JP3623946B2 - Resistance reduction structure rudder - Google Patents

Resistance reduction structure rudder Download PDF

Info

Publication number
JP3623946B2
JP3623946B2 JP2002148814A JP2002148814A JP3623946B2 JP 3623946 B2 JP3623946 B2 JP 3623946B2 JP 2002148814 A JP2002148814 A JP 2002148814A JP 2002148814 A JP2002148814 A JP 2002148814A JP 3623946 B2 JP3623946 B2 JP 3623946B2
Authority
JP
Japan
Prior art keywords
rudder
propeller
rear edge
plate
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002148814A
Other languages
Japanese (ja)
Other versions
JP2003341594A (en
Inventor
史朗 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kurushima Dockyard Co Ltd
Original Assignee
Shin Kurushima Dockyard Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kurushima Dockyard Co Ltd filed Critical Shin Kurushima Dockyard Co Ltd
Priority to JP2002148814A priority Critical patent/JP3623946B2/en
Publication of JP2003341594A publication Critical patent/JP2003341594A/en
Application granted granted Critical
Publication of JP3623946B2 publication Critical patent/JP3623946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、船舶で使用する舵に関する。さらに説明すると、本発明は、流線形状をした前縁部、平板形状の中間部および楔形状で頂部が前側に配置された後縁部を頂板と中間板と底板とで固定してなる抵抗低減構造舵に関する。
【0002】
【従来技術】
従来のこの種の船舶用のシリング舵は、流線形状をした前縁部、平板形状の中間部および楔形状で頂部が前側に配置された後縁部を頂板と底板とで固定してなるものとして提案されている。
図5は上述した従来のシリング舵を説明するための図であり、図5(a)は従来のシリング舵を示す側面図、図5(b)は従来のシリング舵を示す断面図である。図6は、従来のシリング舵の断面形状とプロペラ回転軸の上側プロペラ流によるシリング舵に作用する力関係を説明するための図である。
【0003】
従来のシリング舵101は、図5(a)、図5(b)および図6に示すように、流線形状をした前縁部103、平板形状の中間部105および楔形状で頂部が前側に配置された後縁部107を頂板109と底板111とで舵軸113に固定し、かつ、プロペラ115の後部において前記舵軸113により船舶117の船体119に回動可能に固定されたものである。
このような形状のシリング舵101において、プロペラ115の回転軸の上側では、プロペラ流Lvが図6に示すように図示上側斜めにシリング舵101に供給されている。
【0004】
このようなプロペラ流Lvがシリング舵101に供給されると、図6に示すように流体が流れることになり、揚力Lyが発生するとともに、抗力Rwが発生する。
この揚力Lyは、図に示すように、前記シリング舵101の中心軸CL方向上で前記シリング舵101に前向きに働く推進成分Vsと、中心軸CLの直角成分である横力Ysとに分解される。
【0005】
一方、抗力Rwは、図に示すように、シリング舵101の中心軸CL方向上でシリング舵101に後ろ向きに働く抵抗成分Rrと、中心軸CLの直角成分である横力Yrとに分解される。
前記揚力Lyによる横力Ysと前記抗力Rwによる横力Yrは加算されることになる。
同様に、プロペラ115の回転軸の下側では、図を用いて説明すれば、図示斜め下側からプロペラ流が供給されることになり、上述同様に、推進成分Vsと抵抗成分Rrとが発生し、これらは上記推進成分Vsと抵抗成分Rrとに加算される。
また、プロペラ115の回転軸の下側で発生する横力Ysと横力Yrとは図では上側に発生し、上記プロペラ115の回転軸の上側の横力Ysと横力Yrとで相殺されることになる。
【0006】
【発明が解決しようとする課題】
上述したシリング舵101では、図の符号Aに示すように、中間部105付近の流れの剥離により、通常の舵に比べて推進抵抗が大きくなってしまうという欠点があった。
また、上述したシリング舵101の形状が、中心軸CLに対して対称であったため、プロペラ115の回転流によるエネルギーを十分に回収することができなかった。
本発明は、上述した点に鑑みてなされてもので、揚力を増加させて推進力を増大させてなる抵抗低減構造舵を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明に係る抵抗低減構造舵は、流線形状をした前縁部、平板形状の中間部および楔形状で頂部が前側に配置された後縁部を頂板と底板とで固定してなる船舶用のシリング舵において、プロペラの回転軸上の後部位置に中間板が配置されるようにし、前記頂板と前記中間板との間および前記中間板と前記底板との間に前縁部、中間部、後縁部をそれぞれ配置し、前記頂板と前記中間板との間の中間部および後縁部または後縁部のみを、プロペラの回転軸の上側プロペラ流方向にずらして配置し、前記中間板と前記底板との間の中間部および後縁部または後縁部のみを、プロペラの回転軸の下側プロペラ流方向にずらして配置し、かつ、前記後縁部と前記中間部との間に間隙を設けてなることを特徴とするものである。
請求項の発明では、請求項1に係る抵抗低減構造舵において、前記中間部と前縁部との間に間隙を設けたことを特徴とするものである。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
図1および図2は、本発明の第1の実施の形態を説明するためのものである。ここに、図1は本発明の第1の実施の形態に係る抵抗低減構造舵を示す図であって、図1(a)は本発明の第1の実施の形態に係る抵抗低減構造舵を示す側面図、図1(b)はプロペラ回転軸より上側の抵抗低減構造舵の断面図、図1(c)はプロペラ回転軸より下側の抵抗低減構造舵の断面図である。
【0009】
図2は、本発明の第1の実施の形態に係る抵抗低減構造舵の断面形状とプロペラ回転軸の上側プロペラ流による当該舵に作用する力関係を説明するための図である。
本発明の第1の実施の形態に係る抵抗低減構造舵1は、図1(a)ないし図1(c)および図2に示すように、流線形状をした前縁部3a,3bと、平板形状の中間部5a,5bと、楔形状で頂部が前側に配置された後縁部7a,7bとを、頂板9と中間板11と底板13とで舵軸15に固定し、かつ、プロペラ17の後部において前記舵軸15により船舶19の船体21に回動可能に固定されたものであり、次のように構成されている。
【0010】
さらに説明すると、上記抵抗低減構造舵1は、前記頂板9と前記中間板11との間に前記前縁部3a、前記中間部5aおよび前記後縁部7aを配置しており、かつ、前記中間板11と前記底板13との間に前記前縁部3b、前記中間部5bおよび前記後縁部7bを配置している。
また、前記舵1の中間板11より図示上側において、前記頂板9と前記中間板11との間に配置されている前記後縁部7aは、図1(b)および図2に示すように、前記プロペラ17の回転軸Ccの上側プロペラ流方向にずらして配置されており、前記舵1の中心軸CLに対して図示上側に所定長さずらしてキャンバーが構成されるようにしている。
【0011】
また、前記舵1の中間板11より図示下側において、前記中間板11と前記底板13との間に配置されている前記後縁部7bは、図1(c)に示すように、前記プロペラ17の回転軸Ccの下側プロペラ流方向にずらして配置されており、前記舵1の中心軸CLに対して図示下側に所定長さずらしてキャンバーCBが構成されるようにしている。なお、前記後縁部7a,7bは、そのずらす長さが同じでで、ずらす方向が中心軸CLに対して対称にされている。
上記抵抗低減構造舵1では、前記後縁部7aと中間部5aとの間に図示上から図示左下に向いた斜めの間隙Gを形成させ、前記後縁部7bと中間部5bとの間に図示下から図示左上に斜めの間隙Gを形成させている。
【0012】
上述したような形状の舵1において、プロペラ17の回転軸の上側では、図2に示すように図示右上側から左下側に向かう斜めのプロペラ流Lvが当該舵1に供給されている。
このようなプロペラ流Lvが当該舵1に供給されると、後縁部7aがずれてキャンバーCBが構成されているため、図2に示すように流体が流れることになり、大きな揚力Lyが発生するとともに、抗力Rwが発生する。
この揚力Lyは、図2に示すように、前記舵1の中心軸CL方向上で前記舵1に前向きに働く推進成分Vsと、中心軸CLの直角成分である横力Ysとに分解される。
【0013】
一方、抗力Rwは、図2に示すように、当該舵1の中心軸CL方向上で当該舵1に後ろ向きに働く抵抗成分Rrと、中心軸CLの直角成分である横力Yrとに分解される。
前記揚力Lyによる横力Ysと前記抗力Rwによる横力Yrは加算されることになる。
同様に、プロペラ17の回転軸の下側では、図2を用いて説明すれば、図示右下から左上に向かう斜めのプロペラ流が供給されることになり、上述同様に、推進成分Vsと抵抗成分Rrとが発生し、これらは上記推進成分Vsと抵抗成分Rrとに加算される。
【0014】
また、前記プロペラ17の回転軸の下側で発生する横力Ysと横力Yrとは図2では上側に発生し、上記プロペラ17の回転軸の上側の横力Ysと横力Yrとで相殺されることになる。
また、前記中間板11の上側では、図2に示すように、前記後縁部7aと前記中間部5aとの間に形成された間隙Gを通して図示上側から図示下側に流れが生じ、図示下側の前縁部3aと中間部5aと継ぎ目当たりの背面に発生する剥離を抑制することができる。
【0015】
同様に、前記中間板11の下側では、図示しないが、前記後縁部7bと前記中間部5bとの間に形成された間隙Gを通して図示下側から図示上側に流れが生じ、前縁部3bと中間部5bと継ぎ目当たりの背面(上記背面の反対側)に発生する剥離を抑制することができる。
このように本発明の第1の実施の形態に係る抵抗低減構造舵1によれば、中間板11の上下における後縁部7a,7bを中心軸CLに対称にずらして(キャンバーを形成している)、かつ、後縁部7a,7bと中間部5a,5bとの間に間隙Gを形成しているので、背面における剥離を抑制することができ、かつ、揚力が増加し、かつ、推進力が増大する。
【0016】
[第2の実施の形態]
図3および図4は、本発明の第2の実施の形態を説明するためのものである。ここに、図3は本発明の第2の実施の形態に係る抵抗低減構造舵を示す図であって、図3(a)は本発明の第2の実施の形態に係る抵抗低減構造舵を示す側面図、図3(b)はプロペラ回転軸より上側の抵抗低減構造舵を示す断面図、図3(c)はプロペラ回転軸より下側の抵抗低減構造舵を示す断面図である。
【0017】
図4は、本発明の第2の実施の形態に係る抵抗低減構造舵の断面形状とプロペラ回転軸の上側プロペラ流による当該舵に作用する力関係を説明するための図である。
これらの図において、本発明の第2の実施の形態に係る抵抗低減構造舵1Aが、上記第1の実施の形態と異なるところは、中間部5a,5bおよび後縁部7a,7bを中心軸CLから対称にずらした点にあり、他の構成は第1の実施の形態と同じであるので、同一符号を付して特徴部分のみ説明する。
【0018】
前記舵1の中間板11より図示上側において、前記頂板9と前記中間板11との間に配置されている前記中間部5aおよび前記後縁部7aを、図3(b)および図2に示すように、前記プロペラ17の回転軸Ccの上側プロペラ流方向にずらして配置されており、前記舵1の中心軸CLに対して図示上側に所定長さずらしてキャンバーCBが構成されるようにしている。
【0019】
また、前記舵1の中間板11より図示下側において、前記中間板11と前記底板13との間に配置されている前記中間部5bおよび前記後縁部7bを、図3(c)に示すように、前記プロペラ17の回転軸Ccの下側プロペラ流方向にずらして配置されており、前記舵1の中心軸CLに対して図示下側に所定長さずらしてキャンバーCBが構成されるようにしている。なお、前記中間部5aおよび後縁部7aと、前記中間部5bおよび後縁部7bとは、そのずらす長さが同じでで、ずらす方向が中心軸CLに対して対称にされている。
上記抵抗低減構造舵1Aでは、前記前縁部3aと中間部5aとの間に図示上から図示左下に向いた斜めの間隙Gを形成させ、前記前縁部3bと中間部5bとの間に図示下から図示左上に斜めの間隙Gを形成させている。
【0020】
上述したような形状の舵1Aにおいて、プロペラ17の回転軸の上側では、図4に示すように図示右上側から左下側に向かう斜めのプロペラ流Lvが当該舵1に供給されている。
本発明の第2の実施の形態に係る抵抗低減構造舵1によっても、上記第1の実施の形態と同様の作用効果を奏する。
また、本発明の第2の実施の形態に係る抵抗低減構造舵1では、剥離が発生する部分に直接流れを供給するため、剥離の抑制効果が高いものとなる。
【0021】
【発明の効果】
以上説明したように本発明によれば、中間板の上下における後縁部を中心軸に対称にずらして、かつ、後縁部と中間部との間あるいは前縁部と中間部との間に間隙を形成しているので、背面における剥離を抑制することができ、かつ、揚力が増加し、かつ、推進力が増大するという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る抵抗低減構造舵を示す図であって、図1(a)は本発明の第1の実施の形態に係る抵抗低減構造舵を示す側面図、図1(b)はプロペラ回転軸より上側の抵抗低減構造舵の断面図、図1(c)はプロペラ回転軸より下側の抵抗低減構造舵の断面図である。
【図2】本発明の第1の実施の形態に係る抵抗低減構造舵の断面形状とプロペラ回転軸の上側プロペラ流による当該舵に作用する力関係を説明するための図である。
【図3】本発明の第2の実施の形態に係る抵抗低減構造舵を示す図であって、図3(a)は本発明の第2の実施の形態に係る抵抗低減構造舵を示す側面図、図3(b)はプロペラ回転軸より上側の抵抗低減構造舵を示す断面図、図3(c)はプロペラ回転軸より下側の抵抗低減構造舵を示す断面図である。
【図4】本発明の第2の実施の形態に係る抵抗低減構造舵の断面形状とプロペラ回転軸の上側プロペラ流による当該舵に作用する力関係を説明するための図である。
【図5】従来のシリング舵を説明するための図であり、図5(a)は従来のシリング舵を示す側面図、図5(b)は従来のシリング舵を示す断面図である。
【図6】従来のシリング舵の断面形状とプロペラ回転軸の上側プロペラ流によるシリング舵に作用する力関係を説明するための図である。
【符号の説明】
1,1A 抵抗低減構造舵
3a,3b 前縁部
5a,5b 中間部
7a,7b 後縁部
9 頂板
11 中間板
13 底板
15 舵軸
17 プロペラ
19 船舶
21 船体
CB キャンバー
CL 中心軸
Cc 回転軸
Lv プロペラ流
Ly 揚力
Ys,Yr 横力
Rw 抗力
Vs 推進成分
Rr 抵抗成分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rudder used in a ship. More specifically, the present invention relates to a resistance formed by fixing a streamline-shaped front edge, a flat plate-shaped intermediate portion, and a wedge-shaped rear edge having a top portion disposed on the front side by a top plate, an intermediate plate, and a bottom plate. Reducing structural rudder.
[0002]
[Prior art]
A conventional shilling rudder for a ship of this type is formed by fixing a streamline-shaped front edge, a flat plate-shaped intermediate portion, and a wedge-shaped rear edge having a top portion disposed on the front side by a top plate and a bottom plate. It has been proposed as a thing.
FIG. 5 is a view for explaining the above-described conventional shilling rudder, FIG. 5 (a) is a side view showing a conventional shilling rudder, and FIG. 5 (b) is a cross-sectional view showing the conventional shilling rudder. FIG. 6 is a diagram for explaining the relationship between the cross-sectional shape of a conventional shilling rudder and the force acting on the shilling rudder due to the upper propeller flow on the propeller rotation shaft.
[0003]
As shown in FIGS. 5 (a), 5 (b) and 6, the conventional shilling rudder 101 has a streamlined front edge portion 103, a flat plate-shaped intermediate portion 105, and a wedge shape with a top portion on the front side. The rear edge 107 arranged is fixed to the rudder shaft 113 by the top plate 109 and the bottom plate 111, and is fixed to the hull 119 of the ship 117 by the rudder shaft 113 at the rear part of the propeller 115 so as to be rotatable. .
In the shilling rudder 101 having such a shape, on the upper side of the rotation shaft of the propeller 115, the propeller flow Lv is supplied to the shilling rudder 101 obliquely on the upper side in the drawing as shown in FIG.
[0004]
When such a propeller flow Lv is supplied to the shilling rudder 101, a fluid flows as shown in FIG. 6, and a lift Ly is generated and a drag Rw is generated.
As shown in FIG. 6 , the lift Ly is decomposed into a propulsion component Vs that works forward on the shilling rudder 101 in the direction of the central axis CL of the shilling rudder 101 and a lateral force Ys that is a right-angle component of the central axis CL. Is done.
[0005]
On the other hand, drag Rw, as shown in FIG. 6, is decomposed and the resistance component Rr acting backwards Schilling rudder 101 with the center axis CL direction on Schilling rudder 101 and to the lateral force Yr which is perpendicular component of the central axis CL The
The lateral force Ys caused by the lift force Ly and the lateral force Yr caused by the drag force Rw are added.
Similarly, if it demonstrates using FIG. 6 below the rotating shaft of the propeller 115, a propeller flow will be supplied from the diagonally lower side of illustration, and the propulsion component Vs and the resistance component Rr are the same as mentioned above. These are generated and added to the propulsion component Vs and the resistance component Rr.
Further, the lateral force Ys and the lateral force Yr generated on the lower side of the rotating shaft of the propeller 115 are generated on the upper side in FIG. 6 , and are offset by the lateral force Ys and the lateral force Yr on the upper side of the rotating shaft of the propeller 115. Will be.
[0006]
[Problems to be solved by the invention]
In Schilling rudder 101 described above, as shown in reference numeral A in FIG. 6, the flow separation in the vicinity of the intermediate portion 105, has a drawback that promote resistance than conventional rudder is increased.
Further, since the shape of the above-described shilling rudder 101 is symmetric with respect to the central axis CL, the energy due to the rotational flow of the propeller 115 cannot be sufficiently recovered.
The present invention has been made in view of the above-described points, and an object thereof is to provide a resistance-reducing structure rudder in which lift is increased and propulsion is increased.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a resistance-reducing structure rudder according to the invention of claim 1 includes a streamlined front edge, a flat plate-shaped intermediate portion, and a wedge-shaped rear edge with a top portion disposed on the front side. In a shilling rudder for a ship that is fixed by a top plate and a bottom plate, an intermediate plate is disposed at a rear position on a rotation shaft of a propeller, and between the top plate and the intermediate plate and between the intermediate plate and the bottom plate. A front edge portion, an intermediate portion, and a rear edge portion between the top plate and the intermediate plate, and only an intermediate portion and a rear edge portion or a rear edge portion between the top plate and the intermediate plate are arranged on the upper propeller flow axis of the propeller. The intermediate plate and the rear edge or only the rear edge between the intermediate plate and the bottom plate are shifted in the lower propeller flow direction of the rotation shaft of the propeller , and the rear characterized by comprising providing a gap between the edge and the intermediate portion Than it is.
According to a second aspect of the present invention, in the resistance reduction structure rudder according to the first aspect, a gap is provided between the intermediate portion and the front edge portion.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 and FIG. 2 are for explaining the first embodiment of the present invention. FIG. 1 is a view showing a resistance reduction structure rudder according to the first embodiment of the present invention. FIG. 1 (a) shows the resistance reduction structure rudder according to the first embodiment of the present invention. FIG. 1B is a cross-sectional view of the resistance-reducing structure rudder above the propeller rotation shaft, and FIG. 1C is a cross-sectional view of the resistance-reduction structure rudder below the propeller rotation shaft.
[0009]
FIG. 2 is a diagram for explaining a force relationship acting on the rudder due to the cross-sectional shape of the resistance-reducing structure rudder according to the first embodiment of the present invention and the upper propeller flow of the propeller rotation shaft.
The resistance reduction structure rudder 1 according to the first embodiment of the present invention includes, as shown in FIGS. 1 (a) to 1 (c) and 2, streamlined front edge portions 3a and 3b, The flat plate-shaped intermediate portions 5a and 5b and the wedge-shaped rear edge portions 7a and 7b whose top portions are disposed on the front side are fixed to the rudder shaft 15 by the top plate 9, the intermediate plate 11, and the bottom plate 13, and the propeller 17 is fixed to the hull 21 of the boat 19 by the rudder shaft 15 so as to be rotatable, and is configured as follows.
[0010]
More specifically, the resistance-reducing structure rudder 1 has the front edge portion 3a, the intermediate portion 5a, and the rear edge portion 7a disposed between the top plate 9 and the intermediate plate 11, and the intermediate plate The front edge portion 3b, the intermediate portion 5b, and the rear edge portion 7b are arranged between the plate 11 and the bottom plate 13.
In addition, the rear edge portion 7a disposed between the top plate 9 and the intermediate plate 11 on the upper side of the intermediate plate 11 of the rudder 1 as shown in FIG. 1 (b) and FIG. The camber is configured to be shifted in the upper propeller flow direction of the rotation axis Cc of the propeller 17 and shifted by a predetermined length above the center axis CL of the rudder 1 in the figure.
[0011]
In addition, the rear edge portion 7b disposed between the intermediate plate 11 and the bottom plate 13 on the lower side of the intermediate plate 11 of the rudder 1 as shown in FIG. The camber CB is configured so as to be shifted by a predetermined length downward in the figure with respect to the central axis CL of the rudder 1. The trailing edge portions 7a and 7b have the same shifting length, and the shifting direction is symmetric with respect to the central axis CL.
In the resistance-reducing structure rudder 1, an oblique gap G is formed between the rear edge portion 7a and the intermediate portion 5a from the upper side to the lower left side in the drawing, and the rear edge portion 7b and the intermediate portion 5b are formed. An oblique gap G is formed from the bottom of the figure to the top left of the figure.
[0012]
In the rudder 1 having the shape described above, an oblique propeller flow Lv from the upper right side to the lower left side in the drawing is supplied to the rudder 1 on the upper side of the rotation shaft of the propeller 17 as shown in FIG.
When such a propeller flow Lv is supplied to the rudder 1, the trailing edge 7a is displaced and the camber CB is formed, so that fluid flows as shown in FIG. 2, and a large lift Ly is generated. In addition, drag Rw is generated.
As shown in FIG. 2, the lift Ly is decomposed into a propulsion component Vs that works forward on the rudder 1 in the direction of the central axis CL of the rudder 1 and a lateral force Ys that is a right-angle component of the central axis CL. .
[0013]
On the other hand, the drag Rw is decomposed into a resistance component Rr acting backward on the rudder 1 in the direction of the central axis CL of the rudder 1 and a lateral force Yr that is a right-angle component of the central axis CL, as shown in FIG. The
The lateral force Ys caused by the lift force Ly and the lateral force Yr caused by the drag force Rw are added.
Similarly, on the lower side of the rotating shaft of the propeller 17, if described with reference to FIG. 2, an oblique propeller flow from the lower right side to the upper left side of the drawing is supplied. A component Rr is generated and added to the propulsion component Vs and the resistance component Rr.
[0014]
Further, the lateral force Ys and the lateral force Yr generated on the lower side of the rotating shaft of the propeller 17 are generated on the upper side in FIG. 2, and are offset by the lateral force Ys and the lateral force Yr on the rotating shaft of the propeller 17. Will be.
In addition, on the upper side of the intermediate plate 11, as shown in FIG. 2, a flow is generated from the upper side to the lower side through the gap G formed between the rear edge portion 7a and the intermediate portion 5a. The peeling which generate | occur | produces on the front edge part 3a of the side, the intermediate part 5a, and the back surface per seam can be suppressed.
[0015]
Similarly, on the lower side of the intermediate plate 11, although not shown, a flow is generated from the lower side of the drawing to the upper side of the drawing through a gap G formed between the rear edge portion 7b and the intermediate portion 5b. It is possible to suppress the peeling that occurs on the back surface (opposite the back surface) per 3b, the intermediate portion 5b, and the joint.
Thus, according to the resistance reduction structure rudder 1 according to the first embodiment of the present invention, the rear edge portions 7a and 7b on the upper and lower sides of the intermediate plate 11 are shifted symmetrically with respect to the central axis CL (by forming a camber). And the gap G is formed between the rear edge portions 7a and 7b and the intermediate portions 5a and 5b, so that peeling on the back surface can be suppressed, lift is increased, and propulsion is performed. Power increases.
[0016]
[Second Embodiment]
FIG. 3 and FIG. 4 are for explaining the second embodiment of the present invention. FIG. 3 is a view showing a resistance reduction structure rudder according to the second embodiment of the present invention, and FIG. 3 (a) shows the resistance reduction structure rudder according to the second embodiment of the present invention. FIG. 3B is a cross-sectional view showing the resistance-reducing structure rudder above the propeller rotation shaft, and FIG. 3C is a cross-sectional view showing the resistance-reduction structure rudder below the propeller rotation shaft.
[0017]
FIG. 4 is a diagram for explaining the relationship between the cross-sectional shape of the resistance reduction structure rudder according to the second embodiment of the present invention and the force acting on the rudder due to the upper propeller flow of the propeller rotation shaft.
In these drawings, the resistance reduction structure rudder 1A according to the second embodiment of the present invention differs from the first embodiment in that the intermediate portions 5a and 5b and the rear edge portions 7a and 7b are centered. Since other configurations are the same as those in the first embodiment, the same reference numerals are given and only the characteristic portions will be described.
[0018]
The intermediate portion 5a and the rear edge portion 7a arranged between the top plate 9 and the intermediate plate 11 on the upper side of the intermediate plate 11 of the rudder 1 are shown in FIG. 3 (b) and FIG. As described above, the camber CB is configured so as to be shifted in the upper propeller flow direction of the rotation axis Cc of the propeller 17 and shifted by a predetermined length to the upper side in the drawing with respect to the central axis CL of the rudder 1. Yes.
[0019]
Further, the intermediate portion 5b and the rear edge portion 7b disposed between the intermediate plate 11 and the bottom plate 13 below the intermediate plate 11 of the rudder 1 are shown in FIG. As described above, the camber CB is configured to be shifted in the lower propeller flow direction of the rotation axis Cc of the propeller 17 and shifted by a predetermined length to the lower side of the figure with respect to the central axis CL of the rudder 1. I have to. The intermediate portion 5a and the rear edge portion 7a, and the intermediate portion 5b and the rear edge portion 7b have the same shifting length, and the shifting direction is symmetric with respect to the central axis CL.
In the resistance reduction structure rudder 1A, an oblique gap G is formed between the front edge portion 3a and the intermediate portion 5a from the upper side to the lower left side in the drawing, and between the front edge portion 3b and the intermediate portion 5b. An oblique gap G is formed from the bottom of the figure to the top left of the figure.
[0020]
In the rudder 1A having the shape as described above, on the upper side of the rotation shaft of the propeller 17, an oblique propeller flow Lv from the upper right side to the lower left side in the drawing is supplied to the rudder 1 as shown in FIG.
The resistance reduction structure rudder 1 according to the second embodiment of the present invention also provides the same operational effects as those of the first embodiment.
Moreover, in the resistance reduction structure rudder 1 which concerns on the 2nd Embodiment of this invention, since a flow is directly supplied to the part which peeling generate | occur | produces, the suppression effect of peeling becomes high.
[0021]
【The invention's effect】
As described above, according to the present invention, the rear edge portions at the top and bottom of the intermediate plate are shifted symmetrically with respect to the central axis, and between the rear edge portion and the intermediate portion or between the front edge portion and the intermediate portion. Since the gap is formed, it is possible to suppress peeling on the back surface, increase the lift force, and increase the driving force.
[Brief description of the drawings]
FIG. 1 is a view showing a resistance-reducing structure rudder according to a first embodiment of the present invention, and FIG. 1 (a) is a side view showing the resistance-reducing structure rudder according to the first embodiment of the present invention; FIG. 1B is a cross-sectional view of the resistance-reducing structure rudder above the propeller rotation axis, and FIG. 1C is a cross-sectional view of the resistance-reduction structure rudder below the propeller rotation axis.
FIG. 2 is a diagram for explaining the relationship between the cross-sectional shape of the resistance-reducing structure rudder according to the first embodiment of the present invention and the force acting on the rudder due to the upper propeller flow of the propeller rotation shaft.
FIG. 3 is a view showing a resistance-reducing structure rudder according to a second embodiment of the present invention, and FIG. 3 (a) is a side view showing a resistance-reducing structure rudder according to a second embodiment of the present invention. FIG. 3B is a cross-sectional view showing the resistance-reducing structure rudder above the propeller rotation shaft, and FIG. 3C is a cross-sectional view showing the resistance-reduction structure rudder below the propeller rotation shaft.
FIG. 4 is a diagram for explaining the relationship between the cross-sectional shape of the resistance-reducing structure rudder according to the second embodiment of the present invention and the force acting on the rudder due to the upper propeller flow of the propeller rotation shaft.
5A and 5B are diagrams for explaining a conventional shilling rudder, in which FIG. 5A is a side view showing a conventional shilling rudder, and FIG. 5B is a cross-sectional view showing a conventional shilling rudder.
FIG. 6 is a diagram for explaining the relationship between the cross-sectional shape of a conventional shilling rudder and the force acting on the shilling rudder due to the upper propeller flow on the propeller rotation shaft.
[Explanation of symbols]
1,1A Resistance reduction structure rudder 3a, 3b Front edge part 5a, 5b Middle part 7a, 7b Rear edge part 9 Top plate 11 Intermediate plate 13 Bottom plate 15 Rudder shaft 17 Propeller 19 Ship 21 Ship body CB Camber CL Center shaft Cc Rotating shaft Lv Propeller Flow Ly Lift Ys, Yr Lateral force Rw Drag Vs Propulsion component Rr Resistance component

Claims (2)

流線形状をした前縁部、平板形状の中間部および楔形状で頂部が前側に配置された後縁部を頂板と底板とで固定してなる船舶用のシリング舵において、
プロペラの回転軸上の後部位置に中間板が配置されるようにし、前記頂板と前記中間板との間および前記中間板と前記底板との間に前縁部、中間部、後縁部をそれぞれ配置し、
前記頂板と前記中間板との間の中間部および後縁部または後縁部のみを、プロペラの回転軸の上側プロペラ流方向にずらして配置し、
前記中間板と前記底板との間の中間部および後縁部または後縁部のみを、プロペラの回転軸の下側プロペラ流方向にずらして配置し、かつ、前記後縁部と前記中間部との間に間隙を設けてなることを特徴とする抵抗低減構造舵。
In a ship shilling rudder in which a streamlined front edge part, a flat plate-shaped intermediate part, and a wedge-shaped rear edge part arranged at the front side are fixed by a top plate and a bottom plate,
An intermediate plate is disposed at a rear position on the rotation shaft of the propeller, and a front edge portion, an intermediate portion, and a rear edge portion are provided between the top plate and the intermediate plate and between the intermediate plate and the bottom plate, respectively. Place and
Only the intermediate part and the rear edge part or the rear edge part between the top plate and the intermediate plate are shifted in the upper propeller flow direction of the rotation axis of the propeller,
Only the intermediate portion and the rear edge portion or the rear edge portion between the intermediate plate and the bottom plate are shifted in the lower propeller flow direction of the rotation shaft of the propeller , and the rear edge portion and the intermediate portion A resistance-reducing structure rudder characterized by providing a gap between them .
前記中間部と前縁部との間に間隙を設けたことを特徴とする請求項1記載の抵抗低減構造舵。The resistance reduction structure rudder according to claim 1, wherein a gap is provided between the intermediate portion and the front edge portion.
JP2002148814A 2002-05-23 2002-05-23 Resistance reduction structure rudder Expired - Fee Related JP3623946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148814A JP3623946B2 (en) 2002-05-23 2002-05-23 Resistance reduction structure rudder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002148814A JP3623946B2 (en) 2002-05-23 2002-05-23 Resistance reduction structure rudder

Publications (2)

Publication Number Publication Date
JP2003341594A JP2003341594A (en) 2003-12-03
JP3623946B2 true JP3623946B2 (en) 2005-02-23

Family

ID=29767216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148814A Expired - Fee Related JP3623946B2 (en) 2002-05-23 2002-05-23 Resistance reduction structure rudder

Country Status (1)

Country Link
JP (1) JP3623946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431350A (en) * 2014-01-06 2016-03-23 日本汉武西株式会社 Ship rudder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867385B (en) * 2016-09-28 2020-07-21 日本日联海洋株式会社 Reaction rudder
CN107585283A (en) * 2017-08-30 2018-01-16 中国船舶科学研究中心上海分部 A kind of Fishtail rudder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431350A (en) * 2014-01-06 2016-03-23 日本汉武西株式会社 Ship rudder
CN105431350B (en) * 2014-01-06 2017-06-23 日本汉武西株式会社 Ship rudder

Also Published As

Publication number Publication date
JP2003341594A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4789953B2 (en) Ship propulsion system
JP2011240793A (en) High lift rudder for ship
JP3623946B2 (en) Resistance reduction structure rudder
WO2021014919A1 (en) Stern fin
JPH11180379A (en) Stern backwash reducing device
JPH0526798U (en) Rudder for ships
JP2888759B2 (en) Marina type shilling rudder
JP3449981B2 (en) High lift rudder for ships
JP4116009B2 (en) Split stern fin structure
JP2002274490A (en) High lift rudder for ship
JP2005246996A (en) Ship rudder, and ship
JP3322499B2 (en) Hull drag reduction fin
JP6493691B2 (en) Ship
KR101886920B1 (en) Rudder for ship
JPH0649516Y2 (en) Rudder for ships
JP4008731B2 (en) High lift rudder
JP2533737Y2 (en) Ship propulsion
JP2002293294A (en) High-lift twin rudder system for marine vessel
JP4408377B2 (en) Icebreaker
JPH05116687A (en) Skeg for ship rudder
JP2554773B2 (en) Rudder
JPH0640395A (en) Rudder of ship
JPH0441032Y2 (en)
JP4703244B2 (en) Marine 1-axis 2-rudder system and 1-axis 2-rudder ship
JP3477568B2 (en) Bilge vortex energy recovery system for ships

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees