JP3623096B2 - Calibration method for transdermal blood gas monitor - Google Patents

Calibration method for transdermal blood gas monitor Download PDF

Info

Publication number
JP3623096B2
JP3623096B2 JP04454798A JP4454798A JP3623096B2 JP 3623096 B2 JP3623096 B2 JP 3623096B2 JP 04454798 A JP04454798 A JP 04454798A JP 4454798 A JP4454798 A JP 4454798A JP 3623096 B2 JP3623096 B2 JP 3623096B2
Authority
JP
Japan
Prior art keywords
calibration
gas
sensor
value
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04454798A
Other languages
Japanese (ja)
Other versions
JPH11221205A (en
Inventor
一弘 桑
Original Assignee
住友電工ハイテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハイテックス株式会社 filed Critical 住友電工ハイテックス株式会社
Priority to JP04454798A priority Critical patent/JP3623096B2/en
Publication of JPH11221205A publication Critical patent/JPH11221205A/en
Application granted granted Critical
Publication of JP3623096B2 publication Critical patent/JP3623096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は血中の酸素分圧や二酸化炭素分圧を皮膚の表面から計測する経皮血液ガスモニタの較正方法に関するものである。
【0002】
【従来の技術】
この種のモニタは、新生児や人工呼吸を必要とする重症患者の呼吸管理のために用いられている。各ガス分圧の測定には、センサの外部のガス分圧に比例した量のガスがセンサの透過膜を通じてセンサ内部に侵入し、侵入してきたガス量が各測定電極に生じる電流値や電位に相関することを利用している。
【0003】
ところで、この電気信号は電気化学的原理による微弱なものであるため、測定値のずれや経時的変動が生じ易く、センサ毎のばらつきも大きいため、正確な値を得るためには使用前に較正を行わなければならない。この較正方法としては、いわゆる2点較正法が知られている(実開昭64−31713号公報など)。
【0004】
これは、ガス分圧が既知で異なる混合率の2種類の標準ガスを用いて高域値と低域値とを較正する方法である。ここでは第一ガス(例えばO :20%,CO :10%含有ガス)と第二ガス(例えばO :0%,CO :5%含有ガス)を用いてCO 分圧およびO 分圧を較正する場合を例として説明する。
【0005】
まず、図4に示すように、モニタのセンサ接続部11B にセンサのコネクタ部10A を接続し、センサの電極部10B をセンサ載置部11A に固定する。次に、流量制御部12を介して第一ガスをセンサ載置部11に供給し、そのときのセンサ10の信号値を求める。CO 分圧の場合、信号値は、センサが当初大気中にさらされていれば、図5(A)に示すように、最初は急峻に立ち上がり、途中で緩慢になってほぼ一定の値に到達するので、このときの値をCO 分圧がCO 濃度10%に相当する値であるとする。O 分圧の場合、図5(B)に示すように、当初から一定の信号値が観測され、徐々に上昇(または下降)してほぼ一定の値に達する。
【0006】
続いてボンベ13,14 を切り替えて第二ガスをセンサ載置部11に供給し、同様に信号値を求める。CO 分圧の場合、第二ガスは第一ガスに比べてCO 分圧が低いため、信号値は低下してから一定の値に達する(図5A)。O 分圧の場合、第二ガスにはO が含まれていないため、急激に信号値は低下してほぼ一定の値に落ち着く(図5B)。そして、これら二点の値および二点間の差を求め、この差を測定部のメモリ15(図4参照)に較正データとして記憶させると共に、較正結果を表示部16に表す。
【0007】
【発明が解決しようとする課題】
しかし、上記の較正方法では、常時、第一ガスと第二ガスの両方を用いた2点較正であるため、較正に要する時間が長い(例えば5〜8分)。また、第一ガスと第二ガスの両方を常に用いることからガスの消費量も多い。
【0008】
さらに、2点較正を行った場合、図5(A)に示すように、第一ガスの較正時にCO 分圧の値が安定するまでに時間がかかることがある。この較正値には信号値の変動の傾きの絶対値が一定値以下となった時点の値が利用されるが、第二ガスの較正完了時には、その値が変動している場合がある。そのため、第一ガスの較正完了時の値と第二ガスの較正完了時の値の差は真の値から外れたものとなって誤差を伴うという問題があった。
【0009】
従って、本発明の主目的は、較正時間が短く、較正精度に優れた経皮血液ガスモニタの較正方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は上記の課題を解消するもので、その第一の特徴は、標準ガスを用いてガス分圧測定用センサを較正する経皮血液ガスモニタの較正方法において、前記センサはセンサごとの識別情報を有し、センサの不安定時は、第一ガスと第二ガスの2種類の標準ガスによる2点較正を行い、この較正結果を前記センサの識別情報に応じてセンサごとにモニタに記憶しておき、通常時は、第一ガスによる1点較正のみを行って、前記2点較正において記憶された較正結果から他の1点の較正値を求めることにある。センサの不安定時としては、初めてセンサを使用するときや、同一センサの前回の2点較正から一定期間以上経過し、センサの出力信号が測定精度に影響を与える程度に変動していると判断できるときが挙げられる。
【0011】
ここで、センサに識別情報(ID)を保有する手段としては、センサごとに異なる値の抵抗を設けたり、センサごとに識別メモリを設けて、この識別メモリに識別情報を記憶させることが挙げられる。
【0012】
また、本発明の第二の特徴は、第一ガスと第二ガスからなる2種類の標準ガスを用いてガス分圧測定用センサを較正する経皮血液ガスモニタの較正方法において、第一ガスと第二ガスによる2点較正を行い、さらに第一ガスによる再較正を連続して行って、第一ガス,第二ガスによる較正結果と第一ガスによる再較正の結果とから較正することにある。この方法は、常に2点較正を実施する較正方法においてはもちろん、前記第一の特徴において、センサの不安定時に行う2点較正に適用しても有効である。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
図1は本発明方法に用いるモニタの概略構成図である。このモニタは2種類の標準ガス(第一ガスと第二ガス)の各ボンベ1,2と、皮膚表面から血中のO 分圧,CO 分圧に応じた電流・電位を検知するセンサ31,32 と、センサ31,32 を各ボンベ1,2から供給されたガス雰囲気中に保持するセンサ載置部4Aとを具えている。このモニタの構造は図4に示した従来から用いているモニタと共通している部分が多く、センサ31,32 からのデータを基に較正および計測を行う測定部7や測定結果などを表示する表示部8を具えている点は共通しているが、センサ31,32 に識別情報(ID)を持たせ、センサごとの較正データはモニタ中に記憶できるように構成した点が主な相違点である。
【0014】
ここでは、第一ガスとしてO :20%,CO :10%含有ガスを用い、第二ガスとしてO :0%,CO :5%含有ガスを用いる。各ボンベ1,2とセンサ載置部4Aとの間はガス回路により接続され、流量制御部6を経て途中の切り換え機(図示せず)によりいずれかのガスをセンサ載置部4Aに供給するよう構成されている。
【0015】
センサの具体的構造としては、例えば特公昭56−33094号公報記載のものが挙げられる。また、このモニタのセンサ31,32 は、一つのセンサでO 分圧とCO 分圧とを計測できるが、O 分圧のみまたはCO 分圧のみを測定できるものであってもよい。これらのセンサ31,32 は、モニタの接続部4Bに接続されるコネクタ部31A,32A とセンサ載置部4Aに保持される電極部31B,32B とを具え、コネクタ部31A,32A または電極部31B,32B に識別情報(ID)を保有している。識別情報はセンサを交換などする際にモニタに対してセンサが変わったことを認識させるためのものである。例えば、センサごとに値に異なる抵抗を設け、センサ載置部4Aに電極部31B,32B を固定したときにこの抵抗に通電し、電流値が異なることからセンサを判別する。その他、コネクタ部31A,32A 自身に識別メモリを設け、このメモリにセンサの識別情報を記憶させても良い。
【0016】
一方、モニタには各センサ31,32 ごとの較正データを記憶するメモリ5が設けられている。すなわち、センサ載置部4Aにセンサの電極部31B(32B)を保持させると、センサの識別情報をモニタが判別し、各センサごとに対応した較正データを記憶する。較正データの内容には、標準ガスにより2点較正で得られた2つの較正値またはこれらの差、並びに2点較正を行った最新日時が含まれる。また、記録された較正データは表示部8により表示される。
【0017】
(実施例1)
このような装置を用いた較正手順を図2に示す。
初めてセンサを使用するときや、同一センサの前回の2点較正から一定期間以上経過しているときは、較正値データが存在しなかったり、センサの信号レベルが変動して前回のデータが使用に適さない場合があるため2点較正を行い、それ以外の通常時は1点較正のみを行う。
【0018】
まず、センサのコネクタ部31A(32A)をモニタのセンサ接続部4Bにつなぎ、センサ載置部4Aに電極部31B(32B)を固定してセンサの接続を確認すると第一ガスによる較正を行う。つまり、ボンベから第一ガスをセンサ載置部4Aに供給し、そのときのセンサの信号値を求める。センサが当初大気中にさらされていた場合、CO 分圧では、信号値は図5(A)に示すように最初は急峻に立ち上がり、途中で緩慢になってほぼ一定の値に到達するので、このときの値をCO 分圧がCO 濃度10%に相当する値であるとする。O では、信号値は図5(B)に示すように最初からある程度の高い値を示し、徐々に上昇して一定値に到達するので、このときの値をO 分圧がO 濃度20%に相当する値であるとする。
【0019】
次に、識別メモリよりセンサの識別情報(ID)を読み出し、モニタのメモリに較正データが登録されているセンサかどうかを確認する。初めてセンサを使用するときは当然メモリには較正データが登録されていないので2点較正を行う。
【0020】
2点較正を行うには、ボンベを切り替えて第二ガスをセンサ載置部に供給し、前述と同様に信号値を求める。CO 分圧の場合、第二ガスは第一ガスに比べてCO 分圧が低いため、信号値は低下してから一定の下限値に達する。O 分圧の場合、第二ガスにはO が含有されていないため、信号値は急低下し、ほぼ一定の値に到達する。そして、これら較正データをモニタのメモリに登録する。
【0021】
一方、もし較正データが既に登録されたセンサであれば、登録データを読み込む。そして、この登録データのうち前回2点較正を行った日時を用い、その日時から予め定めた期間を越えているかどうかを判断する。この規定期間を越えていた場合は、そのセンサの第二ガスによる較正により得られる較正データが大きく変動している可能性があると判断して、前述の手順により2点較正を行う。規定期間は適宜選択すれば良く、本例では1か月とした。しかし、規定期間以内の場合は、前回の2点較正で得られた較正データが使用可能であると判断して1点較正のみを行い、一方の較正値(高域値)のみを求める。
【0022】
この様に、通常1点較正でも十分なのは、CO 分圧の場合、第一ガスに対する信号値と第二ガスに対する信号値との差は比較的変動が少なく、O 分圧の場合、O 分圧が0の場合の信号値がほぼ安定しているため、前述した2点較正により得られた較正データに基づいて他方の較正値を求めることができるからである。すなわち、CO 分圧の場合、2点較正で得られた2つの較正値の差に相当する分だけ第一ガスに対する較正値から引けば第二ガスに対する較正値を求めることができる。また、O 分圧の場合、1点較正で得られたデータと2点較正により求めてメモリに登録されているO 分圧が0の場合の信号値とから2点の較正データを得ることができる。
【0023】
このように、通常の較正を1点較正とすることで、較正に要する時間は約半分に短縮できる。一方、センサを初めて使用する際や、2点較正後、一定期間を経過している場合などは2点較正を行うことで、高い較正精度を確保することができる。
【0024】
また、センサには識別情報のみを保持させ、較正データはモニタのメモリに記憶させることができるため、センサの構造を複雑化することなくセンサごとに精度の高い較正を行うことができる。
【0025】
さらに、2点較正に用いる第二ガスは通常の較正では使用しないため、長期的に見れば較正に使用する標準ガスの使用量を節約できる。このことは、第二ガスのボンベを小型化できることにもなり、ボンベを装着するモニタ自体の小型化を図ることができる。
【0026】
(実施例2)
次に、2点較正を行う場合に一層較正精度を向上できる方法について図3に基づいて説明する。この方法では第一ガスと第二ガスによる2点較正を行った後、続けて第一ガスによる再較正を行う。
【0027】
従来は第一ガスの1回目の供給により較正値を求めるが、センサの安全度によっては、この値が完全に安定するまでかなり時間を要することがあるため、信号値の変動の傾きの絶対値が一定値以下に入った場合や一定時間経過後の信号値を較正値として採用している(図5参照)。本発明では、第一ガスの1回目の供給により安定性の規格に達して(この際の較正値をSaとする)から第二ガスの供給により較正値(Sb’)を求めた後、さらに第一ガスの2回目の供給を行って、2回目の第一ガスによる信号値Scを求める(図3参照)。次に、これらの値Sa,Scと、3回の較正時点での時刻Ta,Tb,Tcより以下の式に従ってTbにおける第一ガスに対応する信号値Sbを算出する。
Sb=Sa+(Tb−Ta)×(Sc−Sa)/(Tc−Ta)
【0028】
このSbと第二ガスに対する信号値Sb’との差を求めることで、より真の値に近い第一ガスの較正値と第二ガスの較正値の差を求めることができる。CO 分圧の較正における時間と信号値との関係を図3(A)に、O 分圧の較正における時間と信号値との関係を図3(B)に示す。
【0029】
このように、2点較正の後に再度第一ガスによる較正を行えば、第一ガス供給により得られる値と第二ガス供給により得られる値との差は、信号値の変動を考慮して決定されるため、より一層高い精度の較正を行うことができる。
【0030】
なお、上記の説明では、いずれの実施例もCO 分圧およびO 分圧の高い第一ガスを先に、同分圧が低い第二ガスを後に較正したが、この順序は特に限定されない。本例とは逆に第二ガスを先に較正しても良い。また、実施例1の方法において2点較正を行う場合、実施例2の方法を併用しても良い。
【0031】
【発明の効果】
以上説明したように、本発明によれば常時は1点較正を行うことで較正時間を短縮化し、必要時のみ2点較正を行って、1点較正を行う際の基準となるデータを記憶しておくため、高い較正精度も両立することができる。
【0032】
また、2点較正の後に第一ガスによる再較正を行うことで、第一ガスによる較正値を真の値に近づけることができ、高精度の較正を行うことができる。
【図面の簡単な説明】
【図1】本発明方法に用いるモニタの概略構成図である。
【図2】本発明方法のフロー図である。
【図3】本発明方法による時間と較正信号値との関係を示すグラフで、(A)はCO 分圧、(B)はO 分圧の較正を示す。
【図4】従来方法に用いるモニタの概略構成図である。
【図5】従来方法による時間と較正信号値との関係を示すグラフで、(A)はCO 分圧、(B)はO 分圧の較正を示す。
【符号の説明】
1 第一ガスボンベ
2 第二ガスボンベ
31,32 センサ
31A,32A コネクタ部
31B,32B 電極部
4A センサ載置部
4B センサ接続部
5 メモリ
6 流量制御部
7 測定部
8 表示部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a calibration method for a transcutaneous blood gas monitor that measures oxygen partial pressure and carbon dioxide partial pressure in blood from the surface of the skin.
[0002]
[Prior art]
This type of monitor is used for respiratory management of neonates and critically ill patients who require artificial respiration. In measuring each gas partial pressure, an amount of gas proportional to the gas partial pressure outside the sensor enters the sensor through the permeation membrane of the sensor, and the amount of gas that has entered the current value or potential generated at each measurement electrode. Utilizing correlation.
[0003]
By the way, since this electrical signal is weak due to electrochemical principles, it is easy to cause deviations in measurement values and fluctuations over time, and there are large variations from sensor to sensor. Must be done. As this calibration method, a so-called two-point calibration method is known (Japanese Utility Model Publication No. 64-31713).
[0004]
This is a method of calibrating a high range value and a low range value using two kinds of standard gases with known gas partial pressures and different mixing ratios. Here, the CO 2 partial pressure and the O 2 are obtained using the first gas (for example, O 2 : 20%, CO 2 : 10% containing gas) and the second gas (for example, O 2 : 0%, CO 2 : 5% containing gas). 2 partial pressure will be described as an example a case of calibrating.
[0005]
First, as shown in FIG. 4, the sensor connector portion 10A is connected to the sensor connection portion 11B of the monitor, and the electrode portion 10B of the sensor is fixed to the sensor placement portion 11A. Next, the first gas is supplied to the sensor placement unit 11 via the flow rate control unit 12, and the signal value of the sensor 10 at that time is obtained. In the case of CO 2 partial pressure, if the sensor is initially exposed to the atmosphere, as shown in FIG. 5 (A), the signal value rises steeply at first, becomes sluggish in the middle, and becomes a substantially constant value. Therefore, it is assumed that the CO 2 partial pressure corresponds to a CO 2 concentration of 10%. In the case of the O 2 partial pressure, as shown in FIG. 5B, a constant signal value is observed from the beginning, and gradually increases (or decreases) to reach a substantially constant value.
[0006]
Subsequently, the cylinders 13 and 14 are switched to supply the second gas to the sensor mounting unit 11, and the signal value is similarly obtained. In the case of the CO 2 partial pressure, since the second gas has a lower CO 2 partial pressure than the first gas, the signal value decreases and reaches a certain value (FIG. 5A). In the case of the O 2 partial pressure, since the second gas does not contain O 2 , the signal value rapidly decreases and settles to a substantially constant value (FIG. 5B). Then, the values of these two points and the difference between the two points are obtained, the difference is stored as calibration data in the memory 15 (see FIG. 4) of the measurement unit, and the calibration result is displayed on the display unit 16.
[0007]
[Problems to be solved by the invention]
However, since the above calibration method is always a two-point calibration using both the first gas and the second gas, the time required for calibration is long (for example, 5 to 8 minutes). Moreover, since both the first gas and the second gas are always used, the amount of gas consumption is also large.
[0008]
Furthermore, when two-point calibration is performed, as shown in FIG. 5 (A), it may take time for the CO 2 partial pressure to stabilize during calibration of the first gas. A value at the time when the absolute value of the slope of the fluctuation of the signal value becomes equal to or less than a certain value is used as the calibration value. However, when the calibration of the second gas is completed, the value may fluctuate. Therefore, there is a problem that the difference between the value at the time of completion of calibration of the first gas and the value at the time of completion of calibration of the second gas deviates from the true value and involves an error.
[0009]
Accordingly, a main object of the present invention is to provide a calibration method for a transdermal blood gas monitor having a short calibration time and excellent calibration accuracy.
[0010]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the first feature thereof is a calibration method for a transcutaneous blood gas monitor that calibrates a gas partial pressure measurement sensor using a standard gas, wherein the sensor is identification information for each sensor. When the sensor is unstable, two-point calibration is performed with two types of standard gases, the first gas and the second gas, and the calibration result is stored in the monitor for each sensor according to the identification information of the sensor. In normal times, only one point calibration with the first gas is performed, and another one point of calibration value is obtained from the calibration result stored in the two point calibration. When the sensor is unstable, it can be determined that the sensor is used for the first time, or that a certain period of time has passed since the previous two-point calibration of the same sensor, and the output signal of the sensor fluctuates to an extent that affects the measurement accuracy. Time is given.
[0011]
Here, as means for holding the identification information (ID) in the sensor, a resistance having a different value is provided for each sensor, or an identification memory is provided for each sensor, and the identification information is stored in the identification memory. .
[0012]
A second feature of the present invention is a calibration method for a transcutaneous blood gas monitor in which a gas partial pressure measurement sensor is calibrated using two kinds of standard gases consisting of a first gas and a second gas. Two-point calibration with the second gas, and further recalibration with the first gas is performed continuously, and the calibration is performed from the calibration result of the first gas, the second gas, and the recalibration result of the first gas. . This method is effective not only in the calibration method in which the two-point calibration is always performed, but also in the first feature when applied to the two-point calibration performed when the sensor is unstable.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 is a schematic configuration diagram of a monitor used in the method of the present invention. This monitor is a sensor that detects currents and potentials according to the cylinders 1 and 2 of two kinds of standard gases (first gas and second gas) and the O 2 partial pressure and CO 2 partial pressure in blood from the skin surface. 31 and 32, and a sensor mounting portion 4 </ b> A that holds the sensors 31 and 32 in the gas atmosphere supplied from the cylinders 1 and 2. The structure of this monitor has many parts in common with the conventional monitor shown in FIG. 4, and displays the measurement unit 7 for performing calibration and measurement based on data from the sensors 31 and 32, the measurement result, and the like. Although the display portion 8 is common, the main difference is that the sensors 31 and 32 have identification information (ID) and the calibration data for each sensor can be stored in the monitor. It is.
[0014]
Here, a gas containing O 2 : 20% and CO 2 : 10% is used as the first gas, and a gas containing O 2 : 0% and CO 2 : 5% is used as the second gas. The cylinders 1 and 2 and the sensor mounting part 4A are connected by a gas circuit, and one of the gases is supplied to the sensor mounting part 4A by a switching device (not shown) on the way through the flow rate control part 6. It is configured as follows.
[0015]
Specific examples of the sensor structure include those described in Japanese Patent Publication No. 56-33094. The sensors 31 and 32 of this monitor can measure the O 2 partial pressure and the CO 2 partial pressure with a single sensor, but may be capable of measuring only the O 2 partial pressure or only the CO 2 partial pressure. . These sensors 31 and 32 include connector portions 31A and 32A connected to the monitor connection portion 4B and electrode portions 31B and 32B held by the sensor mounting portion 4A, and the connector portions 31A and 32A or the electrode portions 31B. , 32B possess identification information (ID). The identification information is for making the monitor recognize that the sensor has changed when replacing the sensor. For example, a resistor having a different value is provided for each sensor, and when the electrode portions 31B and 32B are fixed to the sensor mounting portion 4A, the resistor is energized, and the current is different, so that the sensor is determined. In addition, an identification memory may be provided in the connector portions 31A and 32A themselves, and sensor identification information may be stored in this memory.
[0016]
On the other hand, the monitor is provided with a memory 5 for storing calibration data for each of the sensors 31 and 32. That is, when the sensor mounting portion 4A holds the electrode portion 31B (32B) of the sensor, the monitor determines sensor identification information, and stores calibration data corresponding to each sensor. The contents of the calibration data include two calibration values obtained by the two-point calibration with the standard gas or their difference, and the latest date and time when the two-point calibration was performed. The recorded calibration data is displayed on the display unit 8.
[0017]
(Example 1)
A calibration procedure using such an apparatus is shown in FIG.
When the sensor is used for the first time, or when a certain period of time has passed since the previous two-point calibration of the same sensor, the calibration value data does not exist or the sensor signal level fluctuates and the previous data is used. Since it may not be suitable, two-point calibration is performed, and only one-point calibration is performed at other normal times.
[0018]
First, when the connector part 31A (32A) of the sensor is connected to the sensor connection part 4B of the monitor, the electrode part 31B (32B) is fixed to the sensor mounting part 4A and the connection of the sensor is confirmed, calibration with the first gas is performed. That is, the first gas is supplied from the cylinder to the sensor placement unit 4A, and the signal value of the sensor at that time is obtained. When the sensor was initially exposed to the atmosphere, with CO 2 partial pressure, the signal value rises steeply at first as shown in FIG. 5 (A), slows down in the middle, and reaches a substantially constant value. , a value of CO 2 partial pressure at this time is a value corresponding to CO 2 concentration of 10%. In O 2 , the signal value shows a certain high value from the beginning as shown in FIG. 5B, and gradually increases to reach a constant value. Therefore, the O 2 partial pressure is the O 2 concentration at this time. It is assumed that the value corresponds to 20%.
[0019]
Next, sensor identification information (ID) is read from the identification memory, and it is confirmed whether or not the sensor has calibration data registered in the monitor memory. When the sensor is used for the first time, naturally, calibration data is not registered in the memory, so two-point calibration is performed.
[0020]
In order to perform two-point calibration, the cylinder is switched and the second gas is supplied to the sensor mounting portion, and the signal value is obtained in the same manner as described above. In the case of CO 2 partial pressure, since the second gas has a lower CO 2 partial pressure than the first gas, the signal value decreases and reaches a certain lower limit value. In the case of the O 2 partial pressure, since the second gas does not contain O 2 , the signal value rapidly decreases and reaches a substantially constant value. These calibration data are registered in the monitor memory.
[0021]
On the other hand, if the calibration data is already registered, the registered data is read. Then, the date and time when the two-point calibration was performed last time is used among the registered data, and it is determined whether or not a predetermined period has elapsed from the date and time. If this specified period has been exceeded, it is determined that the calibration data obtained by the calibration of the sensor with the second gas may have fluctuated greatly, and two-point calibration is performed according to the above-described procedure. The specified period may be selected as appropriate, and in this example, it is one month. However, if it is within the specified period, it is determined that the calibration data obtained by the previous two-point calibration is usable, and only one-point calibration is performed, and only one calibration value (high range value) is obtained.
[0022]
As described above, the one-point calibration is usually sufficient in the case of the CO 2 partial pressure, the difference between the signal value for the first gas and the signal value for the second gas is relatively small, and in the case of the O 2 partial pressure, This is because the signal value when the partial pressure is 0 is almost stable, so that the other calibration value can be obtained based on the calibration data obtained by the two-point calibration described above. That is, in the case of CO 2 partial pressure, the calibration value for the second gas can be obtained by subtracting from the calibration value for the first gas by an amount corresponding to the difference between the two calibration values obtained by the two-point calibration. Also, if the partial pressure of O 2, to obtain a calibration data at two points from the signal value when the O 2 partial pressure which is registered in the memory is 0. determined by calibration data obtained with two points at one point calibration be able to.
[0023]
In this way, the time required for calibration can be reduced to about half by making the normal calibration one-point calibration. On the other hand, when the sensor is used for the first time, or when a certain period has elapsed after the two-point calibration, high calibration accuracy can be ensured by performing the two-point calibration.
[0024]
Further, since only the identification information can be held in the sensor and the calibration data can be stored in the memory of the monitor, calibration with high accuracy can be performed for each sensor without complicating the sensor structure.
[0025]
Further, since the second gas used for the two-point calibration is not used in the normal calibration, the amount of the standard gas used for the calibration can be saved in the long term. This also makes it possible to reduce the size of the second gas cylinder, and to reduce the size of the monitor to which the cylinder is attached.
[0026]
(Example 2)
Next, a method for further improving the calibration accuracy when performing two-point calibration will be described with reference to FIG. In this method, after performing two-point calibration with the first gas and the second gas, recalibration with the first gas is subsequently performed.
[0027]
Conventionally, the calibration value is obtained by the first supply of the first gas, but depending on the safety level of the sensor, it may take a considerable amount of time until this value is completely stabilized. When the value falls below a certain value or after a certain time has elapsed, the signal value is adopted as the calibration value (see FIG. 5). In the present invention, after the stability standard is reached by the first supply of the first gas (the calibration value at this time is Sa), the calibration value (Sb ′) is obtained by the second gas supply, The second supply of the first gas is performed, and the signal value Sc by the second first gas is obtained (see FIG. 3). Next, a signal value Sb corresponding to the first gas at Tb is calculated from these values Sa, Sc and times Ta, Tb, Tc at the time of three calibrations according to the following formula.
Sb = Sa + (Tb−Ta) × (Sc−Sa) / (Tc−Ta)
[0028]
By obtaining the difference between Sb and the signal value Sb ′ for the second gas, the difference between the calibration value of the first gas and the calibration value of the second gas that is closer to the true value can be obtained. FIG. 3A shows the relationship between time and signal value in calibration of CO 2 partial pressure, and FIG. 3B shows the relationship between time and signal value in calibration of O 2 partial pressure.
[0029]
In this way, if the calibration with the first gas is performed again after the two-point calibration, the difference between the value obtained by the first gas supply and the value obtained by the second gas supply is determined in consideration of the fluctuation of the signal value. Therefore, calibration with higher accuracy can be performed.
[0030]
In the above description, in each of the examples, the first gas having a high CO 2 partial pressure and an O 2 partial pressure was calibrated first, and the second gas having a low partial pressure was calibrated later, but this order is not particularly limited. . Contrary to this example, the second gas may be calibrated first. Moreover, when performing two-point calibration in the method of Example 1, you may use the method of Example 2 together.
[0031]
【The invention's effect】
As described above, according to the present invention, the calibration time is shortened by performing one-point calibration at all times, two-point calibration is performed only when necessary, and data serving as a reference for performing one-point calibration is stored. Therefore, high calibration accuracy can be achieved at the same time.
[0032]
Further, by performing recalibration with the first gas after the two-point calibration, the calibration value with the first gas can be brought close to a true value, and highly accurate calibration can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a monitor used in a method of the present invention.
FIG. 2 is a flow diagram of the method of the present invention.
FIG. 3 is a graph showing the relationship between time and calibration signal value according to the method of the present invention, where (A) shows the CO 2 partial pressure and (B) shows the O 2 partial pressure calibration.
FIG. 4 is a schematic configuration diagram of a monitor used in a conventional method.
FIG. 5 is a graph showing the relationship between time and calibration signal value according to a conventional method, where (A) shows CO 2 partial pressure and (B) shows O 2 partial pressure calibration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st gas cylinder 2 2nd gas cylinder 31, 32 Sensor 31A, 32A Connector part 31B, 32B Electrode part 4A Sensor mounting part 4B Sensor connection part 5 Memory 6 Flow control part 7 Measurement part 8 Display part

Claims (4)

標準ガスを用いてガス分圧測定用センサを較正する経皮血液ガスモニタの較正方法において、前記センサはセンサごとの識別情報を有し、センサの不安定時は、第一ガスと第二ガスの2種類の標準ガスによる2点較正を行い、この較正結果を前記センサの識別情報に応じてセンサごとにモニタに記憶しておき、通常時は、第一ガスによる1点較正のみを行って、前記2点較正において記憶された較正結果から他の1点の較正値を求めることを特徴とする経皮血液ガスモニタの較正方法。In a calibration method for a transcutaneous blood gas monitor that calibrates a gas partial pressure measurement sensor using a standard gas, the sensor has identification information for each sensor, and when the sensor is unstable, 2 of the first gas and the second gas. Two-point calibration is performed with various types of standard gases, and the calibration result is stored in a monitor for each sensor according to the identification information of the sensor. Normally, only one-point calibration with the first gas is performed, A calibration method for a transcutaneous blood gas monitor, wherein a calibration value of another point is obtained from a calibration result stored in two-point calibration. センサごとに異なる値の抵抗を設けることでセンサの識別情報としたことを特徴とする請求項1記載の経皮血液ガスモニタの較正方法。The percutaneous blood gas monitor calibration method according to claim 1, wherein the sensor identification information is provided by providing different resistances for each sensor. センサごとに識別メモリを具え、この識別メモリに識別情報を記憶させたことを特徴とする請求項1記載の経皮血液ガスモニタの較正方法。2. The method for calibrating a transdermal blood gas monitor according to claim 1, wherein each sensor includes an identification memory, and the identification information is stored in the identification memory. センサの不安定時に行う2点較正は、まず第一ガスと第二ガスによる2点較正を行い、さらに第一ガスによる再較正を連続して行って、第一ガスおよび第二ガスによる較正結果と第一ガスによる再較正の結果とから較正することを特徴とする請求項1に記載の経皮血液ガスモニタの較正方法。 In the two-point calibration performed when the sensor is unstable, first, two-point calibration with the first gas and the second gas is performed, and then recalibration with the first gas is continuously performed. The calibration method for a transcutaneous blood gas monitor according to claim 1, wherein the calibration is performed based on the result of recalibration with the first gas.
JP04454798A 1998-02-09 1998-02-09 Calibration method for transdermal blood gas monitor Expired - Fee Related JP3623096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04454798A JP3623096B2 (en) 1998-02-09 1998-02-09 Calibration method for transdermal blood gas monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04454798A JP3623096B2 (en) 1998-02-09 1998-02-09 Calibration method for transdermal blood gas monitor

Publications (2)

Publication Number Publication Date
JPH11221205A JPH11221205A (en) 1999-08-17
JP3623096B2 true JP3623096B2 (en) 2005-02-23

Family

ID=12694536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04454798A Expired - Fee Related JP3623096B2 (en) 1998-02-09 1998-02-09 Calibration method for transdermal blood gas monitor

Country Status (1)

Country Link
JP (1) JP3623096B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591123B2 (en) * 2000-08-31 2003-07-08 Mallinckrodt Inc. Oximeter sensor with digital memory recording sensor data

Also Published As

Publication number Publication date
JPH11221205A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP2702286B2 (en) Biosensing meter with pluggable memory key
CN110501462B (en) Method for compensating for long term sensitivity drift of an electrochemical gas sensor exposed to nitric oxide
US5038109A (en) Screening and monitoring instrument
US4858615A (en) Catheter sensor and memory unit
EP2254460B1 (en) Method of calibrating a sensor in a patient monitoring system
IE45354B1 (en) Measuring instruments
WO2007065475A1 (en) Method and apparatus for end expiratory lung volume estimation
TW200925591A (en) Test strips and system for measuring analyte levels in a fluid sample
CA2688425A1 (en) Monitoring and compensating for temperature-related error in an electrochemical sensor
US6173600B1 (en) Measuring instrument with memory
JPH067355A (en) Device for deciding quantity of medical and electrochemical measurement related with organ or function of metabolism
AU2006290025B2 (en) Bio-sensor measurement machine, bio-sensor measurement system, and bio-sensor measurement method
US8121676B2 (en) System for measuring and indicating changes in the resistance of a living body
JP3623096B2 (en) Calibration method for transdermal blood gas monitor
EP0083968B1 (en) Polarography
JPH10253572A (en) Measuring device equipped with electrode with memory
US20180267004A1 (en) Biological Gas Detection Device, Method, and Computer-Readable Storage Medium
JP4614841B2 (en) Redox potential measuring device
JPH027657B2 (en)
US5502660A (en) Dynamic gas density compensation in pulmonary gas analyzer systems
KR20080005682U (en) A breathalyzer
JP4673747B2 (en) Water quality meter
KR910006276B1 (en) Circuit for measuring ion condensation using transistor
US4120770A (en) Apparatus for the polarographic measurement of oxygen
JP4160683B2 (en) Strain measurement system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees