JP3626838B2 - Power generation system for solid oxide fuel cell - Google Patents

Power generation system for solid oxide fuel cell Download PDF

Info

Publication number
JP3626838B2
JP3626838B2 JP21608497A JP21608497A JP3626838B2 JP 3626838 B2 JP3626838 B2 JP 3626838B2 JP 21608497 A JP21608497 A JP 21608497A JP 21608497 A JP21608497 A JP 21608497A JP 3626838 B2 JP3626838 B2 JP 3626838B2
Authority
JP
Japan
Prior art keywords
power generation
fuel
fuel cell
solid oxide
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21608497A
Other languages
Japanese (ja)
Other versions
JPH1167250A (en
Inventor
明人 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP21608497A priority Critical patent/JP3626838B2/en
Publication of JPH1167250A publication Critical patent/JPH1167250A/en
Application granted granted Critical
Publication of JP3626838B2 publication Critical patent/JP3626838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電時の燃料電池本体への水流を防止するようにした固体電解質型燃料電池(SOFC:Solid Oxide Fuel Cells) の発電システムに関する。
【0002】
【従来の技術】
図2に従来の固体電解質型燃料電池の発電システムの概略を示す。
【0003】
図2に示すように、固体電解質型燃料電池(以下「SOFC」という)1の内管側には水(HO),一酸化炭素(CO)等の気体燃料を、外管側には空気供給管2に空気が供給され発電装置3に内蔵している加熱器により、約900℃に加熱され発電を行っている。また、発電に必要な燃料は図示しない燃料供給手段から燃料供給管4を介して供給され、その流量はマスフローコントローラ5により一定流量となうようコントロールされる。一方、空気は図示しない空気供給手段から空気供給管8により供給され、その流量はマスフローコントローラ9により一定流量となうようコントロールされる。
発電後の未反応燃料と空気とは燃料排出管6及び空気排出管10を介して各々煙突19及び煙突20へ供給され、大気へ放出される。
【0004】
SOFC発電は、一般に燃料と空気との差圧(燃料−空気)を+50mmAq程度で運転するが、特に加圧運転時は、空気側の圧力(P)を空気排出管10に設置された圧力調整弁11により所定圧とし、燃料と空気との差圧(DP)を燃料排出管6に設置された差圧調整弁7により燃料−空気≒50mmAqとなるようにコントロールしている。
【0005】
SOFC1は発電により、水蒸気が発生するが、特に燃料側排ガス中の水蒸気濃度が高く、差圧調整弁7の前流側でドレン化すると差圧調整がドレンの影響を受け差動不良となる。この為、差圧調整弁7の前流側にシールポット12を設置している。
【0006】
発電後の未反応燃料と高濃度の水蒸気とを含んだ高温のガスは、燃料排出管6を介してシールポット12内に入り、シールポット12内の水21によりバブリング急冷され、水蒸気をドレン化しガスのみがシールポット12上部の空間部22から燃料排出管6へ排出され、差圧調整弁7のドレンによる作動不良を回避している。
【0007】
上記シールポット12内部にはレベルスイッチ13,14が設置されており、該レベルスイッチ14が作動するとドレン排出弁18が開となり、一方のレベルスイッチ13が作動するとドレン排出弁18が閉となり、自動的にシールポット内ドレンを排出するシステムとなっている。また、図中符号17はレベル計を図示し、弁15,16を開にすることにより、シールポット12内の水位を目視で確認できるようにしている。
【0008】
【発明が解決しようとする課題】
しかしながら、従来のシステムでは、差圧調整弁7の作動不良、或いは空気圧力の急激な変動により、差圧調整弁7が閉となった場合、シールポット12の空間部22の圧力が急上昇し、このため、シールポット12内の水21が発電装置3側の燃料排出管6へ逆流し、高温のSOFC1内へ流入して、水蒸気爆発等によりSOFC1の破壊或いは性能劣化に要因となる、という問題がある。
【0009】
【課題を解決するための手段】
前記課題を解決する本発明の固体電解質型燃料電池の発電システムは、
空気供給手段及び燃料供給手段を有し固体電解質型燃料電池を備えた発電装置と、該発電装置からの燃料側排ガスを排出する燃料排出手段に設置され、燃料と空気との差圧を調整する差圧調整弁と、該差圧調整弁の前流に設置され、上記燃料側排ガス中の水蒸気を除去するシールポットとを備えた固体電解質型燃料電池の発電システムにおいて、
上記シールポットは、上記燃料側排ガスを内部の水にバブリングし、該燃料側排ガス中の水蒸気をドレン化し、該水蒸気が除去された燃料側排ガスを後流へ供給する機能を有し、上記発電装置と上記シールポットとの間には、ドレンポットが介装されていることを特徴とする。
また、上記固体電解質型燃料電池の発電システムにおいて、
上記シールポットは、内部にレベルスイッチが設置され、該レベルスイッチがドレン排出弁と連動して内部のドレンを自動排出することにより、内部の水位を所定レベルに維持することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明にかかる固体電解質型燃料電池の発電システムの実施形態を説明する。
【0011】
図1に本発明の実施形態にかかる固体電解質型燃料電池の発電システムの概略を示す。
図1に示すように、本発明の固体電解質型燃料電池の発電システムは、図示しない空気供給手段及び燃料供給手段より各々燃料を供給する燃料供給管4及び空気を供給する空気供給管8を有する固体電解質型燃料電池(SOFC)1を備えた発電装置3と、該発電装置3から燃料排出管6を介して煙突19へ排出される燃料側排ガス中の水蒸気を除去するシールポット12とを備えた固体電解質型燃料電池の発電システムにおいて、上記発電装置3と上記シールポット12との間(上記シールポット12の前流側)にドレンポット31を介装してなるものである。
【0012】
上記発電装置3には、図示しない燃料供給手段から燃料供給管4により気体燃料が供給され、一方、図示しない空気供給手段から空気供給管8により空気が供給され、共にその流量はマスフローコントローラ5,9により一定流量となるようコントロールされている。また、発電後の未反応燃料と空気とは差圧調整弁7を介装する燃料排出管6及び圧力調整弁11を介装する空気排出管10を介して各々煙突19及び煙突20へ供給され、大気へ放出される。
発電後の未反応燃料と高濃度の水蒸気とを含んだ高温の排出ガスは、燃料排出管6を介してシールポット12内に入り、シールポット12内の水21によりバブリング急冷され、水蒸気をドレン化しガスのみがシールポット12上部の空間部22から燃料排出管6へ排出され、差圧調整弁7のドレンによる作動不良を回避している。
本実施の形態では、さらに、上記発電装置3と上記シールポット12との間(上記シールポット12の前流側)にドレンポット31を介装しており、空気側圧力の急激な変動によりシールポット12内の水21が逆流した場合でも、上記ドレンポット31で逆流水を吸収できるようにしている。
【0013】
上記シールポット12からの逆流水を捕集するドレンポット31は、その上部に燃料排出管6,6が連結されており、上記シールポット12のように排出ガスが水21をくぐらないようになっている。
また、ドレンポット31の側面には捕集した水のレベルを計測するレベル計32が設けられており、該レベル計32の上下に設けられた弁33,34を開けることで内部の水量を目視により確認できるようにしている。
さらに、ドレンポット31の下部には排出弁35が設けられており、該排出弁34を開にすることにより逆流して溜まった水を排出できるようにしている。
【0014】
このように、シールポット12の前流側にドレンポット31を設置し、空気側圧力の急激な変動によりシールポット12内の水21が逆流した場合でも、上記ドレンポット31で逆流水を吸収できることとなり、直接SOFC1内へ水が逆流することが防止され、従来のような水蒸気爆発等によりSOFC1の破壊或いは性能劣化に要因となることが防止される。
従って、SOFC1の保護が可能となり、該SOFC1の連続的な発電が可能となる。
【0015】
【発明の効果】
本発明は、空気供給手段及び燃料供給手段を有し、固体電解質型燃料電池を備えた発電装置と、該発電装置からの燃料側排ガスを排出する燃料排出手段に設置され、燃料と空気との差圧を調整する差圧調整弁と、該差圧調整弁の前流に設置され、燃料側排ガス中の水蒸気を除去するシールポットとを備えた固体電解質型燃料電池の発電システムにおいて、シールポットは、燃料側排ガスを内部の水にバブリングし、該燃料側排ガス中の水蒸気をドレン化し、該水蒸気が除去された燃料側排ガスを後流へ供給する機能を有し、発電装置と上記シールポットとの間には、ドレンポットが介装されているので、従来とは異なり、空気側圧力の急激な変動によりシールポット内の水が逆流しても上記ドレンポットで逆流水を吸収できることとなり、SOFC内へ逆流することが防止され、従来のような水蒸気爆発等によりSOFCの破壊或いは性能劣化に要因となることが防止される。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる固体電解質型燃料電池の発電システムの概略図である。
【図2】従来技術にかかる固体電解質型燃料電池の発電システムの概略図である。
【符号の説明】
1 固体電解質型燃料電池
2 空気供給管
3 発電装置
4 燃料供給管
5 マスフローコントローラ
6 燃料排出管
7 差圧調整弁
8 空気供給管
9 マスフローコントローラ
10 空気排出管
11 圧力調整弁
12 シールポット
13,14 レベルスイッチ
15,16 弁
17 レベル計
18 ドレン排出弁
19,20 煙突
21 水
22 空間部
31 ドレンポット
32 レベル計
33,34 弁
35 排出弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation system for a solid oxide fuel cell (SOFC) that prevents water flow to a fuel cell main body during fuel cell power generation.
[0002]
[Prior art]
FIG. 2 shows an outline of a conventional power generation system for a solid oxide fuel cell.
[0003]
As shown in FIG. 2, gaseous fuel such as water (H 2 O), carbon monoxide (CO), etc. is provided on the inner tube side of the solid oxide fuel cell (hereinafter referred to as “SOFC”) 1, and the outer tube side thereof. Air is supplied to the air supply pipe 2 and is heated to about 900 ° C. by a heater built in the power generation device 3 to generate power. Further, the fuel required for power generation is supplied from a fuel supply means (not shown) through the fuel supply pipe 4, and the flow rate is controlled by the mass flow controller 5 to be a constant flow rate. On the other hand, air is supplied from an air supply means (not shown) through an air supply pipe 8, and the flow rate is controlled by a mass flow controller 9 so as to be a constant flow rate.
The unreacted fuel and air after power generation are supplied to the chimney 19 and the chimney 20 through the fuel discharge pipe 6 and the air discharge pipe 10, respectively, and discharged to the atmosphere.
[0004]
SOFC power generation is generally operated with a differential pressure between fuel and air (fuel-air) of about +50 mm Aq , but the pressure (P) on the air side is the pressure installed in the air discharge pipe 10 particularly during the pressurization operation. The pressure is adjusted to a predetermined pressure by the adjusting valve 11, and the differential pressure (DP) between the fuel and air is controlled by the differential pressure adjusting valve 7 installed in the fuel discharge pipe 6 so that fuel- air≈50 mm Aq .
[0005]
Although the SOFC 1 generates water vapor by power generation, the water vapor concentration in the fuel-side exhaust gas is particularly high, and if the drain is formed on the upstream side of the differential pressure regulating valve 7, the differential pressure adjustment is affected by the drain, resulting in a differential failure. For this reason, the seal pot 12 is installed on the upstream side of the differential pressure regulating valve 7.
[0006]
High-temperature gas containing unreacted fuel and high-concentration water vapor after power generation enters the seal pot 12 through the fuel discharge pipe 6 and is rapidly cooled by bubbling with water 21 in the seal pot 12 to drain the water vapor. Only gas is discharged from the space 22 above the seal pot 12 to the fuel discharge pipe 6, thereby avoiding malfunction of the differential pressure regulating valve 7 due to drainage.
[0007]
Level switches 13 and 14 are installed in the seal pot 12. When the level switch 14 is operated, the drain discharge valve 18 is opened, and when one of the level switches 13 is operated, the drain discharge valve 18 is closed and the automatic operation is performed. In this system, the drain in the seal pot is discharged. Reference numeral 17 in the drawing shows a level meter, and the valves 15 and 16 are opened so that the water level in the seal pot 12 can be visually confirmed.
[0008]
[Problems to be solved by the invention]
However, in the conventional system, when the differential pressure regulating valve 7 is closed due to the malfunction of the differential pressure regulating valve 7 or the rapid fluctuation of the air pressure, the pressure of the space portion 22 of the seal pot 12 rapidly increases. For this reason, the problem is that the water 21 in the seal pot 12 flows back into the fuel discharge pipe 6 on the power generation device 3 side, flows into the high-temperature SOFC 1, and causes a destruction or performance deterioration of the SOFC 1 due to a steam explosion or the like. There is.
[0009]
[Means for Solving the Problems]
A power generation system for a solid oxide fuel cell of the present invention that solves the above problems
Installed in a power generation apparatus having a solid electrolyte fuel cell having an air supply means and a fuel supply means, and a fuel discharge means for discharging fuel side exhaust gas from the power generation apparatus, and adjusts a differential pressure between fuel and air In a power generation system for a solid oxide fuel cell, comprising: a differential pressure regulating valve; and a seal pot installed upstream of the differential pressure regulating valve to remove water vapor in the fuel side exhaust gas,
The seal pot has a function of bubbling the fuel side exhaust gas into internal water, draining water vapor in the fuel side exhaust gas, and supplying the fuel side exhaust gas from which the water vapor has been removed to the downstream, between the device and the seal pot, characterized in that the drain pot is interposed.
In the power generation system of the solid oxide fuel cell,
The seal pot has a level switch installed therein, and the level switch automatically discharges the internal drain in conjunction with the drain discharge valve, thereby maintaining the internal water level at a predetermined level.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a power generation system of a solid oxide fuel cell according to the present invention will be described.
[0011]
FIG. 1 shows an outline of a power generation system of a solid oxide fuel cell according to an embodiment of the present invention.
As shown in FIG. 1, the power generation system for a solid oxide fuel cell according to the present invention includes a fuel supply pipe 4 for supplying fuel and an air supply pipe 8 for supplying air from an air supply means and a fuel supply means (not shown). A power generation device 3 including a solid oxide fuel cell (SOFC) 1 and a seal pot 12 for removing water vapor in the fuel-side exhaust gas discharged from the power generation device 3 through the fuel discharge pipe 6 to the chimney 19 are provided. In the solid oxide fuel cell power generation system, a drain pot 31 is interposed between the power generation device 3 and the seal pot 12 (on the upstream side of the seal pot 12).
[0012]
The power generator 3 is supplied with gaseous fuel from a fuel supply means (not shown) through a fuel supply pipe 4, while air is supplied from an air supply means (not shown) through an air supply pipe 8. 9 to control the flow rate to be constant. Further, the unreacted fuel and air after power generation are supplied to the chimney 19 and the chimney 20 via the fuel discharge pipe 6 provided with the differential pressure adjustment valve 7 and the air discharge pipe 10 provided with the pressure adjustment valve 11, respectively. Released into the atmosphere.
High-temperature exhaust gas containing unreacted fuel and high-concentration water vapor after power generation enters the seal pot 12 through the fuel discharge pipe 6 and is rapidly cooled by bubbling by the water 21 in the seal pot 12 to drain the water vapor. Only the gas is discharged from the space 22 above the seal pot 12 to the fuel discharge pipe 6, thereby avoiding malfunction of the differential pressure regulating valve 7 due to drainage.
In the present embodiment, a drain pot 31 is further interposed between the power generation device 3 and the seal pot 12 (the upstream side of the seal pot 12), and the seal is caused by a sudden change in air-side pressure. Even when the water 21 in the pot 12 flows backward, the drain pot 31 can absorb the backflow water.
[0013]
The drain pot 31 for collecting the backflow water from the seal pot 12 is connected to the fuel discharge pipes 6 and 6 at the upper part thereof, so that the exhaust gas does not pass through the water 21 like the seal pot 12. ing.
Further, a level meter 32 for measuring the level of the collected water is provided on the side surface of the drain pot 31, and the amount of water inside is visually checked by opening the valves 33 and 34 provided above and below the level meter 32. Can be confirmed.
Further, a drain valve 35 is provided at the lower portion of the drain pot 31, and the water accumulated in the reverse flow can be discharged by opening the drain valve 34.
[0014]
Thus, even if the drain pot 31 is installed on the upstream side of the seal pot 12 and the water 21 in the seal pot 12 flows backward due to a sudden change in the air-side pressure, the drain pot 31 can absorb the backward water. Thus, it is possible to prevent the water from flowing back directly into the SOFC 1 and to prevent the SOFC 1 from being destroyed or deteriorated in performance due to a steam explosion or the like.
Therefore, the SOFC 1 can be protected, and the SOFC 1 can be continuously generated.
[0015]
【The invention's effect】
The present invention has an air supply means and a fuel supply means, and is installed in a power generation apparatus having a solid oxide fuel cell and a fuel discharge means for discharging fuel-side exhaust gas from the power generation apparatus . a differential pressure control valve for adjusting the pressure difference, is installed in the upstream of the difference pressure regulating valve, in the solid electrolyte type fuel cell power generation system that includes a seal pot for removing water vapor in the fuel side exhaust gas, seal pot Has a function of bubbling the fuel-side exhaust gas into the internal water, draining the water vapor in the fuel-side exhaust gas, and supplying the fuel-side exhaust gas from which the water vapor has been removed to the downstream, the power generator and the seal pot Since a drain pot is interposed between them , unlike the conventional case, even if the water in the seal pot flows backward due to abrupt fluctuations in the air side pressure, the drain pot can absorb the backflow water, S It is prevented from flowing back into the FC, to become a factor in the destruction or performance deterioration of the SOFC is prevented by conventional Such steam explosion.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a power generation system of a solid oxide fuel cell according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of a power generation system of a solid oxide fuel cell according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solid oxide type fuel cell 2 Air supply pipe 3 Power generation device 4 Fuel supply pipe 5 Mass flow controller 6 Fuel discharge pipe 7 Differential pressure adjustment valve 8 Air supply pipe 9 Mass flow controller 10 Air discharge pipe 11 Pressure adjustment valve 12 Seal pots 13 and 14 Level switch 15, 16 Valve 17 Level meter 18 Drain discharge valve 19, 20 Chimney 21 Water 22 Space 31 Drain pot 32 Level meter 33, 34 Valve 35 Drain valve

Claims (2)

空気供給手段及び燃料供給手段を有し固体電解質型燃料電池を備えた発電装置と、
該発電装置からの燃料側排ガスを排出する燃料排出手段に設置され、燃料と空気との差圧を調整する差圧調整弁と、
該差圧調整弁の前流に設置され、上記燃料側排ガス中の水蒸気を除去するシールポットとを備えた固体電解質型燃料電池の発電システムにおいて、
上記シールポットは、上記燃料側排ガスを内部の水にバブリングし、該燃料側排ガス中の水蒸気をドレン化し、該水蒸気が除去された燃料側排ガスを後流へ供給する機能を有し、
上記発電装置と上記シールポットとの間には、ドレンポットが介装されていることを特徴とする固体電解質型燃料電池の発電システム。
A power generation apparatus including a solid oxide fuel cell having air supply means and fuel supply means;
A differential pressure adjusting valve that is installed in a fuel discharge means for discharging the fuel side exhaust gas from the power generation device and adjusts a differential pressure between fuel and air;
In a power generation system for a solid oxide fuel cell, which is installed upstream of the differential pressure regulating valve and includes a seal pot for removing water vapor in the fuel-side exhaust gas,
The seal pot has a function of bubbling the fuel-side exhaust gas into the internal water, draining water vapor in the fuel-side exhaust gas, and supplying the fuel-side exhaust gas from which the water vapor has been removed to the downstream,
A power generation system for a solid oxide fuel cell , wherein a drain pot is interposed between the power generation device and the seal pot.
請求項1に記載する固体電解質型燃料電池の発電システムにおいて、In the power generation system of the solid oxide fuel cell according to claim 1,
上記シールポットは、内部にレベルスイッチが設置され、該レベルスイッチがドレン排出弁と連動して内部のドレンを自動排出することにより、内部の水位を所定レベルに維持することを特徴とする固体電解質型燃料電池の発電システム。The seal pot has a level switch installed therein, and the level switch automatically discharges the internal drain in conjunction with the drain discharge valve to maintain the internal water level at a predetermined level. Type fuel cell power generation system.
JP21608497A 1997-08-11 1997-08-11 Power generation system for solid oxide fuel cell Expired - Lifetime JP3626838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21608497A JP3626838B2 (en) 1997-08-11 1997-08-11 Power generation system for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21608497A JP3626838B2 (en) 1997-08-11 1997-08-11 Power generation system for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH1167250A JPH1167250A (en) 1999-03-09
JP3626838B2 true JP3626838B2 (en) 2005-03-09

Family

ID=16683008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21608497A Expired - Lifetime JP3626838B2 (en) 1997-08-11 1997-08-11 Power generation system for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3626838B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492048B1 (en) * 2000-08-10 2002-12-10 Siemens Westinghouse Power Corporation Segregated exhaust fuel cell generator
KR100885696B1 (en) * 2002-05-07 2009-02-26 더 리전트 오브 더 유니버시티 오브 캘리포니아 Electrochemical cell stack assembly

Also Published As

Publication number Publication date
JPH1167250A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
JP5318415B2 (en) Fuel cell system having a liquid separator
WO2002027848A3 (en) Method for monitoring the discharge of media out of a fuel cell, and a fuel cell system
JP3626838B2 (en) Power generation system for solid oxide fuel cell
KR100505472B1 (en) Fuel cell system
JP4115659B2 (en) Gas turbine fuel supply system
JP7361750B2 (en) fuel cell system
JP3824911B2 (en) Fuel cell system
JP3345026B2 (en) Fuel supply structure of molten carbonate fuel cell
JP2005206414A (en) Hydrogen producing apparatus
JP3680980B2 (en) Fuel cell power generator
JP2003297402A (en) Fuel cell power generating device
JP2002093449A (en) Fuel cell system
JPH0766825B2 (en) Fuel cell atmosphere gas treatment device
JP3443164B2 (en) Fuel cell system and control method thereof
JP2005268043A (en) Fuel cell system
JP4008598B2 (en) Transpiration fuel processing equipment
JP4111791B2 (en) Safety device for cleaning system of liquid fuel burner in gas turbine
JP2006147264A (en) Fuel cell system and its operation method
JP3605241B2 (en) Operation control device for solid oxide fuel cell
JP4415678B2 (en) Fuel cell
JP2002343386A (en) Fuel cell system
JPH087910A (en) Fuel cell power generating system
JPH0622150B2 (en) Fuel cell power generator
JPS59165376A (en) Fuel cell power generating system
JPH0261097B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term