JP3625794B2 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP3625794B2
JP3625794B2 JP2001295182A JP2001295182A JP3625794B2 JP 3625794 B2 JP3625794 B2 JP 3625794B2 JP 2001295182 A JP2001295182 A JP 2001295182A JP 2001295182 A JP2001295182 A JP 2001295182A JP 3625794 B2 JP3625794 B2 JP 3625794B2
Authority
JP
Japan
Prior art keywords
battery pack
battery
unit cell
rows
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001295182A
Other languages
Japanese (ja)
Other versions
JP2003100269A (en
Inventor
秀之 金井
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001295182A priority Critical patent/JP3625794B2/en
Publication of JP2003100269A publication Critical patent/JP2003100269A/en
Application granted granted Critical
Publication of JP3625794B2 publication Critical patent/JP3625794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Vacuum Cleaner (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のリチウムイオン二次電池のような巻回型の電池から構成される電池パック及びこれを用いた充電式掃除機に関する。
【0002】
【従来の技術】
リチウムイオン二次電池は小型で軽量、そして300回以上の繰り返し充放電が可能であるため、携帯型パーソナルコンピュータや携帯電話を初めとする多くの電子機器に使用されており需要が増加している。特にニッカド二次電池(Ni−Cd)やニッケル水素二次電池(Ni−MH)に比較して小型軽量化が可能になるためその需要が増加している。
リチウムイオン二次電池は正極電極、負極電極、セパレータ、電解液を主な構成材料として扱っており製造工程は、大きく分けて▲1▼正極塗液、負極塗液の作製、コーティング、乾燥、圧延による電極作製工程、▲2▼正極電極、負極電極、セパレータの巻き取りによる電極コイルの作製工程、▲3▼電極コイルを電極ケースヘの挿入と電解液の充填工程、▲4▼封口工程の4つに分けられる。
【0003】
まず第1の電極製造工程では金属箔に活物質を塗布、圧着し電極を製造する。正極電極では正極活物質であるLiCoO、アセチレンブラックやグラファイトなどの炭素材料導電剤、バインダーとなるフツ化ポリビリニデン(PVDF)などを有機溶剤N−メチルピロリドンなどに溶解したものを混練してペースト状塗工液を作製する。作製した塗液を厚み15〜20μmのアルミニウム箔の両側に均一な厚みにコーティングする。コーティングはドクターブレードやダイコータなどの塗工装置を用いて行う。続いて電極を乾燥器中を通過させ、ペースト作製に必要であった分散溶媒を除去する。この後、乾燥電極をロールプレスにより圧延し、電極層の密度を増加させるとともに電極厚みを所定の厚みとする。電極はロールプレスなどにより高密度化、平滑化を行わないと一定体積の電池缶に入る活物質の量が減少するばかりでなく、以降の電極の巻き取り工程での歩留まりが悪くなり多量の不良品が出ることになる。
【0004】
負極には負極活物質としてカーボンやグラファイトが使われる。バインダーにはカルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、これらを水に分散させて負極のペースト状塗工液を作製する。作製した塗液を厚み15〜20μmの銅箔の両側に均−な厚みにコーティングする。コーティングは正極材料の作製と同様にドクタープレードやダイコータなどの塗工装置を用いて行う。続いて電極を乾燥器中を通過させ、ペースト作製に必要であった分散溶媒を除去する。この後、乾燥電極をロールプレスにより圧延し、電極層の密度を増加させるとともに電極厚みを所定の厚みとする。
【0005】
第2の工程では電極を所定の巾にスリットした後、所定の長さに切断する。そして集電体金属が露出している部分に電極リードタブを溶接する。次の巻き取り工程ではタブをつけた正極電極と負極電極を厚み15〜20μmのセパレータを介して巻き芯のまわりに巻き取り、巻き取った電極がほどけないようにテープでとめ電池コイルを作製する。
【0006】
第3の工程では深絞り加工により作製した円筒缶底に電池コイルを挿入すると同時に負極リードを缶底に溶接する。続いて正極キャップと負極となる缶とを絶縁するためのガスケツトを電池缶に装着する。この後、正極集電体に溶接したアルミニウムのリードタブの−端を封口キャップと溶接する。電解液の注入は減圧下、一定量の電解液を注入し大気圧に戻すと電解液は缶底まで浸透させる。電解液としては例えば1モルの六弗化リン酸リチウム(LiPF)をエチレンカーボネート(EC)/メチルエチルカーボネート(EMC)の混合溶媒に溶解した電解液などを用いる。
【0007】
最後の第4の工程ではかしめ機を用いて正極キャップをかしめ電池を密閉する。かしめた負極部と正極キャップと短絡しないように絶縁シールを貼り円筒缶周囲に絶縁のために熱収縮チューブなどを用いて被覆する。このように作製した単電池を所定の個数接続して組み電池とし、さらに充放電制御回路や保護回路を組み込んで電池パックとする。
【0008】
図5に、この電池パックを用いて駆動する電池駆動式掃除機の概略を示す断面図を示す。この掃除機は、モータ1を駆動して吸引ファン2を回転させホース3から空気と共に塵や挨のゴミが吸引される。吸引された空気とゴミは吸引ダクト4を通過して集塵容器であるゴミパック5の入り口5aからゴミパック内5に入り、大部分のゴミはゴミパック5に捕集される。ゴミパック5により捕集できなかったサブミクロンサイズのゴミはゴミパック5を通過する空気に含まれる。この空気はゴミパック5の出口を兼ねた第1フィルター5bを通過した後、吸気ファン2を通り一部が電池パック6を通過して吸気電動機1の外部に排出される。
【0009】
このようなコードレスクリーナに複数のリチウムイオン二次電池から構成される電池パックを用いて繰り返し使用した場合、電池パックの容量の劣化が早いことが判明した。つまり電子機器に搭載せずに電池パック単体で充放電を繰り返した場合300回充放電繰り返しても容量は初期値の80%以上であるの比較して、例えばクリーナに搭載した場合には40%〜50%にまで低減していた。この電池パックから電池を取り出して電池を分解して内部を調べたところ、正極電極と負極電極において多くの部分で活物質層が集電体から剥離していることが分かった。正極電極ではPVDFと呼ばれるバインダーが接着材の役割をはたし、活物質の酸化物、例えばLiCoO粒子とアセチレンブラックやグラファイトなどの導電性助剤などの粒子を集電体であるアルミニウム箔に塗着している。しかしながらこの結合の強度は比較的に弱いため、振動や衝撃により簡単に壊れてしまう。例えば、電極の一部を超音波洗浄器に入れて数分間洗浄すると活物質層はアルミニウム箔の集電体から簡単に剥離してしまうことが分かる。クリーナには30000rpm前後の回転数で使用される吸引モータが使用されているためクリーナに搭載された電池パックはモータの回転による振動を受けている。この振動が電池内部の電極に伝わり活物質層と集電体との結合を破壊する結果となるものと考えられる。またクリーナは使用中に壁や置物などに衝突し、この時衝撃を受けることが頻繁に起こる。したがってクリーナに搭載された電池では活物質層が集電体から剥離し易いと言える。
【0010】
この振動による剥離の問題はクリーナのみならずモータなどの回転機器を用いた電子機器に電池パックを用いた場合に生じる。例えば、ロボット掃除機、無停電電源(UPS:Uninterrupted Power Source)、ロボット、アシスト自転車、電動車椅子などが挙げられる。
【0011】
【発明が解決しようとする課題】
電池パックをモータなどの回転機器を搭載するクリーナなどに搭載して使用した場合、モータの振動により電極の活物質層が集電体から剥離して電池の容量が使用回数とともに劣化する問題があった。
本発明は上記課題を解決するために成されたもので、振動や衝撃に対して活物質層が集電体から剥離することを防止し電池容量の低下が少ない電池パックを提供することを課題とする。
【0012】
【課題を解決するための手段】
第1の本発明は、複数の巻回型の単電池を2列以上に配列し一体化して集合電池を具備する電池パックにおいて、この電池パックを収容する容器に接する少なくとも1本の単電池の側面外周部の少なくとも30%が、気孔率が30%以上のポリテトラフルオロエチレン製の多孔質シート状体で被覆されていることを特徴とする電池パックである。特に前記多孔質シート状体としてポリテトラフルオロエチレンを用いることにより材料の寿命が延長されるため好ましい。
【0013】
前記第1の発明の電池パックにおいて、前記容器の1面に接する全ての単電池の側面外周部の少なくとも30%が、前記多孔質シート状体で被覆されていることが、振動元帥機能を最大限発揮する上で、好ましい。
【0014】
また前記第1の発明の電池パックにおいて、複数の前記単電池を千鳥状に配列することが、電池パックの振動を最も減衰するだけでなく容積効率を改善する上で好ましい。
また、前記配列の長手方向に隣接する単電池間に、100μm以上の空隙を形成することによって、単電池相互の振動時の干渉を最小限に抑制し、振動の伝達を阻止するために好ましい。
【0015】
前記第1の発明の電池パックにおいて、前記多孔質シートの表面に気孔率20%以下の材料を単電池の表面に被覆することが好ましい。
【0016】
前記第1の発明の電池パックにおいて、前記単電池を支持する支持板を、前記配列の長手方向の列間に挿入することによって、単電池の慣性重量が増加し、共振抑制の効果が発揮されるために好ましい。また、前記支持板としては、アルミニウム板であることが電池総重量を上昇させずに共振抑制効果を期待できるため好ましい。
【0017】
また、前記第1の発明の電池パックにおいて、リチウムイオン二次電池を前記単電池として用いることが、比較的小さな容積から大きなエネルギーを取り出すことができるため好ましい。
さらに、前記単電池が、熱可塑性樹脂フィルム、プラスチック、もしくは金属のいずれか一種の材料で一体化されていることが振動減衰の効果が大きく好ましい。
【0018】
第2の本発明は、電池パックを収容する容器に接する少なくとも1本の巻回型の単電池の側面外周部の少なくとも30%が、気孔率が30%以上のポリテトラフルオロエチレン製の多孔質シート状体で被覆され、この単電池を含む複数の単電池を2列以上に配列し一体化して構成した電池パックを筐体内に収容して用いたことを特徴とする充電式掃除機である。
【0019】
【発明の実施の形態】
本発明に係わる電池パックについて説明する。
(単電池)
本発明の巻回型の電池とは、図1に見られるように、正負極として、集電体である金属箔表面に活物質層を形成したシート状体である正極4及び負極6を、セパレータ5を介して捲回し、一方の電極を兼ねた容器1に収容し、電解液を注入して封口して構成したものである。本発明においては、この電池を単電池と略称する。この発明においては、この単電池として、特に発電エネルギー密度が高いことから、リチウムイオン二次電池が好ましい。このリチウムイオン二次電池は、負極端子を兼ねる円筒状の容器に正極、負極及び電解液を含浸したセパレータからなる発電要素が収容されていてもよいし、角形容器に発電要素を収容したものでも差し支えない。
【0020】
(被覆材)
本発明の電池パックを構成する複数の単電池の内の少なくとも1本は、図2に示すように、単電池21の側面外周部の少なくとも一部に多孔質シート状体の被覆材22を被覆したものを用いる。
この単電池を被覆する被覆材は、気孔率が高いほど振動の影響を緩和できるので気孔率が30%以上の材料を用いることが好ましい。また、気孔率30%以上の多孔質シート状体の表面にさらに気孔率が20%以下のシート状体を積層形成して捲回してもよい。あるいは、異なる気孔率を有する複数層を一体化したシート状体で、表裏面で気孔率が異なる材料を用いて、単電池に捲回することにより振動をさらに抑制できる。この多孔質シート状積層体の積層数は、2層でも3層でもかまわないが、2層の場合は単電池に接する側の材料の気孔率は30%以上で、この上に積層する材料の気孔率は20%以下とする必要がある。多孔質シート状積層体を、3層とする場合は、最外層である表面層として、30%以上の気孔率を有する多孔質シート状体を積層しても構わない。
本発明の多孔質シート状体の材質は、ポリテトラフルオロエチレン(PTFE)を主体とする材料を用いる。ポリエチレンやポリプロピレンが経時的に変形するのに対してPTFEを用いた場合は経時変化が少なく、振動吸収能力の劣化が少ないためより好ましい。さらにPTFEは不燃性であるため安全上好ましい。積層して多孔質シート状体積層体を形成する場合には、さらに材質が異なる層があってもよい。
【0021】
この多孔質シート状体もしくは多孔質シート状体積層体の厚さは、100μm〜5mmの範囲が好ましい。厚さが、この範囲より薄いと、振動軽減の効果が発揮されず、一方、厚さがこの範囲より厚いと、振動軽減が期待ほど改善されず、電池パックの容積効率が低下して不経済である。本発明においては、この多孔質シートを接着剤もしくは粘着剤を用いて単電池に接着もしくは粘着して用いても良いし、あるいは単電池の外形に合うように多孔質シートを筒状に成形することにより接着剤を用いることなく単電池に被覆することができる。上記、被覆材は、単電池の側面外周部を被覆するが、単電池側面外周部全体に形成してもよいが、その一部に形成してもよい。この場合、単電池側面外周部の少なくとも30%を被覆するように形成する。被覆率が30%を下回った場合、十分な振動防止機能を果たし得ない。また、この被覆を単電池の側面外周部の一部に形成する場合、単電池の側面中央部に貼着することが好ましい。
【0022】
(電池パックの形状)
本発明の電池パックは、上記複数の単電池を組み合わせて用いるが、その配列としては、複数の単電池を1列に並べた単電池列を、少なくとも2列に形成するように組み合わせることが好ましい。従って、電池パックを構成する単電池の数としては、少なくとも4本となる。
図3に本発明において採用できる電池パックの配列の例を示す。図3の配列は、12個の単電池を組み合わせて構成するものである。12個の単電池を配列する方法としては、2列×6列の配列か、3列×4列の配列が考えられるが、振動を緩和する観点から縦2列×横6列に並べた配列が好ましい。また、縦2列×横6列の配列においては、図3に示すように、単電池間の間隔などの要件によって、図3に図示する3種類の配列が考えられる。図3中、(A)タイプは単電池を碁盤の目のように整列した配列、(B)タイプは単電池間に隙間を作らず千鳥状に配置した配列、(C)タイプは単電池間に隙間を形成して千鳥状に配置した配列である。(C)タイプの電池パックは振動を最も緩和できかつ電池パックを小型化できるために好ましい。また、縦2列×横6列の電池配列の場合、縦に並べた2個よりも横に並べた6個の表面を気孔率が30%以上の材料を用いて被覆することにより、振動をより抑制できるため好ましい。
なお、図3においては、単電池31間に支持板32を配置した例を示したが、もちろんこの支持板を設けることなく配置してもよい。
【0023】
(単電池間隔)
図3(C)に示すように、単電池表面の一部を被覆した後の電池間の隙間を100μm以上にすることにより電池同士の共振が抑制できる振動抑制の効果が高くなる。一方、あまり大きくとりすぎると電池パック自体のサイズが大きくなり、容積効率が低下するため好ましくない。この間隔としては、100μm以上5mmが適当である。
【0024】
(支持板)
単電池間に支持板を介装させることにより、支持板がない場合に比較して単電池の振動は大幅に抑制できる。特に材質が限定されることはないが、質量が大きい方が単電池の振動を抑制する効果が大きい。しかしながら、あまり質量が大きくなると電池パックの重量が重くなるため好ましくない。この観点から、密度が2.7g/mのアルミニウムが、振動の抑制と電池パックの軽量化を両立できるため好ましい。また、支持板の形状は図3の(C)タイプの電池配列に合わせて波状にすることが好ましい。板巾に関しては単電池を支持するために巾の細い支持板を2本用いて電池の上方と下方で支持しても良い。板巾が広い場合は第4図に示すように板に穴をあけると振動を緩和する効果が大きくなり、また軽量化も達成できる。
【0025】
(一体化構造)
上述した複数の単電池を、熱可塑性樹脂フィルム、プラスチック、金属の中から選ばれる少なくとも一種の材料で一体化することによりさらに振動を軽減できるため電池パックを繰り返し使用した場合の電池容量の劣化を飛躍的に抑制できる。
また、本発明の電池パックは、単電池の正負極の電極を直列もしくは並列に相互に導電体で電気接続して集合電池として用いられる。その際に、導電体として、剛性の高い金属材料を用いることにより、単電池間を固定し、振動に対して一体化した挙動を示す。このように一体化した電池パックに加わった振動は、全ての単電池に伝達されるが、構成単電池の内の少なくとも1個に振動を吸収するように被覆材が形成されているために、この単電池に固定化され一体化している全ての単電池の振動が減衰するものである。従って、振動吸収のための被覆材を形成した単電池は、もちろん1個であっても効果は発揮するが、複数の単電池に振動吸収のための被覆を施した方が振動減衰の効果は大きい。特に、電池パックの長手方向側面に接する全ての単電池に振動吸収用の被覆材を形成していることが望ましい。
【0026】
(充電式掃除機)
以下に、本発明の充電式掃除機について説明する。この充電式掃除機は、掃除機の筐体内に電池パックを収容し、掃除機の駆動中は、使用後に充電するものである。この掃除機の電池パックとして、本発明の電池パックを用いることによって電池パックの寿命、すなわち再使用後の電池容量の低下を阻止する点で好ましい。図5に本発明の充電式掃除機を示す。図5(B)が本発明の充電式掃除機の側面断面図であり、図5(B)のA−A線の切断面を示したのが図5(A)である。図5において、51が本発明の電池パックであり、この電池パックは、掃除機のケーシング54内に配置されている電池パックの収容容器である電池パック収納部52中に収納されている。そして、この電池パック収納部52に接してモータ53が配置されており、このモータ駆動時の振動が電池パック51に伝達され、電池が共振して電池の電極が剥離する現象を発生させる。本発明の充電式掃除機は、この電池パックとして、上述したように、電池パックを構成する単電池の外周面に被覆材を形成することによって、この問題を解決するものである。なお、本発明の電池パックにおいて、被覆材で被覆した単電池は、電池パック収納部52の壁面に密に接していれば、モータの振動が伝達される面に接して配置されていても、反対側の面に接して配置されていても差し支えない。
【0027】
【実施例】
以下、本発明の好ましい実施例を図面を参照して詳細に説明する。
(実施例1)
18650サイズで容量1.5Ahのリチウムイオン二次電池12個を用いて2並列を1単位としてこれを6単位直列に接続した。電池配列はCタイプで縦2列×横6列である。電池間には1mmの隙間を設けた。横に並べた1列6個の電池には気孔率60%で厚み500μmのPTFEシートを電池の周囲に巻き付けた。横に6個これを2列に配置したこの列の間に巾60mmのアルミニウムの板を入れた。アルミニウム板には図2のような穴を形成した。この電池パックを入力160Wのコードレスクリーナに搭載して充電と放電を300回繰り返し電池容量を測定した。充電は定電流定電圧充電で3Aで4.15Vまで5時間で行った。充電後クリーナに搭載してクリーナを「強モード」でモータ停止まで運転した。運転時の放電電流は平均8.2Aで約22分持続した。300回使用後の電池容量は1.23Ahでこれは初期容量の82%にあたることが分かった。
【0028】
(比較例1)
比較例1として実施例1と同じ12本の電池を用いて電池配列をCタイプとした。電池にはまったく被覆しなかった。この電池パックを実施例1と同じ方法で300回使用した結果、300回使用後の電池容量は初期容量の48%であった。
【0029】
(実施例2)
被覆率のみ異なりそれ以外は実施例1と同じ電池パックを2セット作製し、自走式ロボットクリーナ用電源に使用した。300回使用後の電池容量は2つのセットともに初期容量の81%であった。
【0030】
(比較例2)
比較例2として比較例1と同じ電池パックを2セット作製し、300回使用後の容量を測定した結果電池容量は初期容量の46%と47%であった。
【0031】
(実施例3)
18650サイズで容量1.5Ahのリチウムイオン二次電池8個を用いて2並列を1単位としてこれを4単位直列に接続した。電池配列はCタイプで縦2列×横4列である。横に並べた1列4個の電池には気孔率60%で厚み500μmのPTFEシートを電池の周囲に巻き付け、電池闇には1mmの隙間を設けた。横に4個これを2列に配置したこの列のに巾60mmのアルミニウムの板を入れた。アルミニウム板には図4のような穴を形成した。この電池パックを入力140Wのロボット犬に搭載して充電と放電を300回繰り返し電池容量を測定した。充電は定電流定電圧充電で3Aで4.15Vまで5時間で行った。充電度ロボット犬に充填し動かした。ロボット犬の動作時間は運動形態にも依存するが15分〜20分持続した。300回使用後の電池容量は初期容量の83%にあたることが分かった。
【0032】
(比較例3)
比較例3として実施例3と同じ8本の電池を用いて電池配列をCタイプとした。電池にはまったく被覆しなかった。この電池パックを実施例1と同じ方法で300回使用した結果、300回使用後の電池容量は初期容量の48%であった。
【0033】
(実施例4〜12、比較例4〜6)
表2に示すような電池パックのパック構造、被覆材料、気孔率、被覆材厚み、被覆材層構成、被覆率、被覆電池数、電池間間隔、支持板の構成で、電池パックを構成し、搭載機器の欄に示す機器に搭載した電池パックについて、実施例1と同様にして300回の充放電を繰り返し、300回繰り返し使用後の電池容量を測定した。その結果を表2に示す。
【0034】
以上の実施例1〜12及び比較例1〜6の構成及び結果を、表1、表2および表3にまとめて示す。
【0035】
【表1】

Figure 0003625794
【0036】
【表2】
Figure 0003625794
【0037】
【表3】
Figure 0003625794
【0038】
表1および表2の結果から明らかなように、本発明の電池パックにおいて、少なくとも単電池1本の円筒状側部の一部に、多孔質シートを捲回することにより、単電池の振動によって惹起する容量低下の問題が改善されることが明らかとなった。また、この多孔性シート被覆の面積が、30%を下回った場合には、十分な容量低下防止の効果を果たさないことが明らかとなった。
【0039】
本発明の電池パックを使用した充電式掃除機が電池容量維持率において優れた結果を示すことが明らかとなった。
【0040】
【発明の効果】
以上詳述したように本発明に係る電池パックによれば、振動や衝撃に対して活物質層が集電体から剥離することを防止できるため、繰り返し使用しても電池容量の低下が少ない電池パックを提供することができる。また、これを用いた充電式掃除機は、電池寿命が長く、信頼性の大きな充電式掃除機が得られた。
【図面の簡単な説明】
【図1】本発明で用いられる巻回型の電池の一部欠截斜視図。
【図2】本発明の単電池側部外表面に被覆材を施した状態を示す概略図。
【図3】本発明の電池パックにおける単電池の配列の例を示す概略図。
【図4】本発明で用いられる単電池の固定のために用いられる支持板。
【図5】本発明の充電式掃除機の断面図。
【符号の説明】
1・・・容器
2・・・絶縁体
3・・・電極群
4・・・正極
5・・・セパレータ
6・・・負極
7・・・絶縁紙
8・・・絶縁封口板
9・・・正極端子
10・・・正極リード
21・・・単電池
22・・・被覆材
31・・・単電池
32・・・支持板
41・・・支持板
42・・・支持体の穴
51・・・電池パック
52・・・電池パック収納部
53・・・モータ
54・・・ケーシング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery pack including a wound battery such as a plurality of lithium ion secondary batteries, and a rechargeable vacuum cleaner using the battery pack.
[0002]
[Prior art]
Lithium ion secondary batteries are small and lightweight, and can be repeatedly charged and discharged more than 300 times, so they are used in many electronic devices such as portable personal computers and mobile phones, and demand is increasing. . In particular, since the size and weight can be reduced as compared with a nickel cadmium secondary battery (Ni-Cd) and a nickel metal hydride secondary battery (Ni-MH), the demand is increasing.
Lithium ion secondary batteries handle positive electrodes, negative electrodes, separators, and electrolytes as the main constituent materials. The manufacturing process can be broadly divided into (1) preparation of positive electrode coating liquid and negative electrode coating liquid, coating, drying and rolling. (4) Electrode fabrication process by (2) Positive electrode, negative electrode, separator coil winding process, (3) Electrode coil insertion into electrode case and electrolyte filling process, (4) Sealing process It is divided into.
[0003]
First, in the first electrode manufacturing process, an active material is applied to a metal foil and pressed to manufacture an electrode. In the positive electrode, LiCoO 2 which is a positive electrode active material, a carbon material conductive agent such as acetylene black and graphite, and polyvinylidene fluoride (PVDF) which is a binder dissolved in an organic solvent N-methylpyrrolidone and the like are kneaded and pasted. A coating solution is prepared. The prepared coating liquid is coated on both sides of an aluminum foil having a thickness of 15 to 20 μm so as to have a uniform thickness. Coating is performed using a coating device such as a doctor blade or a die coater. Subsequently, the electrode is passed through a drier to remove the dispersion solvent necessary for preparing the paste. Thereafter, the dry electrode is rolled by a roll press to increase the density of the electrode layer and to set the electrode thickness to a predetermined thickness. If the electrode is not densified and smoothed by a roll press or the like, not only will the amount of active material entering the battery can of a certain volume decrease, but the yield in the subsequent electrode winding process will deteriorate, resulting in a large amount of inefficiency. Good product will come out.
[0004]
Carbon and graphite are used for the negative electrode as the negative electrode active material. Carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) are dispersed in water as a binder, and a paste coating liquid for a negative electrode is prepared. The prepared coating solution is coated on both sides of a copper foil having a thickness of 15 to 20 μm with a uniform thickness. The coating is performed using a coating device such as a doctor blade or a die coater in the same manner as the production of the positive electrode material. Subsequently, the electrode is passed through a drier to remove the dispersion solvent necessary for preparing the paste. Thereafter, the dry electrode is rolled by a roll press to increase the density of the electrode layer and to set the electrode thickness to a predetermined thickness.
[0005]
In the second step, the electrode is slit to a predetermined width and then cut to a predetermined length. The electrode lead tab is welded to the portion where the current collector metal is exposed. In the next winding process, the positive electrode and the negative electrode with tabs are wound around the winding core via a separator having a thickness of 15 to 20 μm, and the battery coil is produced by fastening with tape so that the wound electrode cannot be unwound. .
[0006]
In the third step, the battery coil is inserted into the cylindrical can bottom produced by deep drawing, and at the same time, the negative electrode lead is welded to the can bottom. Subsequently, a gasket for insulating the positive electrode cap from the negative electrode can is attached to the battery can. Thereafter, the negative end of the aluminum lead tab welded to the positive electrode current collector is welded to the sealing cap. When the electrolyte is injected under a reduced pressure, a certain amount of electrolyte is injected and returned to atmospheric pressure, and the electrolyte penetrates to the bottom of the can. As the electrolytic solution, for example, an electrolytic solution in which 1 mol of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent of ethylene carbonate (EC) / methyl ethyl carbonate (EMC) is used.
[0007]
In the final fourth step, the battery is sealed by caulking the positive electrode cap using a caulking machine. An insulating seal is applied so as not to short-circuit the caulked negative electrode portion and the positive electrode cap, and the cylindrical can is covered with a heat shrinkable tube or the like for insulation. A predetermined number of unit cells thus fabricated are connected to form a battery pack, and a charge / discharge control circuit and a protection circuit are further assembled to form a battery pack.
[0008]
In FIG. 5, sectional drawing which shows the outline of the battery drive type vacuum cleaner driven using this battery pack is shown. In this cleaner, the motor 1 is driven to rotate the suction fan 2 so that dust and dust are sucked together with air from the hose 3. The sucked air and dust pass through the suction duct 4 and enter the dust pack 5 from the entrance 5a of the dust pack 5 which is a dust collecting container, and most of the dust is collected in the dust pack 5. The submicron-sized trash that cannot be collected by the trash pack 5 is contained in the air passing through the trash pack 5. This air passes through the first filter 5 b that also serves as the outlet of the dust pack 5, passes through the intake fan 2, partially passes through the battery pack 6, and is discharged to the outside of the intake motor 1.
[0009]
It has been found that when such a cordless cleaner is repeatedly used with a battery pack composed of a plurality of lithium ion secondary batteries, the capacity of the battery pack is rapidly deteriorated. That is, when the battery pack is repeatedly charged / discharged without being mounted on an electronic device, the capacity is 80% or more of the initial value even after repeated charging / discharging for 300 times, for example, 40% when mounted on a cleaner. It was reduced to -50%. When the battery was taken out from the battery pack, the battery was disassembled and the inside was examined, it was found that the active material layer was peeled off from the current collector in many parts of the positive electrode and the negative electrode. In the positive electrode, a binder called PVDF plays the role of an adhesive, and an active material oxide, for example, LiCoO 2 particles and particles such as acetylene black and graphite and other conductive assistants are applied to an aluminum foil as a current collector. I'm painting. However, since the strength of this bond is relatively weak, it is easily broken by vibration or impact. For example, it can be seen that when a part of the electrode is placed in an ultrasonic cleaner and washed for several minutes, the active material layer easily peels off from the aluminum foil current collector. Since the cleaner uses a suction motor that is used at a rotational speed of about 30000 rpm, the battery pack mounted on the cleaner is subjected to vibration due to the rotation of the motor. It is considered that this vibration is transmitted to the electrode inside the battery and results in breaking the bond between the active material layer and the current collector. In addition, the cleaner collides with a wall or a figurine during use, and frequently receives an impact at this time. Therefore, in the battery mounted on the cleaner, it can be said that the active material layer easily peels from the current collector.
[0010]
The problem of peeling due to vibration occurs when a battery pack is used not only in a cleaner but also in an electronic device using a rotating device such as a motor. Examples include a robot cleaner, an uninterruptible power source (UPS), a robot, an assist bicycle, and an electric wheelchair.
[0011]
[Problems to be solved by the invention]
When the battery pack is mounted on a cleaner equipped with a rotating device such as a motor, the active material layer of the electrode peels off from the current collector due to the vibration of the motor and the capacity of the battery deteriorates with the number of uses. It was.
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a battery pack that prevents the active material layer from peeling from the current collector due to vibration and impact, and has a small decrease in battery capacity. And
[0012]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a battery pack including a plurality of wound unit cells arranged in two or more rows and integrated to form an assembled battery, wherein at least one unit cell in contact with a container housing the battery pack is provided. The battery pack is characterized in that at least 30% of the outer peripheral portion of the side surface is covered with a porous sheet-like body made of polytetrafluoroethylene having a porosity of 30% or more. In particular, it is preferable to use polytetrafluoroethylene as the porous sheet-like body because the life of the material is extended.
[0013]
In the battery pack according to the first aspect, at least 30% of the outer periphery of the side surface of all the unit cells in contact with one surface of the container is covered with the porous sheet-like body. It is preferable for achieving the limit.
[0014]
In the battery pack of the first invention, it is preferable to arrange the plurality of unit cells in a staggered manner not only to dampen the vibration of the battery pack but also to improve the volume efficiency.
In addition, it is preferable to form a gap of 100 μm or more between the single cells adjacent to each other in the longitudinal direction of the array in order to minimize interference between the single cells and prevent transmission of vibration.
[0015]
In the battery pack of the first invention, the surface of the unit cell is preferably coated with a material having a porosity of 20% or less on the surface of the porous sheet.
[0016]
In the battery pack according to the first aspect of the present invention, by inserting a support plate for supporting the unit cells between the longitudinal rows of the array, the inertia weight of the unit cells is increased, and the effect of suppressing resonance is exhibited. Therefore, it is preferable. The support plate is preferably an aluminum plate because a resonance suppression effect can be expected without increasing the total battery weight.
[0017]
In the battery pack of the first invention, it is preferable to use a lithium ion secondary battery as the unit cell because a large energy can be taken out from a relatively small volume.
Furthermore, it is preferable that the unit cell is integrated with any one of a thermoplastic resin film, a plastic, and a metal because the effect of vibration damping is large.
[0018]
The second aspect of the present invention is a polytetrafluoroethylene porous material in which at least 30% of the outer peripheral portion of the side surface of at least one wound type cell in contact with a container that houses a battery pack has a porosity of 30% or more. A rechargeable vacuum cleaner characterized in that a battery pack that is covered with a sheet-like body and is formed by arranging and integrating a plurality of unit cells including the unit cells in two or more rows is housed in a housing. .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The battery pack according to the present invention will be described.
(Single cell)
As shown in FIG. 1, the wound battery of the present invention includes a positive electrode 4 and a negative electrode 6 that are sheet-like bodies in which an active material layer is formed on a metal foil surface that is a current collector as positive and negative electrodes. It is wound through a separator 5 and accommodated in a container 1 that also serves as one electrode, and is filled with an electrolyte and sealed. In the present invention, this battery is abbreviated as a single battery. In the present invention, the unit cell is preferably a lithium ion secondary battery because the power generation energy density is particularly high. In this lithium ion secondary battery, a cylindrical container that also serves as a negative electrode terminal may contain a power generation element composed of a positive electrode, a negative electrode, and a separator impregnated with an electrolyte solution, or a rectangular container that contains a power generation element. There is no problem.
[0020]
(Coating material)
As shown in FIG. 2, at least one of the plurality of unit cells constituting the battery pack of the present invention is coated with a porous sheet-like covering material 22 on at least a part of the outer peripheral portion of the side surface of the unit cell 21. Use what you did.
As the covering material for covering the unit cell, the higher the porosity is, the more the influence of vibration can be reduced. Therefore, it is preferable to use a material having a porosity of 30% or more. In addition, a sheet-like body having a porosity of 20% or less may be formed on the surface of a porous sheet-like body having a porosity of 30% or more and wound. Alternatively, the vibration can be further suppressed by winding a single cell using a material in which a plurality of layers having different porosities are integrated and materials having different porosities on the front and back surfaces. The number of layers of the porous sheet-like laminate may be two or three, but in the case of two layers, the porosity of the material on the side in contact with the unit cell is 30% or more, and the material laminated on this The porosity needs to be 20% or less. When the porous sheet-like laminate is composed of three layers, a porous sheet-like body having a porosity of 30% or more may be laminated as the outermost surface layer.
As the material of the porous sheet-like body of the present invention, a material mainly composed of polytetrafluoroethylene (PTFE) is used. Whereas polyethylene and polypropylene are deformed over time, the use of PTFE is more preferable because there is little change over time and there is little deterioration in vibration absorption capacity. Furthermore, PTFE is preferable for safety because it is nonflammable. In the case of laminating to form a porous sheet-like laminate, there may be further layers of different materials.
[0021]
The thickness of the porous sheet or porous sheet laminate is preferably in the range of 100 μm to 5 mm. If the thickness is less than this range, the effect of vibration reduction will not be exhibited. On the other hand, if the thickness is greater than this range, vibration reduction will not be improved as expected, and the volume efficiency of the battery pack will be reduced, which is uneconomical. It is. In the present invention, this porous sheet may be used by adhering or adhering to a single cell using an adhesive or an adhesive, or the porous sheet is formed into a cylindrical shape so as to match the outer shape of the single cell. Thus, the unit cell can be coated without using an adhesive. Above, the coating material is to cover the side surface outer periphery of the cell, it may be formed on the whole single cell side outer peripheral portion, but may be formed in a part thereof. In this case, it is formed so as to cover at least 30% of the outer peripheral portion of the unit cell side surface . When the coverage is less than 30%, a sufficient vibration preventing function cannot be achieved. Further, when this coating is formed on a part of the outer peripheral portion of the side surface of the unit cell, it is preferable to attach it to the center of the side surface of the unit cell.
[0022]
(Battery pack shape)
The battery pack of the present invention uses the plurality of unit cells in combination, and as the arrangement thereof, it is preferable to combine the unit cell rows in which the plurality of unit cells are arranged in one row so as to form at least two rows. . Therefore, the number of unit cells constituting the battery pack is at least four.
FIG. 3 shows an example of an arrangement of battery packs that can be employed in the present invention. The arrangement in FIG. 3 is configured by combining 12 unit cells. As a method of arranging 12 cells, 2 rows x 6 rows or 3 rows x 4 rows can be considered. From the viewpoint of reducing vibration, the rows are arranged in 2 rows x 6 rows. Is preferred. Further, in the arrangement of 2 vertical columns × 6 horizontal rows, as shown in FIG. 3, three types of arrangements shown in FIG. In FIG. 3, (A) type is an arrangement in which the cells are arranged like a grid, (B) type is an arrangement in which the cells are not staggered, and (C) is between the cells. It is the arrangement | sequence which formed the clearance gap in zigzag form. The (C) type battery pack is preferable because vibration can be most relaxed and the battery pack can be miniaturized. Further, in the case of a battery array of 2 vertical rows × 6 horizontal rows, vibration is generated by covering six surfaces arranged horizontally rather than two vertically arranged with a material having a porosity of 30% or more. Since it can suppress more, it is preferable.
In addition, in FIG. 3, although the example which has arrange | positioned the support plate 32 between the cell 31 was shown, of course, you may arrange | position without providing this support plate.
[0023]
(Single cell interval)
As shown in FIG. 3C, the vibration suppression effect that can suppress the resonance between the batteries is enhanced by setting the gap between the batteries after covering a part of the unit cell surface to 100 μm or more. On the other hand, if the size is too large, the size of the battery pack itself is increased, and the volumetric efficiency is lowered. As this space | interval, 100 micrometers or more and 5 mm are suitable.
[0024]
(Support plate)
By interposing the support plate between the single cells, the vibration of the single cell can be significantly suppressed as compared with the case where there is no support plate. The material is not particularly limited, but the larger the mass, the greater the effect of suppressing cell vibration. However, if the mass is too large, the weight of the battery pack increases, which is not preferable. From this viewpoint, aluminum having a density of 2.7 g / m 3 is preferable because both suppression of vibration and weight reduction of the battery pack can be achieved. Further, it is preferable that the shape of the support plate be corrugated in accordance with the (C) type battery array of FIG. With respect to the plate width, two thin support plates may be used to support the unit cell at the top and bottom of the battery. When the plate width is wide, as shown in FIG. 4, if the plate is perforated, the effect of alleviating vibration is increased, and weight reduction can be achieved.
[0025]
(Integrated structure)
Vibration can be further reduced by integrating the above-mentioned plurality of single cells with at least one material selected from thermoplastic resin film, plastic, and metal, so that the battery capacity is deteriorated when the battery pack is repeatedly used. It can be drastically suppressed.
The battery pack of the present invention is used as an assembled battery by electrically connecting positive and negative electrodes of a single cell in series or in parallel with each other with a conductor. At that time, by using a highly rigid metal material as the conductor, the cells are fixed and integrated with respect to vibration. The vibration applied to the battery pack integrated in this way is transmitted to all the unit cells, but since at least one of the constituent unit cells absorbs the vibration, the covering material is formed. The vibration of all the unit cells fixed and integrated with the unit cell is attenuated. Accordingly, even if only one unit cell is formed with a coating material for absorbing vibration, the effect is exhibited. However, the effect of vibration damping is better when a plurality of unit cells are coated for vibration absorption. large. In particular, it is desirable that a vibration-absorbing coating material be formed on all the cells that are in contact with the longitudinal side surface of the battery pack.
[0026]
(Rechargeable vacuum cleaner)
Below, the rechargeable vacuum cleaner of this invention is demonstrated. This rechargeable vacuum cleaner accommodates a battery pack in the housing of the vacuum cleaner, and charges the battery pack after use while the cleaner is being driven. It is preferable to use the battery pack of the present invention as the battery pack of this vacuum cleaner in terms of preventing the life of the battery pack, that is, the reduction of the battery capacity after reuse. FIG. 5 shows a rechargeable vacuum cleaner of the present invention. FIG. 5 (B) is a side sectional view of the rechargeable vacuum cleaner of the present invention, and FIG. 5 (A) shows a cut surface taken along line AA of FIG. 5 (B). In FIG. 5, 51 is the battery pack of this invention, and this battery pack is accommodated in the battery pack accommodating part 52 which is a storage container of the battery pack arrange | positioned in the casing 54 of a cleaner. A motor 53 is disposed in contact with the battery pack housing 52, and vibrations during driving of the motor are transmitted to the battery pack 51, causing a phenomenon in which the battery resonates and the battery electrodes are peeled off. As described above, the rechargeable vacuum cleaner of the present invention solves this problem by forming a covering material on the outer peripheral surface of the unit cell constituting the battery pack as described above. In the battery pack of the present invention, the unit cell covered with the covering material may be disposed in contact with the surface to which the vibration of the motor is transmitted as long as it is in close contact with the wall surface of the battery pack housing portion 52. It may be arranged in contact with the opposite surface.
[0027]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
(Example 1)
Twelve lithium ion secondary batteries of 18650 size and 1.5 Ah capacity were used, and two units in parallel were connected as one unit, and 6 units were connected in series. The battery arrangement is C type and is 2 columns × 6 columns. A 1 mm gap was provided between the batteries. A PTFE sheet having a porosity of 60% and a thickness of 500 μm was wound around the battery in six rows of batteries arranged side by side. Six aluminum plates having a width of 60 mm were placed between the two rows arranged in two rows. Holes as shown in FIG. 2 were formed in the aluminum plate. This battery pack was mounted on a cordless cleaner with an input of 160 W, and charging and discharging were repeated 300 times to measure the battery capacity. Charging was performed by constant current and constant voltage charging at 3 A to 4.15 V in 5 hours. After charging, it was mounted on the cleaner and operated in “strong mode” until the motor stopped. The discharge current during operation lasted about 22 minutes at an average of 8.2 A. The battery capacity after 300 uses was 1.23 Ah, which was found to be 82% of the initial capacity.
[0028]
(Comparative Example 1)
As Comparative Example 1, the same 12 batteries as in Example 1 were used, and the battery arrangement was C type. The battery was not coated at all. As a result of using this battery pack 300 times in the same manner as in Example 1, the battery capacity after 300 times use was 48% of the initial capacity.
[0029]
(Example 2)
Two sets of the same battery pack as in Example 1 except for the covering rate were produced and used as a power source for a self-propelled robot cleaner. The battery capacity after 300 times of use was 81% of the initial capacity in both sets.
[0030]
(Comparative Example 2)
As Comparative Example 2, two sets of the same battery pack as Comparative Example 1 were produced, and the capacity after 300 times of use was measured. As a result, the battery capacity was 46% and 47% of the initial capacity.
[0031]
(Example 3)
Using eight lithium ion secondary batteries of 18650 size and a capacity of 1.5 Ah, two units were connected in series, and two units were connected in series. The battery arrangement is C type and is 2 vertical rows x 4 horizontal rows. A PTFE sheet having a porosity of 60% and a thickness of 500 μm was wound around the battery in four rows of batteries arranged side by side, and a 1 mm gap was provided in the darkness of the battery. An aluminum plate having a width of 60 mm was placed between the four rows arranged in two rows. Holes as shown in FIG. 4 were formed in the aluminum plate. This battery pack was mounted on a 140 W robot dog, and charging and discharging were repeated 300 times to measure the battery capacity. Charging was performed by constant current and constant voltage charging at 3 A to 4.15 V in 5 hours. Charged the robot dog and charged it. The operation time of the robot dog lasted from 15 minutes to 20 minutes depending on the exercise form. The battery capacity after 300 times of use was found to be 83% of the initial capacity.
[0032]
(Comparative Example 3)
As Comparative Example 3, the same eight batteries as in Example 3 were used, and the battery arrangement was C type. The battery was not coated at all. As a result of using this battery pack 300 times in the same manner as in Example 1, the battery capacity after 300 times use was 48% of the initial capacity.
[0033]
(Examples 4 to 12, Comparative Examples 4 to 6)
The battery pack is composed of the battery pack structure as shown in Table 2, covering material, porosity, covering material thickness, covering material layer structure, covering rate, number of covered batteries, inter-battery spacing, and support plate structure. About the battery pack mounted in the apparatus shown in the column of the mounted apparatus, 300 times charge / discharge was repeated like Example 1, and the battery capacity after 300 times repeated use was measured. The results are shown in Table 2.
[0034]
The configurations and results of Examples 1 to 12 and Comparative Examples 1 to 6 are summarized in Tables 1, 2 and 3.
[0035]
[Table 1]
Figure 0003625794
[0036]
[Table 2]
Figure 0003625794
[0037]
[Table 3]
Figure 0003625794
[0038]
As is clear from the results in Tables 1 and 2, in the battery pack of the present invention, by winding a porous sheet on at least a part of the cylindrical side of one unit cell, the vibration of the unit cell It became clear that the problem of capacity reduction caused was improved. Further, it has been clarified that when the area of the porous sheet coating is less than 30%, the effect of preventing sufficient capacity reduction is not achieved.
[0039]
It became clear that the rechargeable vacuum cleaner using the battery pack of the present invention showed excellent results in the battery capacity maintenance rate.
[0040]
【The invention's effect】
As described above in detail, according to the battery pack of the present invention, the active material layer can be prevented from peeling from the current collector due to vibration and impact, so that the battery capacity is hardly reduced even when used repeatedly. Pack can be offered. Moreover, the rechargeable vacuum cleaner using this has a long battery life and a highly reliable rechargeable vacuum cleaner.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view of a wound battery used in the present invention.
FIG. 2 is a schematic view showing a state where a coating material is applied to the outer surface of the side surface of the unit cell of the present invention.
FIG. 3 is a schematic diagram showing an example of the arrangement of single cells in the battery pack of the present invention.
FIG. 4 is a support plate used for fixing a unit cell used in the present invention.
FIG. 5 is a cross-sectional view of the rechargeable vacuum cleaner of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Insulator 3 ... Electrode group 4 ... Positive electrode 5 ... Separator 6 ... Negative electrode 7 ... Insulating paper 8 ... Insulation sealing plate 9 ... Positive electrode Terminal 10 ... Positive electrode lead 21 ... Single cell 22 ... Covering material 31 ... Single cell 32 ... Support plate 41 ... Support plate 42 ... Support hole 51 ... Battery Pack 52 ... Battery pack storage 53 ... Motor 54 ... Casing

Claims (10)

複数の巻回型の単電池を2列以上に配列し一体化して集合電池を具備する電池パックにおいて、この電池パックを収容する容器に接する少なくとも1本の単電池の側面外周部の少なくとも30%が、気孔率が30%以上のポリテトラフルオロエチレン製の多孔質シート状体で被覆されていることを特徴とする電池パック。In a battery pack comprising a plurality of wound type cells arranged in two or more rows and integrated to provide an assembled battery , at least 30% of the outer peripheral portion of the side surface of at least one unit cell that contacts the container that houses the battery pack However , the battery pack is covered with a porous sheet-like body made of polytetrafluoroethylene having a porosity of 30% or more. 前記電池パックにおいて、前記容器の1面に接する全ての単電池の側面外周部の少なくとも30%が、前記多孔質シート状体で被覆されていることを特徴とする請求項1に記載の電池パック。2. The battery pack according to claim 1, wherein in the battery pack, at least 30% of the outer peripheral portion of the side surface of all the single cells in contact with one surface of the container is covered with the porous sheet-like body. . 前記電池パックにおいて、複数の前記単電池を千鳥状に配列したことを特徴とする請求項1ないし請求項3のいずれかに記載の電池パック。4. The battery pack according to claim 1, wherein a plurality of the single cells are arranged in a staggered manner in the battery pack. 5. 前記電池パックにおいて、前記配列の長手方向に隣接する単電池間に、100μm以上の空隙を形成したことを特徴とする請求項1ないし請求項4のいずれかに記載の電池パック。5. The battery pack according to claim 1, wherein a gap of 100 μm or more is formed between the single cells adjacent in the longitudinal direction of the array in the battery pack. 前記電池パックにおいて、前記多孔質シートの表面に、気孔率20%以下の材料を被覆・積層した材料を単電池の表面に被覆することを特徴とする請求項1ないし請求項5のいずれかに記載の電池パック。6. The battery pack according to claim 1, wherein the surface of the unit cell is coated with a material obtained by coating and laminating a material having a porosity of 20% or less on the surface of the porous sheet. The battery pack described. 前記電池パックにおいて、前記単電池を支持する支持板を、前記配列の長手方向の列間に挿入することを特徴とする請求項1ないし請求項のいずれかに記載の電池パック。Wherein the battery pack, said support plate for supporting the unit cells, the battery pack according to any one of claims 1 to 5, characterized in that inserted between longitudinal rows of said array. 前記電池パックにおいて、前記支持板が、アルミニウム板であることを特徴とする請求項に記載の電池パック。The battery pack according to claim 6 , wherein the support plate is an aluminum plate. 前記電池パックにおいて、前記単電池がリチウムイオン二次電池であることを特徴とする請求項1ないし請求項のいずれかに記載の電池パック。The battery pack according to any one of claims 1 to 6 , wherein the single battery is a lithium ion secondary battery. 前記電池パックにおいて、前記単電池が熱可塑性樹脂フィルム、プラスチック、もしくは金属のいずれか一種の材料で一体化されていることを特徴とする請求項1ないし請求項のいずれかに記載の電池パック。The battery pack according to any one of claims 1 to 8 , wherein the unit cell is integrated with any one of a thermoplastic resin film, a plastic, and a metal. . 電池パックを収容する容器に接する少なくとも1本の巻回型の単電池の側面外周部の少なくとも30%が、気孔率が30%以上のポリテトラフルオロエチレン製の多孔質シート状体で被覆され、この単電池を含む複数の単電池を2列以上に配列し一体化して構成した電池パックを筐体内に収容して用いたことを特徴とする充電式掃除機。At least 30% of the outer peripheral portion of the side surface of at least one wound unit cell in contact with the container containing the battery pack is coated with a porous sheet-like body made of polytetrafluoroethylene having a porosity of 30% or more, A rechargeable vacuum cleaner characterized in that a battery pack comprising a plurality of unit cells including the unit cells arranged in two or more rows and integrated is housed in a housing.
JP2001295182A 2001-09-26 2001-09-26 Battery pack Expired - Fee Related JP3625794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295182A JP3625794B2 (en) 2001-09-26 2001-09-26 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295182A JP3625794B2 (en) 2001-09-26 2001-09-26 Battery pack

Publications (2)

Publication Number Publication Date
JP2003100269A JP2003100269A (en) 2003-04-04
JP3625794B2 true JP3625794B2 (en) 2005-03-02

Family

ID=19116658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295182A Expired - Fee Related JP3625794B2 (en) 2001-09-26 2001-09-26 Battery pack

Country Status (1)

Country Link
JP (1) JP3625794B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100470916C (en) 2005-11-08 2009-03-18 比亚迪股份有限公司 Lithium ion secondary battery
JP6403104B2 (en) * 2014-09-30 2018-10-10 工機ホールディングス株式会社 Electric tool and battery pack used therefor

Also Published As

Publication number Publication date
JP2003100269A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
US8067112B2 (en) Stacked lithium secondary battery and its fabrication utilizing a folded configuration
JP3613400B2 (en) Non-aqueous secondary battery and manufacturing method thereof
CA2169484C (en) Rechargeable non-aqueous lithium battery having stacked electrochemical cells
US7335448B2 (en) Lithium ion secondary battery
EP3965215A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
US20140127576A1 (en) Active material for nonaqueous electrolyte secondary batteries, method for producing the same, and negative electrode including the same
JP2005149891A (en) Bipolar battery and packed battery using the same
EP4020692A1 (en) Electrochemical device and electronic device
KR20160055097A (en) Nonaqueous electrolyte secondary battery
EP2688079A1 (en) Power storage device
JP3675354B2 (en) Solid electrolyte battery and manufacturing method thereof
JP3543572B2 (en) Rechargeable battery
WO2004097971A1 (en) Stacked lithium secondary battery and its fabrication
JP2009076249A (en) Power storage device
JP3625794B2 (en) Battery pack
CN115461909A (en) Electrochemical device and electronic device comprising same
KR101416805B1 (en) Folding cell and super capacitor folding type having the same
JP4010521B2 (en) Stacked battery
GB2298309A (en) Fan-folded lithium battery construction comprising lithium ion-containing polymer electrolyte sandwiched between discrete electrode plates
JP2014212304A (en) Power storage device and method of manufacturing power storage module
WO2022041247A1 (en) Electrochemical device and electronic device including same
JP2008244378A (en) Capacitor device
KR100514214B1 (en) Stacked type lithium secondary battery with separated two films of separator and its fabrication
JP7249991B2 (en) secondary battery
KR101416806B1 (en) Folding cell and super capacitor folding type having the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees