JP3623554B2 - Pneumatic radial tire - Google Patents

Pneumatic radial tire Download PDF

Info

Publication number
JP3623554B2
JP3623554B2 JP21928095A JP21928095A JP3623554B2 JP 3623554 B2 JP3623554 B2 JP 3623554B2 JP 21928095 A JP21928095 A JP 21928095A JP 21928095 A JP21928095 A JP 21928095A JP 3623554 B2 JP3623554 B2 JP 3623554B2
Authority
JP
Japan
Prior art keywords
tire
belt
tread
pair
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21928095A
Other languages
Japanese (ja)
Other versions
JPH0958213A (en
Inventor
浩幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP21928095A priority Critical patent/JP3623554B2/en
Publication of JPH0958213A publication Critical patent/JPH0958213A/en
Application granted granted Critical
Publication of JP3623554B2 publication Critical patent/JP3623554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、傾斜部分を有する路面、例えば等の凹凸を有する路面を走行する際に発生する運転者が予測できない車両の複雑な動き、いわゆるワンダリングを抑制して直進安定性を向上させた空気入りラジアルタイヤであって、特に軽トラック用タイヤ及び小型トラック用タイヤ、トラック及びバス用タイヤに関するものである。
【0002】
【従来の技術】
近年、乗用車のみならず、軽トラック、小型トラック、トラック及びバス等の車両においてもカーカスのコードをタイヤ赤道面に対して実質直交する向きに配列したいわゆるラジアルタイヤが、バイアスタイヤに比べて耐摩耗性及び操縦安定性に優れることから多用されてきている。
【0003】
【発明が解決しようとする課題】
車両の高速化に伴って、ラジアルタイヤの採用も増加してきたのであるが、道路網の整備拡充により車両の高速走行が日常的に行われるようになると、前記のワンダリング問題の発生頻度が増してきた。このワンダリングは車両の直進安定性を損なう危険な現象であるため、タイヤの高性能化が進む中で大きな問題となってきている。
【0004】
そこでこの発明の目的は、ワンダリングを抑制して、轍等の傾斜路面上での直進安定性を向上させた空気入りラジアルタイヤを提案することにある。
【0005】
【課題を解決するための手段】
この発明は、1対のビードコア間にトロイド状をなして跨がるカーカスのクラウン部外周にベルトとトレッドを順次配置し、前記ベルトが少なくとも2枚のベルト層の積層配置になり、最内層のベルト層が、カーカスの形状に比べてトレッド中央部分でタイヤ径方向外側に凸の幅方向断面形状を有し、タイヤ赤道面に最も近く位置して実質的にタイヤ周方向に延びる1対の溝の溝深さhcに比して、接地端に最も近く位置して実質的にタイヤ周方向に延びる1対の溝の溝深さhsが大となることを特徴とする空気入りラジアルタイヤである。
【0006】
タイヤが轍の凹凸等の傾斜路面を乗り上げる向きに進入角をもって横断しようとするとき、図4に示すように、タイヤには路面からの反力FR と傾斜路面との間に発生するキャンバースラストFC による横力Fy が働く。 ここでタイヤをラジアル化するとタイヤの剛性が高くなって、バイアスタイヤと比較して前記反力FR が大きく、キャンバースラストFC が小さいため、横力Fy が大となり、このためスムーズな轍乗越しができず、ワンダリングが発生することが判明した。したがって、ラジアルタイヤにおけるワンダリングを抑制するには、キャンバースラストFC を増すことにより横力Fy を減ずることが有効である。
【0007】
上記キャンバースラストFC は、タイヤが傾斜路面に接地して撓み変形した時のトレッドのタイヤ断面内曲げ変形により発生する。すなわち、図5に示すように、トレッド接地端部近傍のトレッド曲げ変形bS により発生する横力FCSの影響が大であると考えることができる。そこで、キャンバースラストFC を増すには、前記横力FCSを増せばよい。
【0008】
この発明によれば、最内層のベルト層が、タイヤ径方向外側に凸の幅方向断面形状を有するため、接地に伴い平坦になろうとするトレッドの曲げ変形bsが大きくなり、この結果、トレッド接地端部近傍で発生する横力Fcsを増すことができるのである。
【0009】
また、タイヤ赤道面に最も近く位置して実質的にタイヤ周方向に延びる1対の溝の溝深さhcに比して、接地端に最も近く位置して実質的にタイヤ周方向に延びる1対の溝の溝深さhsが大とすることにより、タイヤ製造時の加硫成型時に接地端部近傍のベルトがタイヤ成型用金型の赤道面近傍より深い接地端部近傍の溝により、押し下げられるために上記凸形状をより強めることになる。
【0010】
そして、最内層のベルト層の半径方向内側で、タイヤ赤道面を含む位置にゴム層を介在配置することが好ましく、上記ゴム層の端部と対応するトレッド位置に、タイヤ赤道面に最も近く位置して、実質的にタイヤ周方向に延びる1対の溝を配置することにより、トレッドの曲げ変形bsがより大きくなり、トレッド接地端部近傍で発生する横力Fcsを一層増すことができる。
また、加硫成型時において、上記溝により上記ゴム層の幅方向外周への流出を防止することができ、上記凸形状を一層強めることになる。
【0011】
加えて、ベルト端部近傍に、最広幅ベルトの溝の0.1〜0.3倍の幅を有する少なくとも1枚の補強層を配置することにより、内圧充填時の前記凸形状を一層強め、かつ該部のベルト剛性を大きくすることができるので、前期トレッドの曲げ変形bSを著しく高めることが可能となる。
ここで最広幅ベルトの幅の0.1〜0.3倍の幅としたのは、0.1倍より小さいと前記凸形状を充分強められないし、0.3倍より大きいと曲げ変形bs向上するものの前記凸形状を強められず、いずれも該補強層を配置したことによる充分な改良効果が得られないためである。
なお、前記補強層は、ベルトの半径方向外側、ベルト内、又はベルトの半径方向内側のいずれの位置に配置しても曲げ変形bsの向上は期待できるが、前記凸形状を一層強めるためには、ベルトの半径方向外側に配置することが好ましい。
【0012】
【発明の実施の形態】
図1に示す構造に従がう、サイズ195/85R16 114/112LTの小型トラック用空気入りラジアルタイヤ1を、溝の配置を変更して、表1の仕様のもとのに試作した。尚、図1において、カーカス2はポリエステルコードを多数本ラジアル方向に配列したゴム被覆プライを3枚積層して構成され、該カーカス2の外周にベルト3とトレッド4が配置されている。該ベルト3は3枚のスチールベルトから構成されて、カーカスに隣接するとともにコードのタイヤ赤道面に対する傾斜角度が比較的大きいベルト3-1(以下、第1ベルトともいう)、該ベルト3-1の外周に配置されコードのタイヤ赤道面に対する傾斜角度が比較的小さいベルト3-2(以下、第2ベルトともいう)、3-3(以下、第3ベルトともいう)の2枚が該コードがタイヤ赤道面を挟んで交差するよう積層されてなる。
【0013】
【実施例】
ここでは以下に実施例を示す。
第1ベルトはコード傾斜角度が52°で幅が120mm、第2ベルトはコード傾斜角度が24°で幅が135mm、第3ベルトはコード傾斜角度が24°で幅が120mmであって、これら3枚のベルトのうち、最広幅ベルトは第2ベルトであり、この幅をBWとする。
尚、トレッドには実質的にタイヤ周方向に連続して延びる溝5が4本配置されている。またビードコア近傍は図示を省略した。
【0014】
・実施例1
カーカス2と第1ベルト3-1との間で、タイヤ赤道面Mを含む位置にゴム層6を配置することにより、ベルトが、トレッド中央部でタイヤ径方向外側に凸の幅方向断面形状を有する。ここで、試作したタイヤではゴム層6の幅中心がタイヤ赤道面Mに実質上一致するよう配置された。また、ゴム層の幅は50mmで0.37×BWに相当し、また厚みは3mmであった。
また、ゴム層6の断面形状が略長方形であったので、第2及び第3ベルトは段差をもってタイヤ径方向外側に凸の幅方向断面形状をなしている。
しかし、これに限らず、例えばゴム層6の断面形状を凸レンズ断面状にしてもよい。凸レンズ断面形状のときには、特に空車時やキャンパー角が小さい場合にワンダリング抑制効果を期待できる。
ここで、周方向溝深さは、タイヤ赤道面に最も近く位置する1対の溝で9.5mm、接地端に最も近く位置する1対の溝で12mmとした。
また、図1の場合には、タイヤ赤道面に最も近く位置する溝5-1が、タイヤ赤道面から16mmの距離に位置して、上記ゴム層6の端部と対応するトレッド位置に配置されている例が示されているが、このような配置であるほうがワンダリング抑制効果が大きい。
【0015】
・実施例2
実施例2は、タイヤ赤道面に最も近く位置する1対の溝5-1が、タイヤ赤道面から25mmの距離に位置している以外は、実施例1とほぼ同一のものである。
【0016】
・実施例3
実施例3は、図2のように、ベルト端部近傍ベルトの半径方向外側に、最広幅ベルトの幅の0.15倍の20mmの幅を有するナイロン補強層7を2層配置した以外は、実施例2とほぼ同一のものである。
【0017】
・従来例
従来例として、図3に示す構造に従う、上記サイズのタイヤを作成した。
実施例1との相違点は、周方向溝深さがタイヤ赤道面側の1対および、接地端側の1対でともに、10.5mmとし、また、ゴム層6がないことにより、ベルトがカーカス2の形状に比べてトレッド中央部分でタイヤ径方向外側に凸の幅方向断面形状をなしていないことである。
【0018】
これらのタイヤに規定内圧6.0kgf/cm2を充填後、2トン積みの小型トラック(後輪が複輪タイプ)に装着し、該小型トラックに規定最大荷重を負荷した状態で轍を含む舗装路をテストドライバーが走行し、直進安定性を官能評価した。その結果を、従来例を100とする指数評価(指数は大きいほど良好)にて、表1に併記している。同表からこの発明に従うタイヤの直進安定性が顕著に向上したことが明らかである。
【0019】
【表1】

Figure 0003623554
【0020】
すなわち、この発明によれば、空気入りラジアルタイヤのワンダリングを抑制して轍路等の傾斜路面上での直進安定性を向上させることができる。
【図面の簡単な説明】
【図1】この発明に従う空気入りラジアルタイヤのタイヤ幅方向断面図である。
【図2】この発明に従う補強層を配置した空気入りラジアルタイヤのタイヤ幅方向断面図である。
【図3】従来例のタイヤ幅方向断面図である。
【図4】タイヤが傾斜路面と接地した状態を示す模式図である。
【図5】タイヤが傾斜路面と接地した状態における変形及び横力を示す模式図である。
【符号の説明】
1 空気入りラジアルタイヤ
2 カーカス
3 ベルト
4 トレッド
5 溝
6 ゴム層
7 補強層
M タイヤ赤道面[0001]
BACKGROUND OF THE INVENTION
The present invention, road surface having a ramp portion and for example complex movements of the vehicle driver can not be predicted to occur when traveling on a road surface having irregularities such as rutting, improve straight running stability by suppressing a so-called wandering This is a pneumatic radial tire, and particularly relates to light truck tires and light truck tires, truck and bus tires.
[0002]
[Prior art]
In recent years, so-called radial tires in which carcass cords are arranged in a direction substantially perpendicular to the tire equator plane, not only in passenger cars but also in light trucks, light trucks, trucks, buses, and other vehicles, are more resistant to wear than bias tires. Has been widely used because of its excellent performance and steering stability.
[0003]
[Problems to be solved by the invention]
The use of radial tires has increased along with the increase in vehicle speed, but the frequency of occurrence of the wandering problem has increased when vehicles have been running at high speed on a daily basis due to the development and expansion of the road network. I came. This wandering is a dangerous phenomenon that impairs the straight running stability of the vehicle, and has become a major problem as the performance of tires increases.
[0004]
Accordingly, an object of the present invention is to propose a pneumatic radial tire that suppresses wandering and improves straight running stability on an inclined road surface such as a saddle.
[0005]
[Means for Solving the Problems]
In the present invention, a belt and a tread are sequentially arranged on the outer periphery of a crown portion of a carcass straddling a toroidal shape between a pair of bead cores, and the belt has a laminated arrangement of at least two belt layers. The belt layer has a widthwise cross-sectional shape that protrudes outward in the tire radial direction at the center portion of the tread as compared with the carcass shape, and is a pair of grooves that are located closest to the tire equatorial plane and extend substantially in the tire circumferential direction. Compared to the groove depth hc, the pneumatic radial tire is characterized in that the groove depth hs of the pair of grooves located closest to the ground contact end and extending substantially in the tire circumferential direction is larger. .
[0006]
As shown in FIG. 4, when a tire tries to cross an inclined road surface such as an uneven surface of a kite with an approach angle, the tire has a camber thrust FC generated between the reaction force FR from the road surface and the inclined road surface. The lateral force Fy due to works. Here, when the tire is made radial, the rigidity of the tire becomes higher, and the reaction force FR is larger and the camber thrust FC is smaller than that of the bias tire. It was not possible and wandering was found to occur. Therefore, in order to suppress wandering in the radial tire, it is effective to reduce the lateral force Fy by increasing the camber thrust FC.
[0007]
The camber thrust FC is generated by bending deformation in the tire cross section of the tread when the tire contacts the inclined road surface and is deformed by bending. That is, as shown in FIG. 5, it can be considered that the influence of the lateral force FCS generated by the tread bending deformation bS in the vicinity of the tread grounding end is great. Therefore, in order to increase the camber thrust FC, the lateral force FCS may be increased.
[0008]
According to this invention, since the innermost belt layer has a cross-sectional shape that is convex outward in the tire radial direction, the bending deformation bs of the tread that tends to become flat with grounding increases, and as a result, the tread grounding occurs. The lateral force Fcs generated near the end can be increased.
[0009]
Further, as compared with the groove depth hc of the grooves of the pair extending in a substantially circumferential direction of the tire and located closest to the tire equatorial plane, it extends substantially tire circumferential direction and located closest to the ground terminal 1 by groove depth hs of the pair of grooves is large, the belt of the grounding end near the time of vulcanization molding of tire manufacture is, by the groove deep grounding end near the equatorial plane near the tire mold, Since it is pushed down, the convex shape is further strengthened.
[0010]
Further, it is preferable that a rubber layer is interposed between the innermost belt layer in the radial direction and at a position including the tire equatorial plane, and the tread position corresponding to the end of the rubber layer is closest to the tire equatorial plane. and, by placing a substantially groove pair extending in the tire circumferential direction, increases deformation bs Gayori bending of the tread, the lateral force Fcs generated in the vicinity of the tread ground contact end portion can be further increased.
Further, at the time of vulcanization molding, the groove can prevent the rubber layer from flowing out to the outer periphery in the width direction, thereby further strengthening the convex shape.
[0011]
In addition, by arranging at least one reinforcing layer having a width of 0.1 to 0.3 times the groove of the widest belt layer in the vicinity of the end of the belt, the convex shape at the time of internal pressure filling is further increased. Since the strength of the belt can be increased and the rigidity of the belt can be increased, the bending deformation bS of the tread can be significantly increased.
Here, the width of the widest belt layer is set to 0.1 to 0.3 times the width. If the width is smaller than 0.1 times, the convex shape cannot be sufficiently strengthened. although improved, the protruded not be strengthened, because the can not be obtained sufficient improvement effect of both placing the reinforcing layer.
In addition, although the reinforcement layer can be expected to improve the bending deformation bs even if it is disposed at any position outside the belt in the radial direction, inside the belt, or inside the belt in the radial direction, in order to further strengthen the convex shape. It is preferable to arrange the belt radially outside the belt.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A pneumatic radial tire 1 for small trucks of size 195 / 85R16 114 / 112LT following the structure shown in FIG. 1 was manufactured according to the specifications shown in Table 1 by changing the groove arrangement. In FIG. 1, the carcass 2 is formed by laminating three rubber-coated plies in which a large number of polyester cords are arranged in the radial direction, and a belt 3 and a tread 4 are disposed on the outer periphery of the carcass 2. The belt 3 is composed of three steel belt layers , a belt layer 3-1 (hereinafter also referred to as a first belt layer ) adjacent to the carcass and having a relatively large inclination angle with respect to the tire equatorial plane of the cord, the belt is disposed on the outer periphery of the layers 3-1, the inclination angle is relatively small belt layer 3-2 with respect to the tire equatorial plane of the code (hereinafter, also referred to as a second belt layer) refers 3-3 (hereinafter, also the third belt layer 2) are laminated such that the cords intersect with each other across the tire equator plane.
[0013]
【Example】
Here, an example is shown below.
The first belt layer has a cord inclination angle of 52 ° and a width of 120 mm, the second belt layer has a cord inclination angle of 24 ° and a width of 135 mm, and the third belt layer has a cord inclination angle of 24 ° and a width of 120 mm. Of these three belt layers , the widest belt layer is the second belt layer , and this width is BW.
The tread is provided with four grooves 5 extending substantially continuously in the tire circumferential direction. Further, illustration of the vicinity of the bead core is omitted.
[0014]
Example 1
By arranging the rubber layer 6 between the carcass 2 and the first belt layer 3-1 at a position including the tire equatorial plane M, the belt 3 has a cross section in the width direction that protrudes outward in the tire radial direction at the center of the tread. Has a shape. Here, in the manufactured tire, the rubber layer 6 was disposed so that the center of the width substantially coincided with the tire equatorial plane M. The width of the rubber layer was 50 mm, corresponding to 0.37 × BW, and the thickness was 3 mm.
In addition, since the cross-sectional shape of the rubber layer 6 is substantially rectangular, the second and third belt layers have a cross-sectional shape in the width direction that protrudes outward in the tire radial direction with a step.
However, the present invention is not limited thereto, and for example, the cross-sectional shape of the rubber layer 6 may be a convex lens cross-sectional shape. When the convex lens has a cross-sectional shape, a wandering suppressing effect can be expected particularly when the vehicle is empty or when the camper angle is small.
Here, the circumferential groove depth was 9.5 mm for the pair of grooves closest to the tire equatorial plane and 12 mm for the pair of grooves closest to the ground contact edge.
In the case of Figure 1, grooves 5-1 located closest to the tire equatorial plane, located at a distance of 16mm from the tire equatorial plane, is disposed in a corresponding tread located between the end portion of the rubber layer 6 However, the wandering suppressing effect is larger in such an arrangement.
[0015]
Example 2
Example 2 is substantially the same as Example 1 except that the pair of grooves 5-1 located closest to the tire equatorial plane is located at a distance of 25 mm from the tire equatorial plane.
[0016]
Example 3
In Example 3, two nylon reinforcing layers 7 having a width of 20 mm, which is 0.15 times the width of the widest belt layer, are arranged on the outer side in the radial direction of the belt near the end of the belt as shown in FIG. Except for this, the second embodiment is almost the same as the second embodiment.
[0017]
Conventional Example As a conventional example, a tire having the above size according to the structure shown in FIG. 3 was prepared.
The difference from the first embodiment, the circumferential groove depth, a pair and the tire equatorial plane side, together with a pair of ground contact edge side, and 10.5 mm, also by the absence of the rubber layer 6, the belt This is because the layer does not have a cross-sectional shape in the width direction that is convex outward in the tire radial direction at the center portion of the tread as compared with the shape of the carcass 2.
[0018]
After these tires are filled with a specified internal pressure of 6.0kgf / cm 2, they are mounted on a 2 ton light truck (rear wheel is a multi-wheel type), and a pavement that includes ridges with the specified maximum load applied to the light truck. A test driver drove and sensory evaluated the straight-line stability. The results are also shown in Table 1 by index evaluation (the larger the index is, the better) with the conventional example being 100. From the table, it is clear that the straight running stability of the tire according to the present invention is remarkably improved.
[0019]
[Table 1]
Figure 0003623554
[0020]
That is, according to the present invention, it is possible to improve the straight running stability on an inclined road surface such as a rutted road by suppressing wandering of the pneumatic radial tire.
[Brief description of the drawings]
FIG. 1 is a sectional view in the tire width direction of a pneumatic radial tire according to the present invention.
FIG. 2 is a sectional view in the tire width direction of a pneumatic radial tire provided with a reinforcing layer according to the present invention.
FIG. 3 is a sectional view in the tire width direction of a conventional example.
FIG. 4 is a schematic view showing a state in which a tire is in contact with an inclined road surface.
FIG. 5 is a schematic diagram showing deformation and lateral force when the tire is in contact with an inclined road surface.
[Explanation of symbols]
1 Pneumatic radial tire 2 Carcass 3 Belt 4 Tread 5 Groove 6 Rubber layer 7 Reinforcement layer M Tire equator

Claims (3)

1対のビードコア間にトロイド状をなして跨がるカーカスのクラウン部外周にベルトとトレッドを順次配置し、前記ベルトが少なくとも2枚のベルト層の積層配置になり、最内層のベルト層が、カーカスの形状に比べてトレッド中央部分でタイヤ径方向外側に凸の幅方向断面形状を有し、タイヤ赤道面に最も近く位置して実質的にタイヤ周方向に延びる1対の溝の溝深さhcに比して、接地端に最も近く位置して実質的にタイヤ周方向に延びる1対の溝の溝深さhsが大となることを特徴とする空気入りラジアルタイヤ。A belt and a tread are sequentially arranged on the outer periphery of the crown portion of the carcass that is formed in a toroidal shape between a pair of bead cores, and the belt is a laminated arrangement of at least two belt layers. Groove depth of a pair of grooves that have a cross-sectional shape that protrudes outward in the tire radial direction at the center portion of the tread compared to the carcass shape, and that is closest to the tire equatorial plane and extends substantially in the tire circumferential direction A pneumatic radial tire characterized in that the groove depth hs of the pair of grooves that are located closest to the ground contact end and extend substantially in the tire circumferential direction is larger than hc. 最内層のベルト層の半径方向内側にゴム層を配置し、該ゴム層の端部と対応するトレッド位置に、タイヤ赤道面に最も近く位置する1対の溝を配置した請求項1に記載の空気入りラジアルタイヤ。 The rubber layer is disposed radially inward of the innermost belt layer, and a pair of grooves closest to the tire equatorial plane is disposed at a tread position corresponding to an end of the rubber layer. Pneumatic radial tire. ベルト端部近傍に、最広幅ベルトの幅の0.1〜0.3倍の幅を有する少なくとも1枚の補強層を配置した請求項1又は2に記載の空気入りラジアルタイヤ。Near the end of the belt, pneumatic radial tire according to claim 1 or 2 arranged at least one reinforcing layer having a 0.1 to 0.3 times the width of the widest belt layer.
JP21928095A 1995-08-28 1995-08-28 Pneumatic radial tire Expired - Fee Related JP3623554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21928095A JP3623554B2 (en) 1995-08-28 1995-08-28 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21928095A JP3623554B2 (en) 1995-08-28 1995-08-28 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPH0958213A JPH0958213A (en) 1997-03-04
JP3623554B2 true JP3623554B2 (en) 2005-02-23

Family

ID=16733046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21928095A Expired - Fee Related JP3623554B2 (en) 1995-08-28 1995-08-28 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP3623554B2 (en)

Also Published As

Publication number Publication date
JPH0958213A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
JPH07112762B2 (en) Pneumatic radial tires
JP2544532B2 (en) Heavy duty tires
JPH0123323B2 (en)
EP0301093B1 (en) Radial tire for high load with improved vibration damping performance
JP2784597B2 (en) Flat pneumatic radial tire
JPH10258612A (en) Pneumatic radial tyre for heavy load
JP6439416B2 (en) Pneumatic tire
JP3425066B2 (en) Pneumatic tire
JP3611915B2 (en) Pneumatic radial tire
JP3623554B2 (en) Pneumatic radial tire
JP3749296B2 (en) Pneumatic radial tire
JP3983860B2 (en) Pneumatic radial tire
JP3078560B2 (en) Pneumatic radial tire for high-speed running
JP3606975B2 (en) Pneumatic radial tire
JP3519490B2 (en) Pneumatic radial tire
JP3575912B2 (en) Pneumatic radial tires for small load-carrying vehicles
JP3555782B2 (en) Pneumatic radial tire
JP3583537B2 (en) Pneumatic radial tire
JP4024879B2 (en) Pneumatic radial tire
JPH0820204A (en) Pneumatic radial tire
JP4257709B2 (en) Radial tire
JP3467097B2 (en) Pneumatic radial tire
JP2000238506A (en) Pneumatic tire
JP3993250B2 (en) Pneumatic radial tire
JP7251185B2 (en) pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees