems, and an object thereof is to provide a high-frequency heating device that has a simple configuration and can be finished in a desired cooking state.
[0007]
[Means for Solving the Problems]
In the present invention according to claim 1 , the size of the enlarged portion is an odd multiple of a half wavelength of the radiated electromagnetic wave , the axial width is not larger than ¼ of the wavelength of the electromagnetic wave, and the axial length is An antenna for a high-frequency heating apparatus , which includes an axial portion that is an integral multiple of a half wavelength of an electromagnetic wave, and has an electric field strength distribution on the radiation antenna set so that the electric field strength at the center of the enlarged portion is maximized.
[0008]
According to this invention, it can be set to the optimal state in which an expansion part operate | moves as a radiation antenna of the odd multiple of the half wavelength of electromagnetic waves.
[0009]
The present invention relating to claim 2, the size of the enlarged portion is an integer multiple of one wavelength of the electromagnetic waves radiated, a size axis width does not exceed a quarter of the wavelength of the electromagnetic wave, and the axial length is The electric field strength distribution on the radiation antenna was set so that the electric field strength at the center of the enlarged portion was minimized by using a radiation antenna for a high-frequency heating device composed of a shaft portion that was an integral multiple of half the wavelength of the electromagnetic wave . This is an antenna for a high-frequency heating device.
[0010]
According to this invention, it can be set to the optimal state in which an expansion part operate | moves as a radiation antenna of the integral multiple of 1 wavelength of electromagnetic waves.
[0011]
The present invention is an antenna for a high-frequency heating device in which the axial width of the shaft portion excluding the enlarged portion of the radiating antenna has a size that does not exceed 1/4 of the wavelength of the radiated electromagnetic wave.
[0012]
According to the present invention, it is possible to radiate electromagnetic waves from the shaft portion and radiate electromagnetic waves from the enlarged portion intensively and efficiently, and to suppress undesired heating due to radiation from the shaft portion.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The antenna for a high-frequency heating device according to claim 1 is such that the size of the enlarged portion is an odd multiple of a half wavelength of the radiated electromagnetic wave , the axial width does not exceed 1/4 of the wavelength of the electromagnetic wave, and An antenna for a high-frequency heating device comprising an axial portion whose axial length is an integral multiple of a half wavelength of the electromagnetic wave, and having an electric field strength distribution on the radiation antenna set so that the electric field strength at the center of the enlarged portion is maximized. .
[0014]
In the present invention, the electric field intensity at the center of the enlarged portion is set to be maximized so that the enlarged portion efficiently radiates electromagnetic waves as an antenna having an odd number of half-wavelengths. The diameter of the enlarged portion is set to a half wavelength, and the central electric field strength is set to be maximum, and the enlarged portion is a half wavelength antenna.
[0015]
The antenna for a high-frequency heating device according to claim 2 is such that the size of the enlarged portion is an integral multiple of one wavelength of the radiated electromagnetic wave , the axial width does not exceed ¼ of the wavelength of the electromagnetic wave, and An antenna for a high-frequency heating device comprising an axial portion having an axial length that is an integral multiple of a half wavelength of the electromagnetic wave, and having an electric field strength distribution on the radiation antenna set such that the electric field strength at the center of the enlarged portion is minimized. .
[0016]
In the present invention, the electric field intensity at the center of the enlarged portion is set to be minimum so that the enlarged portion efficiently radiates electromagnetic waves as an antenna having an integral multiple of one wavelength. The diameter of the enlarged portion is set to one wavelength and the central electric field intensity is set to be minimum, and the enlarged portion is a full-wavelength antenna.
[0017]
In the present invention, the shaft width of the shaft portion is set to ¼ or less of the wavelength to reduce the radiation of the electromagnetic wave from the shaft portion. In the embodiment, the shaft width is smaller than the diameter of the circular enlarged portion and 1 It is composed of a strip-shaped conductor having a width of / 4 wavelength or less.
[0018]
Examples will be described below.
[0019]
(Example 1)
Hereinafter, a first embodiment of the high-frequency heating device of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a cross-sectional view showing the configuration of this embodiment. It should be noted that the same components as those in the conventional example shown in FIG. In the figure, the electromagnetic wave radiated from the magnetron 2 enters the heating chamber 4 via the waveguide 3, the coupling portion 10, and the radiation antenna 11, and heats the object 6 to be heated. Here, the rotating shaft 13 of the stepping motor 12 exists below the waveguide 3 and is connected to the coupling portion 10. In this embodiment, there is no motor for rotating the turntable 1, the dish, and the turntable 1 in the conventional example, and the object to be heated 6 is merely placed on the object to be heated support plate 14.
[0021]
The operation of the above configuration will be described. FIG. 2 is a plan view showing the configuration of the radiating antenna 11, and FIG. 3 is a side view showing the configuration of the radiating antenna 11. In the figure, the electromagnetic wave that has entered from the coupling portion 10 is strongly transmitted in the longitudinal direction of the radiation antenna 11. At this time, if the shaft portion 16 of the radiating antenna 11 has the same width up to the tip, the electromagnetic wave is radiated from every place of the radiating antenna 11, but in this embodiment, the surface area of the radiating antenna 11 is partially enlarged. A portion 15 is provided to radiate electromagnetic waves from the enlarged portion 15 in a concentrated manner. In the conventional configuration shown in FIG. 7, the object 6 to be heated is uniformly heated by rotating the turntable 1. However, in the configuration of this embodiment, the enlarged portion 15 of the radiating antenna 11 is moved by the stepping motor 12. The heated object 6 can be locally heated by moving it to the most heated portion of the heated object 6, and can be finished in a desired state by sequentially changing the heating position. For example, the radiation antenna 11 can be moved by the stepping motor 12 in accordance with a movement pattern set in advance corresponding to the material, shape, size, and the like of the article 6 to be heated. In the configuration of the present embodiment, the enlarged portion 15 cannot be moved directly below an arbitrary portion of the object 6 to be heated. However, by using a plurality of stepping motors or gears, any part of the object 6 to be heated can be used. It is also possible to move the enlarged portion 15 directly below the location.
[0022]
In particular, when the wavelength of the electromagnetic wave to be radiated is λ, the size D of the enlarged portion 15 of the radiating antenna 11 is nλ / 2 (where n is an integer equal to or greater than 1), thereby functioning as a patch antenna. be able to. The patch antenna is a kind of microstrip antenna that is printed on a substrate. Recently, the patch antenna is in great demand, and is also used for an array antenna of a weather satellite radar that requires the most reliability.
[0023]
2 and 3, the size D of the enlarged portion 15 of the radiating antenna 11 is (2m−1) λ / 2 (where m is an integer equal to or greater than 1), and m = When it is 1, it operates as a so-called half-wave antenna. FIG. 4 is a side view schematically showing the electric field intensity distribution on the radiation antenna 11. As shown in FIG. 4, since the electric field intensity is zero at both ends of the radiating antenna 11, the lengths A to B of the shaft portion 16 excluding the enlarged portion 15 of the radiating antenna 11 are set to kλ / 2 (where k is It is necessary to be an integer of 1 or more. In FIG. 4, the lengths A to B of the shaft portion 16 excluding the enlarged portion 15 of the radiating antenna 11 are 3λ / 2. Further, the lengths A to C of the shaft portion 16 from the coupling portion 10 not including the enlarged portion 15 of the radiating antenna 11 must be (2k−1) λ / 4 (where k is an integer of 1 or more). . In FIG. 4, the lengths A to C of the shaft portion 16 not including the enlarged portion 15 of the radiation antenna 11 are 5λ / 4. By setting the length of the shaft portion 16 of the radiating antenna 11 in this way, electromagnetic waves can be efficiently transmitted on the shaft portion 16. Further, since the size D of the enlarged portion 15 of the radiating antenna 11 is (2m−1) λ / 2 (where m is an integer equal to or greater than 1), the electric field strength is maximized at the center E of the enlarged portion 15. By connecting the enlarged portion 15 to the shaft portion 16, the amount of electromagnetic waves emitted from the enlarged portion 15 can be increased.
[0024]
In order to reduce the amount of electromagnetic waves radiated from the shaft portion 16 of the radiation antenna 11, it is effective to set the shaft width F of the shaft portion 16 to λ / 4 or less.
[0025]
2, 3, and 4 show the case where the enlarged portion 15 is circular, but the same effect can be obtained by using a polygon such as a rectangle, an ellipse, a line, or a combination thereof. Can be obtained.
[0026]
(Example 2)
Hereinafter, a second embodiment of the high-frequency heating device of the present invention will be described with reference to the drawings. FIG. 5 is a plan view showing the configuration of the radiation antenna in the present embodiment. In addition, the same number is attached | subjected to the same component as Example 1, and detailed description is abbreviate | omitted. The overall configuration is the same as in FIG. The difference between the present embodiment and the first embodiment is that the size of the enlarged portion 15 is not an integral multiple of a half wavelength, but an integral multiple of one wavelength. Although the operation of the radiating antenna in this embodiment is the same as that of the first embodiment, in the present embodiment shown in FIG. 5, the size D of the enlarged portion 15 of the radiating antenna 11 is mλ (where m is an integer of 1 or more). ), That is, an integral multiple of the wavelength, and when m = 1, it operates as a so-called full wavelength antenna.
[0027]
FIG. 6 is a side view schematically showing the electric field intensity distribution on the radiation antenna 11. As shown in FIG. 6, since the size D of the enlarged portion 15 of the radiating antenna 11 is mλ (where m is an integer equal to or greater than 1), the electric field strength is minimized at the center E of the enlarged portion 15. By connecting the enlarged portion 15 to the shaft portion 16, the amount of electromagnetic waves emitted from the enlarged portion 15 can be increased.
[0028]
5 and 6 show examples of the radiating antenna in which the enlarged portion 15 is a circular shape. However, the same effect can be obtained when a polygon such as a quadrangle, an ellipse, a line, or a combination thereof is used. Can be obtained.
[0029]
【The invention's effect】
The present invention according to claim 1 is such that the size of the enlarged portion is an odd multiple of a half wavelength of the radiated electromagnetic wave, the axial width does not exceed 1/4 of the wavelength of the electromagnetic wave, and the axial length is the electromagnetic wave. By using a radiating antenna for a high-frequency heating device that includes an axial portion that is an integral multiple of a half wavelength, the electric field strength distribution on the radiating antenna can be set so that the electric field strength at the center of the enlarged portion is maximized.
[0030]
The present invention relating to claim 2, the size of the enlarged portion is an integer multiple of one wavelength of the electromagnetic waves radiated, a size axis width does not exceed a quarter of the wavelength of the electromagnetic wave, and the axial length is By using a radiating antenna for a high-frequency heating device having a shaft portion that is an integral multiple of half the wavelength of the electromagnetic wave, the electric field strength distribution on the radiating antenna can be set so that the electric field strength at the center of the enlarged portion is minimized. .
[0031]
According to this invention, radiation of electromagnetic waves from the shaft portion can be suppressed, electromagnetic waves can be efficiently radiated from the enlarged portion, undesired heating due to radiation from the shaft portion can be suppressed, and the object to be heated can be A desired finished state can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the configuration of a first embodiment of a high-frequency heating device according to the present invention. FIG. 2 is a plan view showing the configuration of a radiating antenna in the same embodiment. FIG. 4 is a side view schematically showing the electric field intensity distribution on the radiation antenna in the same embodiment. FIG. 5 is a plan view showing the configuration of the radiation antenna in the second embodiment of the high-frequency heating device of the present invention. FIG. 7 is a cross-sectional view showing the configuration of a conventional high-frequency heating device. FIG. 8 is a perspective view showing another configuration of the conventional high-frequency heating device. FIG. 9 is a sectional view showing the structure of the conventional example.
DESCRIPTION OF SYMBOLS 1 Turntable 2 Magnetron 3 Waveguide 4 Heating chamber 5 Opening part 6 Object to be heated 7 Temperature detection means 8 Mirror 9 Concave mirror 10 Coupling part 11 Radiation antenna 12 Stepping motor 13 Rotating shaft 14 Object to be heated support plate 15 Enlarged part 16 Shaft part E Center F Shaft width

Claims (2)

直径が電磁波の半波長の奇数倍である円形の拡大部と、軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなる高周波加熱装置用放射アンテナ。 A circular enlarged portion whose diameter is an odd multiple of half the wavelength of the electromagnetic wave, and an axis whose axial width is not larger than ¼ of the wavelength of the electromagnetic wave and whose axial length is an integral multiple of the half wavelength of the electromagnetic wave. A radiating antenna for a high-frequency heating device . 直径が電磁波の1波長の整数倍である円形の拡大部と、軸幅が前記電磁波の波長の1/4を超えない大きさで、かつ軸長が前記電磁波の半波長の整数倍である軸部とからなる高周波加熱装置用放射アンテナ。 A circular enlarged portion whose diameter is an integral multiple of one wavelength of the electromagnetic wave , an axis whose axial width is not larger than ¼ of the wavelength of the electromagnetic wave, and whose axial length is an integral multiple of a half wavelength of the electromagnetic wave A radiating antenna for a high-frequency heating device .
JP15336197A 1997-06-11 1997-06-11 Radiation antenna for high frequency heating equipment Expired - Fee Related JP3627447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15336197A JP3627447B2 (en) 1997-06-11 1997-06-11 Radiation antenna for high frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15336197A JP3627447B2 (en) 1997-06-11 1997-06-11 Radiation antenna for high frequency heating equipment

Publications (2)

Publication Number Publication Date
JPH113776A JPH113776A (en) 1999-01-06
JP3627447B2 true JP3627447B2 (en) 2005-03-09

Family

ID=15560782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15336197A Expired - Fee Related JP3627447B2 (en) 1997-06-11 1997-06-11 Radiation antenna for high frequency heating equipment

Country Status (1)

Country Link
JP (1) JP3627447B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166090A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Microwave heating device
EP3177109A1 (en) * 2015-12-04 2017-06-07 Electrolux Appliances Aktiebolag Microwave oven

Also Published As

Publication number Publication date
JPH113776A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US4342896A (en) Radiating mode stirrer heating system
CN108702819B (en) Electric oven with reflected energy direction regulation
EP1566985B1 (en) Microwave oven
JP3617224B2 (en) High frequency heating device
JPH11506864A (en) Cylindrical microwave applicator
US4185181A (en) Microwave oven
CA1105567A (en) Radiating mode stirrer for microwave heating system
CN100411494C (en) Device for heating a material by microwave application
CA1262265A (en) Microwave oven with circular polarization
WO2004010740A1 (en) Dielectric antennas for use in microwave heating applications
JP3627447B2 (en) Radiation antenna for high frequency heating equipment
JP2016213099A (en) Heating cooker
JPH07130463A (en) Microwave oven
US4314127A (en) Microwave oven with rotating multiport radiator
JPH08124672A (en) High frequency heating device
KR100305962B1 (en) Microwave waveguide system
JPH09320756A (en) High-frequency heating apparatus
KR100302915B1 (en) Waveguide of microwave oven
KR100371332B1 (en) A forming structure for electronic range
KR200154597Y1 (en) High electric wave emitting apparatus for microwave oven
JPS6364871B2 (en)
KR20000050545A (en) Hand circular polarization generator for Microwave oven
JPH09306663A (en) High frequency heating device
JPH09167682A (en) Microwave oven

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees