JP3622611B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3622611B2
JP3622611B2 JP35547899A JP35547899A JP3622611B2 JP 3622611 B2 JP3622611 B2 JP 3622611B2 JP 35547899 A JP35547899 A JP 35547899A JP 35547899 A JP35547899 A JP 35547899A JP 3622611 B2 JP3622611 B2 JP 3622611B2
Authority
JP
Japan
Prior art keywords
heater
defrosting
defrost
evaporator
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35547899A
Other languages
Japanese (ja)
Other versions
JP2001174134A (en
Inventor
光隆 静谷
昌幸 柴山
耕一 柴田
英一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP35547899A priority Critical patent/JP3622611B2/en
Publication of JP2001174134A publication Critical patent/JP2001174134A/en
Application granted granted Critical
Publication of JP3622611B2 publication Critical patent/JP3622611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸発器の下方に配設された除霜ヒータによる加熱で除霜を行う形式の冷蔵庫に関するものである。
【0002】
【従来の技術】
一般的に家庭用冷蔵庫の構造は、機能の面から、断熱容器・強度部材の役割をもつ箱体・扉部分と、庫内冷却を行うための冷凍サイクル部とに大別できる。
【0003】
箱体・扉部分は、外箱(主に鋼板製)で断熱材(主に発泡ウレタン製)を挟むように一体化した構造をもつそれぞれの主構造部分と、箱体内を冷凍室や冷蔵室等の貯蔵室や冷気通路に区画するための区画部材(単独の断熱性樹脂製か樹脂と断熱材の複合構造)と、貯蔵室や扉内側を細かく区画するための内装部材(主に樹脂製)とから構成される。
【0004】
また、冷凍サイクル部は、冷媒を昇圧・循環させる圧縮機や庫外に放熱する凝縮器などの庫外に設置される部品と、庫内に設置され冷却作用を行う蒸発器と、冷媒を循環させるため各部品間を結ぶ冷媒管とから構成されている。
【0005】
このような冷蔵庫のうち小形を除く大半のものでは、庫内の冷却は冷気強制循環方式によって行われる。それは、貯蔵室とは別の区画である冷気ダクト内に設置された蒸発器で、各貯蔵室を循環して戻った冷気を集めて冷却し(冷媒はここで冷気から熱を奪って蒸発し、後で庫外の凝縮器で放熱しながら凝縮する)、より低温にした冷気を送風機により各貯蔵室に循環させるというものである。
【0006】
蒸発器(多数のフィンが冷媒管に貫通される形で一体化された構造の熱交換器)では、貯蔵室から戻ってくる冷気が平均温度では氷点以下であり、庫内の食品からの水分蒸散や扉開閉に伴う多湿空気の侵入により冷気の湿度が高くなっているために、熱交換時に低温である蒸発器の表面に冷気中の水分が凝縮・凍結して霜が形成される。
【0007】
冷蔵庫の運転を続けた結果として蒸発器の着霜量がある程度以上多くなると、通風抵抗の増大による風速の減少等から熱交換性能の低下が顕著となり、冷蔵庫の消費電力量が増加してくる。さらに、フィン間の空気風路が霜でほぼ閉塞した状態になると熱交換量の減少が大幅となり、冷蔵庫の正常な運転が継続できなくなる。これを防ぐため、一般に、冷気ダクト内において蒸発器の下部にやや離して除霜ヒータを配置し、定期的あるいは着霜量が多くなった時点等にヒータ加熱により蒸発器の霜を除く除霜が行われる。
【0008】
このような除霜では、除霜中は庫内の冷却が行われず貯蔵室の温度上昇が起こることや、除霜ヒータによる加熱や除霜後の再冷却(氷点以上となった蒸発器と周囲部材の冷却)で余分に消費電力量が必要なこと等から、除霜でのヒータの熱の利用効率を向上させて除霜時間を短縮することが望ましい。そのため、従来より、このような除霜方式に関する種々の改良技術が開示されている。
【0009】
例えば、発明者らが以前提案した特開平8−110146 号公報は、除霜ヒータの上方又は下方のヒータカバーを山形板又は傾斜平板又は上に凸な曲面板とすることによって、ヒータカバー上に除霜水が滞留して加熱・蒸発されて除霜ヒータの熱が無駄に使われるという従来の除霜ヒータでの問題を少なくしようとするものである。
【0010】
また、特開平10−292974号公報は、山形板等の上方ヒータカバーをもつ除霜ヒータを冷気ダクトの後方に偏らせて配置することによって、除霜ヒータで発生した暖気を蒸発器の前後だけでなく広範囲に吐出することによって、従来よりも冷気ダクト内での暖気の対流を活発にして除霜を効率化しようとするものである。
【0011】
【発明が解決しようとする課題】
除霜は、蒸発器の霜に対し、融かすのに必要な顕熱及び潜熱を除霜ヒータで与えて除霜水とし、冷気ダクトの下方の排水口へと導いて取り除くことを目的としている。除霜ヒータを作動させると、高温になったヒータ本体(内部にニクロム線等を備えたガラス管構造が一般的)からの熱は、主に放射と対流という2つの機構で蒸発器の霜に伝えられる。
【0012】
まず放射では、高温のヒータ本体や(ヒータ本体からの放射で加熱された)周囲のヒータカバー(一般にアルミ板製)からの熱線が、蒸発器や霜に直接あるいは周囲壁で反射しながら届いて(加熱された蒸発器から伝導で伝わる分も含まれる)、最終的に霜に伝えられる。この放射の過程では、高温となるヒータカバーや熱線が反射する周囲壁において、カバーや壁面に落下してきた除霜水の余分な加熱や蒸発が、また(アルミテープ等を貼っても熱線の反射率が100%になることはないし、水で濡れれば反射率が落ちるので)周囲壁の余分な加熱が伴う。
【0013】
また対流では、ヒータ本体の周囲やヒータ本体とヒータカバーの間の空気が暖められて、上方ヒータカバーの前後端から蒸発器に向かって吐出され、上下に細長い冷気ダクトを上向き及び下向きに対流する暖気により蒸発器や霜に熱が伝えられる。この対流の過程では、対流する暖気が蒸発器や霜だけでなく冷気ダクトの前後の周囲壁等も余分に加熱することが起こってくる。
【0014】
従来の冷蔵庫においては、上方ヒータカバーが水平な平板状である除霜ヒータを使うのが最も一般的であるが、上方ヒータカバー等に除霜水が滞留し易いために放射に伴う除霜水の余分な加熱や蒸発が多くなる傾向がある。また、上方ヒータカバーの前後端の2個所から暖気が吐出されるため冷気ダクト内の対流が強くならず、対流による蒸発器や霜の加熱が弱くて除霜時間が延び、周囲壁の余分な加熱も増える傾向にある。これらのことから、上方ヒータカバーが水平な平板状である最も一般的な従来の除霜ヒータの場合には無駄な加熱分が多く、発明者らが以前提案した特開平8−110146 号公報に示されているように、従来の方式で霜の融解に有効な電力量は除霜ヒータに入力される電力量の1/3以下と試算されるほどである。
【0015】
また、従来の改良技術のうち特開平8−110146 号公報のものでは、上方ヒータカバー等の排水性が良くなって除霜水の余分な加熱や蒸発が減るものの、上方ヒータカバーを傾斜平板としても除霜ヒータでの暖気の発生や冷気ダクト内の対流が強くならない欠点が残っており、十分な除霜の効率化ができているものではない。
【0016】
また、従来の改良技術のうち特開平10−292974号公報のものでは、山形板の上方ヒータカバーにより除霜水の余分な加熱や蒸発が減るものの、除霜ヒータを後方に偏らせただけではあまり冷気ダクト内の対流が強くならず、また上方だけのヒータカバーでは除霜ヒータでの暖気の発生が強くならない欠点もあり、これも十分な除霜の効率化ができているものではない。
【0017】
本発明の目的は、除霜ヒータからの放射に伴う除霜水の余分な加熱や蒸発を減らすと同時に、対流における暖気の発生と冷気ダクト内の対流とを強くすることにより、除霜効率の向上すなわち除霜時間の短縮を実現して、除霜に伴う消費電力量の低減、そして最終的に冷蔵庫の消費電力量の低減を図ることにある。
【0018】
【課題を解決するための手段】
上記目的を達成するために、本発明の冷蔵庫は、蒸発器と、前記蒸発器の下方に設置され、かつヒータ本体と前記ヒータ本体の周囲に設けられるヒータカバーとからなる除霜ヒータと、前記蒸発器と前記除霜ヒータとを内部に配置した冷気ダクトとを備えた冷蔵庫において、前記ヒータカバーを前記ヒータ本体の前側と後ろ側とをそれぞれ覆う実質2部材の構造として、前記ヒータ本体の下方と上方にそれぞれ吸い込み口と吐出口を形成し、かつ前記吐出口で前記ヒータカバーの前側部材の上端が後ろ側部材の上端より上方かつ後ろ側に位置すると共に、斜め上向きから下向きへと曲げられており、かつ前記ヒータカバーの前記吐出口が前記冷気ダクトの中心より後ろ側に偏った位置にくるようにしたものである。
【0019】
そして、上記冷蔵庫において、前記除霜ヒータの前記ヒータカバーの前側部材を下半部分が前下がりに傾斜しながら突出する形状としたり、前記除霜ヒータを前記冷気ダクトの前後方向の中心より後ろ側に偏らせて配置してもよい。
【0020】
【発明の実施の形態】
本発明の実施形態の説明に先立って、図4及び図5を用いて、冷蔵庫の蒸発器周辺の構造と通常運転の状態、及び従来構造の除霜ヒータによる除霜時の状態について説明する。
【0021】
図4は従来構造の除霜ヒータをもつ従来の冷蔵庫について、冷蔵庫の箱体下半部分を側方から見た断面図であり、また図5はそのような冷蔵庫の除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【0022】
冷気強制循環式の冷蔵庫1では、各貯蔵室2は箱体壁3と扉4により断熱・区画され、通常運転時には貯蔵室2とは別に区画された冷気通路5(内部に蒸発器6が縦置きに置かれ、下部に除霜ヒータ7と上部に送風機8も置かれる)から送り出される冷気9が循環することにより冷却される。蒸発器6は他の冷凍サイクル部品から送られる冷媒により−30℃程度の低温となり、庫内を循環して戻った冷気9(全体の平均温度として氷点以下)と熱交換してさらに冷却する働きをし、冷やされた冷気9は上方の送風機8により再び庫内に送り出される。
【0023】
蒸発器6は、一般に多数のフィン10が冷媒管11に貫通される形で一体化された構造の熱交換器で、通常運転時には、貯蔵室2から戻ってくる氷点以下の冷気9よりさらに低温であり、また戻ってくる冷気9は庫内の食品からの水分蒸散や扉開閉に伴う多湿空気の侵入により湿度が高くなっているために、熱交換時の際にその表面に冷気中の水分が凝縮・凍結して霜14が形成される。
【0024】
冷蔵庫の運転を続けると付着する霜14の量が増え、ある程度以上多くなると通風抵抗の増大による風速の減少等から熱交換性能が低下し、庫内を同じ冷却状態に保つための冷蔵庫の消費電力量が増加してくる。さらに、フィン10間の空気風路が霜14でほぼ閉塞した状態にまでなると冷蔵庫の正常な運転ができなくなる(庫内を設定温度に保てなくなる)。
【0025】
これを防ぐため、一般に、冷気ダクト5内において蒸発器6の下部にやや離して除霜ヒータ7が配置され、定期的あるいは着霜量が多くなった時点等に通常運転を中断してヒータ加熱を行い、蒸発器6の霜14を融かして除く除霜が行われる。除霜により蒸発器6から霜14が除かれれば、蒸発器6の熱交換性能は回復して冷蔵庫も正常な冷却運転ができるようになる。
【0026】
しかしながら、除霜中は庫内の冷却が行われず貯蔵室2の温度上昇が起こることや、霜14以外の周辺部材を除霜で加熱した上で除霜後に再冷却する必要があって、余分に電力を消費量がすること等から、除霜の熱の利用効率を向上させて除霜時間を短縮することが望ましい。
【0027】
除霜は、蒸発器6の霜14に対し、融かすのに必要な顕熱及び潜熱を除霜ヒータ7で与えて除霜水15とし、冷気ダクト5の下方の排水口(図5に破線で示す)へと導いて取り除くものである。従来構造の除霜ヒータ7は、熱源であるヒータ本体12の周囲をヒータカバー13で覆う構造(除霜水15の滴下によるヒータ本体12の損傷・騒音発生を防ぐために上方のカバーは必須)になっている。除霜ヒータ7を作動させると、高温(400℃程度)になったヒータ本体12からの熱は、主に放射(熱線16をジグザグの矢印で示す)と対流(暖気17の流れを曲線の矢印で示す)の機構により蒸発器6の霜14に伝えられる(ただし、暖められた蒸発器から霜に熱が伝わるのは伝導による)。
【0028】
放射では、ヒータ本体12あるいは高温になったヒータカバー13からの熱線16が、近い範囲の蒸発器6や霜14には直接、さらに遠くへは周囲壁で反射しながら届き、最終的にまだ融けていない部分の霜14に伝えられる(霜の融解は除霜ヒータに近い蒸発器の下部から次第に上方に移動する形で起こる)。従来構造の除霜ヒータ7では上方のヒータカバー13が水平な平板状なので、蒸発器6から落下してきた除霜水15の多くが上方のヒータカバー13に滞留しやすい (水滴・水膜が大きくなってカバーの前後端からこぼれ落ちるまでの時間)ので、その除霜水15を氷点以上の余分な温度にまで加熱したり、その一部を蒸発させたりして熱の損失となる。また、周囲壁にアルミテープ等が貼られていて反射率を上げていても、何度も反射したり表面が水で濡れている状態なので、周囲壁も放射により余分に加熱され、熱の損失が生じる。
【0029】
また対流では、ヒータ本体12の周囲やヒータ本体12とヒータカバー13の間で空気が暖められて暖気17が発生し、密度の小さい暖気17は冷気ダクト5内を上方に上昇して蒸発器6や霜14等に触れて低温となって密度が大きくなり、途中から下降して除霜ヒータ7に戻るという流れが形成される。従来構造の除霜ヒータ7では、水平な平板状の上方のヒータカバー13の前後端という2個所から暖気17が上方に吐出されることになり、しかも除霜ヒータ7が冷気ダクト5の前後方向のほぼ中心であるため、上昇する暖気17は冷気ダクト5の中心付近を(2個所からの吐出なので)やや広がって流れることになる。このような上昇する暖気17に対し、冷気ダクト5を下降する暖気17は前後の周囲壁寄りに流れることになるので、上下に細長い冷気ダクト5内を上昇と下降の2系統ずつの暖気17の対流ができる。
【0030】
このように狭いダクトに上昇流と下降流が重なれば途中で互いに混合しやすいので、上方にまで届かない弱い対流しか形成できず、上方の蒸発器6や霜14に熱が伝わりにくくなる。対流による蒸発器6や霜14への伝熱が弱くて時間がかかれば、沿って流れる周囲壁を余分に暖めてしまうための熱の損失も多くなる。また、この従来構造の除霜ヒータ7では、ヒータカバー13に開口が多く、しかもヒータカバー13の内面で反射した熱線16がヒータ本体12に集まりにくい形状をしているため、除霜ヒータ7での暖気17の発生が強くならない欠点もある。
【0031】
従って、従来構造の除霜ヒータをもつ冷蔵庫では、除霜時における放射及び対流による除霜ヒータから霜への伝熱に非効率な点があり、除霜効率が低く、除霜に伴う消費電力量が多くなっていると考えられる。
【0032】
次に、従来の改良技術を適用した除霜ヒータによる除霜時の状態について説明する。
【0033】
図6は、従来の技術で説明した特開平8−110146 号公報の従来の改良技術を適用した冷蔵庫において、除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【0034】
この冷蔵庫では、除霜ヒータ7のヒータカバー13の上方部分が前下がりの傾斜板となっている。このようなヒータカバー13であれば、落下してきた除霜水15が上方のヒータカバー13に滞留せずにすぐに流れ落ちるので、除霜水15の余分な加熱や蒸発による放射での熱の損失は小さいものとなる。一方、対流では、上方のヒータカバー13から吐出される暖気17は傾斜板の上側となる後ろ側の端面の方から多く吐出されるものの、前側の端面からも少ないながら吐出されるので、冷気ダクト5内に形成される暖気17の対流は従来構造の場合と同じく上下2系統ずつとなり、対流をそれ程強くできない。また従来構造の場合と同じく、このヒータカバー13の形状では除霜ヒータ7での暖気17の発生が強くならない。
【0035】
従って、従来の改良技術による除霜ヒータをもつ冷蔵庫では、除霜時における放射による伝熱は改善されるが、対流による伝熱には非効率な点が残っているため、除霜効率の改善は十分でなく、除霜に伴う消費電力量の低減も十分でないと考えられる。
【0036】
図7は、従来の技術で説明した特開平10−292974号公報の従来の他の改良技術を適用した冷蔵庫において、除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【0037】
この冷蔵庫では、除霜ヒータ7のヒータカバー13が上方部分だけで山形板の形状であり、かつ除霜ヒータ7が冷気ダクト5の前後方向の中心より後ろ側に偏らせて配置されている。このようなヒータカバー13であれば、前述の従来の改良技術と同様に、除霜水15は上方のヒータカバー13に滞留しにくいので、除霜水15の余分な加熱や蒸発による放射での熱の損失は小さいものとなる。一方、対流では、除霜ヒータ7の位置が冷気ダクトの中心より後ろ側に偏っているものの、上方のヒータカバー13から吐出される暖気17は山形板の前後端から同程度の量で吐出されて広がって上昇するので、冷気ダクト5内に形成される暖気17の対流は広がった上昇流に下降流が前後の周囲壁沿い(主に前側)に限られた形となり、対流をそれ程強くできない。また従来構造の場合と同じく、このヒータカバー13の形状では除霜ヒータ7での暖気17の発生が強くならない。
【0038】
従って、従来の他の改良技術による除霜ヒータをもつ冷蔵庫でも、除霜時における放射による伝熱は改善されるが、対流による伝熱には非効率な点が残っているため、除霜効率の改善は十分でなく、除霜に伴う消費電力量の低減も十分でないと考えられる。
【0039】
さらに、本発明の典型的な構成の除霜ヒータによる除霜時の状態について説明する。
【0040】
図8は、本発明の除霜ヒータを適用した冷蔵庫において、除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【0041】
本発明の構成の除霜ヒータ7では、ヒータカバー13がヒータ本体12の前側と後ろ側とをそれぞれ覆う実質2部材の構造となっていて、ヒータ本体12の下方と上方の開口がそれぞれ暖気17の吸い込み口と吐出口となっている。ヒータカバー13は、前側と後ろ側の部材が吸い込み口や吐出口で梯子状に連結するような形状とすれば、ヒータ本体12の軸方向両端部分も含めて1部材として形成することも可能である。ヒータカバー13の上部の吐出口では、前側部材の上端が後ろ側部材の上端より上方かつ後ろ側の位置にまで延びていると共に、庇のように先端近くのみ斜め上向きから下向きへと曲げられており、また吐出口の位置は冷気ダクト5の前後方向の中心より後ろ側に偏よらせてある。
【0042】
このような本発明の除霜ヒータであれば、除霜の際の放射では、ヒータカバー13の外表面はほとんど斜面ばかりで除霜水15が滞留することはないし、ヒータカバー13の前側と後ろ側が吐出口で上下に重なるが、上にくる前側部分の上端が庇状になっているので、除霜水15がカバー内部に入ることもない。これにより、ヒータカバー13の内外で除霜水17の余分な加熱や蒸発は従来の改良技術のものより少なくできる。
【0043】
また対流では、まずヒータカバー13が前後を覆うので開口が少なく、ヒータカバー13の内面で反射された熱線16もヒータ本体12に集まりやすい形状であるため、除霜ヒータ7での暖気17の発生が多くなる利点がある。また吐出口は、前側と後ろ側の部材の上端の隙間として形成されるので、冷気ダクト5の前後方向に1個所のみとなる。さらに、ヒータカバー13の吐出口は冷気ダクト5の前後方向の中心より後ろ側に偏らせてある。従って、除霜ヒータ7で多く発生した暖気17が1個所で後ろ寄りの吐出口から集中して吐出されるため、冷気ダクト5内には後ろ側の周囲壁に沿って上昇し、前側の周囲壁に沿って下降する暖気17の流れが形成される。この対流は、暖気17の発生量が多いと共に、上下に細長い冷気ダクト5内を上昇と下降がほぼ1系統だけとなるため、途中での混合も少なくて上方に届く強いものとなる。対流が強く上方の蒸発器6や霜14に熱が伝わりやすければ霜の融解に時間がかからず、沿って流れる周囲壁の加熱も少なくなる。
【0044】
従って、本発明の除霜ヒータを適用した冷蔵庫では、除霜時における放射及び対流による伝熱が効率的になるため、除霜効率が十分に改善され、除霜に伴う消費電力量の低減が可能になると考えられる。
【0045】
発明者らは、上記の従来構造や従来の改良技術、そして本発明の構成での除霜ヒータの除霜性能について定量的に確認するため、冷蔵庫の除霜状態を模擬したモデル実験を行った。
【0046】
除霜のモデル実験の方法としては、実際の冷蔵庫の部品やスチロフォーム板を用いて冷気ダクト部分のみを構成し、蒸発器に氷点以下の流体を流しながら低温・多湿空気と熱交換させて着霜させ、流体・空気を止めた状態で除霜ヒータに通電して除霜し、除霜水量や各部温度の時間変化を測定するようにした。供試した除霜ヒータの仕様は、既に図5ないし図8により除霜状態を説明した従来構造 (「従来型」)、従来の改良技術(特開平8−110146 号公報のもの、「改良技術A」)及び従来の他の改良技術(特開平10−292974号公報のもの、「改良技術B」)、そして本発明の構成(「本発明」)である。
【0047】
図9は除霜のモデル実験での従来構造と従来の改良技術の除霜ヒータでの除霜特性を比較して示した図である。従来構造の「従来型」に比べ従来の改良技術の「改良型A」では、冷気ダクトの下方に排出される除霜水量の最終値が10%ほど多いにもかかわらずほぼ同じ時間で除霜が終了し、若干の改善となっている (ただし、蒸発器の上部の空気温度の立ち上がりは「改良型A」の方がやや遅い)。これは、「従来型」より「改良型A」では除霜の放射伝熱の効率が向上されるが対流伝熱の効率はあまり変わらないという、既に行った定性的な説明を裏付ける結果である。
【0048】
図10は従来構造と従来の他の改良技術の除霜ヒータについての同様な除霜特性である。この場合は、従来構造の「従来型」に比べ従来の他の改良技術の「改良型B」では、除霜水量の最終値が10%ほど多いが除霜時間も10%ほどが長くなっており、あまり改善は見られない(蒸発器の上部の空気温度の立ち上がりも「改良型B」の方がやや遅い)。既に行った説明では、「従来型」より「改良型B」では除霜の放射伝熱の効率が向上されるが対流伝熱の効率はあまり変わらないので若干の改善が予想されたが、実際には定性的な説明のような改善は得られない結果となっている。
【0049】
図11は従来構造と本発明の構成の除霜ヒータについての同様な除霜特性である。前述の2つの従来の改良技術のものと異なり、本発明の構成の「本発明」では「従来型」に比べて、最終除霜水量が50%も多いにもかかわらず10%以上短い時間で除霜が終了している(蒸発器の上部の空気温度の立ち上がりは「本発明」の方がかなり早い)。これは、「従来型」より「本発明」では除霜の放射伝熱と対流伝熱が共に効率的に行われるようになるので改善が大きいという、既に行った説明とも符合するものである。
【0050】
以上の除霜のモデル実験の結果から、本発明の構成の除霜ヒータにより、従来の改良技術等の場合より大きな従来構造からの除霜効率の改善、即ち除霜時間の短縮や除霜に伴う消費電力量の低減が得られることがわかる。
【0051】
以下に本発明の具体的な実施形態を図面を用いて説明する。
【0052】
図1は、本発明になる第1の実施形態の冷蔵庫についての除霜ヒータ周辺の部分断面図である。この本発明の第1の実施形態での除霜ヒータの構造は、既に前出の図8で本発明の典型的な構成の除霜ヒータとして説明したものとほぼ同じであり、除霜ヒータ7はヒータカバー13がヒータ本体12の前側と後ろ側とをそれぞれ覆う実質2部材の構造となっていて、ヒータ本体12の下方と上方の開口がそれぞれ暖気17の吸い込み口と吐出口になっている。また、ヒータカバー
13の上部の吐出口では、前側部材の上端が後ろ側部材の上端より上方かつ後ろ側の位置にまで延びていると共に、庇のように先端近くで斜め上向きから下向きへと曲げられており、また吐出口の位置を冷気ダクト5の前後方向の中心より後ろ側に偏よらせていることも特徴である。
【0053】
このような本発明の除霜ヒータであれば、既に図8で説明したように、除霜時の放射伝熱では、ヒータカバー13の外表面はほとんど斜面ばかりで除霜水15が滞留することはないし、ヒータカバー13の前側と後ろ側が吐出口で上下に重なるが上にくる前側部分の上端が庇状になっているので除霜水15がカバー内部に入ることもない。これにより、ヒータカバー13の内外で除霜水の余分な加熱や蒸発は従来の改良技術のものより少なくでき、またヒータカバー13があまり濡れずに高温であれば表面からの熱線16の放射も増えるようにもなる。
【0054】
また、対流では、まずヒータカバー13が前後を覆うので開口が少なく、ヒータカバー13の内面で反射された熱線16もヒータ本体12に集まりやすい形状であるため、除霜ヒータ7での暖気17の発生が多くなる。さらに吐出口は、前側と後ろ側の部材の上端の隙間として形成されるので冷気ダクト5の前後方向に1個所のみとなり、かつヒータカバー13の吐出口は冷気ダクト5の前後方向の中心より後ろ側に偏らせてある。従って、除霜ヒータ7で多く発生した暖気17が1個所で後ろ寄りの吐出口から集中して吐出されるため、冷気ダクト5内には後ろ側の周囲壁に沿って上昇し、前側の周囲壁に沿って下降する暖気17の流れが形成される。
【0055】
この対流は、暖気17の発生量が多いと共に、上下に細長い冷気ダクト5内を上昇と下降がほぼ1系統だけとなるため、途中での混合も少なくて上方に届く強いものとなる。対流が強く上方の蒸発器6や霜14に熱が伝わりやすければ霜の融解に時間がかからず、沿って流れる周囲壁の加熱も少なくなる。
【0056】
以上のことから、本発明の第1の実施形態の冷蔵庫では、除霜ヒータによる除霜時の放射及び対流による伝熱が効率的になるため、除霜効率が十分に改善され、除霜に伴う消費電力量の低減が可能になる。
【0057】
図2は、本発明になる第2の実施形態の冷蔵庫についての除霜ヒータ周辺の部分断面図である。この本発明の第2の実施形態での除霜ヒータの構造は、除霜ヒータ7のヒータカバー13の前側部材を下半部分が前下がりに傾斜しながら突出する形状としたことに特徴がある。このような構造の違いがあるとしても、本発明の第1の実施形態に比べた除霜状態は暖気17の発生量が若干減るか同等のままという差しか生じないと考えられるので、既に説明したことからわかるように、除霜ヒータ7の除霜特性の従来構造からの改善効果はほぼ同じであり、除霜効率の改善や除霜に伴う消費電力量の低減も同様に得られる。
【0058】
一方で、この本発明の第2の実施形態での除霜ヒータに特有の付随的な効果には、次のものがある。冷蔵庫の通常運転時では、大半の冷気9は冷気ダクト5の前側から除霜ヒータ7に衝突ながら流入し、すぐに上方に曲げられて蒸発器6に向かう。図1の本発明の第1の実施形態での除霜ヒータでは、ヒータカバー13の前側の部材の下半部分が垂直に近いので冷気9の流れを乱す可能性があるのに比べ、この本発明の第2の実施形態での除霜ヒータでは、ヒータカバー13の前側の部材の下半部分が前下がりに傾斜しているので多くの冷気9を斜め上の蒸発器6に向かって円滑に流すことができる。これにより、冷蔵庫の通常運転時に冷気9の風量増加や乱れ低減により蒸発器6の熱交換性能が向上でき、冷蔵庫の消費電力量が低減できるようになる。
【0059】
図3は、本発明になる第3の実施形態の冷蔵庫についての除霜ヒータ周辺の部分断面図である。この本発明の第3の実施形態での除霜ヒータの構造は、除霜ヒータ7を冷気ダクト5の前後方向の中心より後ろ側に偏らせて配置したことに特徴がある。このような構造の違いがあっても、本発明の第1の実施形態に比べた除霜状態は暖気17の吐出口と共に吸い込み口も後ろ側に偏るだけで形成される対流の状態はほぼ変わらないと考えられるので、既に説明したことからわかるように、除霜ヒータ7の除霜特性に関する従来構造からの改善効果はほぼ同じであり、除霜効率の改善や除霜に伴う消費電力量の低減も同様に得られる。
【0060】
一方で、この本発明の第3の実施形態での除霜ヒータには、本発明の第2の実施形態と同様な付随的な効果がある。冷蔵庫の通常運転時に冷気ダクト5の前側から除霜ヒータ7に衝突するように流入する冷気9に対し、この本発明の第3の実施形態では除霜ヒータ7が冷気ダクト5の後ろ側にずれており前側が広くなっているので、冷気9の多くを斜め上の蒸発器6に向かって円滑に流すことができる。これにより、本発明の第2の実施形態と同様に、冷蔵庫の通常運転時に冷気9の風量増加や乱れ低減により蒸発器6の熱交換性能が向上でき、冷蔵庫の消費電力量が低減できるようになる。
【0061】
【発明の効果】
本発明によれば、除霜ヒータからの放射に伴う除霜水の余分な加熱や蒸発が減らせると同時に、対流における暖気の発生と冷気ダクト内の対流とを強くできるので、除霜時間を短縮して除霜に伴う消費電力量を低減し、そして冷蔵庫の消費電力量を低減することができる。
【図面の簡単な説明】
【図1】本発明になる第1の実施形態の冷蔵庫について除霜ヒータ周辺の部分断面図である。
【図2】本発明になる第2の実施形態の冷蔵庫について除霜ヒータ周辺の部分断面図である。
【図3】本発明になる第3の実施形態の冷蔵庫について除霜ヒータ周辺の部分断面図である。
【図4】従来の冷蔵庫について箱体下半部分を側方から見た断面図である。
【図5】従来の冷蔵庫において、除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【図6】従来の改良技術を適用した冷蔵庫において、除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【図7】従来の他の改良技術を適用した冷蔵庫において、除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【図8】本発明の冷蔵庫において、除霜時の伝熱・除霜水の状態を示した蒸発器周辺の側方から見た部分断面図である。
【図9】除霜のモデル実験での従来構造と従来の改良技術の除霜ヒータでの除霜特性を比較して示した特性図である。
【図10】除霜のモデル実験での従来構造と従来の他の改良技術の除霜ヒータでの除霜特性を比較して示した特性図である。
【図11】除霜のモデル実験での従来構造と本発明の除霜ヒータでの除霜特性を比較して示した特性図である。
【符号の説明】
5…冷気ダクト、6…蒸発器、7…除霜ヒータ、9…冷気、12…ヒータ本体、13…ヒータカバー、14…霜、15…除霜水、16…熱線、17…暖気。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator of a type that performs defrosting by heating with a defrosting heater disposed below an evaporator.
[0002]
[Prior art]
In general, the structure of a household refrigerator can be broadly divided into a box / door part having a role of a heat insulating container / strength member and a refrigeration cycle part for cooling the inside of the room in terms of functions.
[0003]
Each box / door has an integrated structure with an outer box (mainly made of steel plate) sandwiching a heat insulating material (mainly made of urethane foam), and the inside of the box is a freezer or refrigerated room. A partition member (single heat insulating resin or a composite structure of resin and heat insulating material) for partitioning into a storage room or cold air passage, etc., and an interior member (mainly made of resin) for finely partitioning the storage room or the inside of the door ).
[0004]
In addition, the refrigeration cycle section circulates the refrigerant that is installed outside the cabinet, such as a compressor that boosts and circulates the refrigerant and a condenser that radiates heat outside the cabinet, an evaporator that is installed inside the cabinet and performs a cooling action, and the refrigerant. In order to achieve this, it is composed of a refrigerant pipe connecting the parts.
[0005]
In most of such refrigerators except small ones, the inside of the refrigerator is cooled by a cold air forced circulation system. It is an evaporator installed in a cold air duct, which is a separate compartment from the storage room, and collects and cools the cold air that circulates through each storage room (the refrigerant takes the heat from the cold air and evaporates here). Then, it is condensed while dissipating heat with a condenser outside the cabinet), and the cold air having a lower temperature is circulated to each storage chamber by a blower.
[0006]
In an evaporator (a heat exchanger with a structure in which a large number of fins penetrate through a refrigerant pipe), the cold air returning from the storage room is below the freezing point at the average temperature, and moisture from food in the warehouse Since the humidity of the cold air is high due to the invasion of humid air accompanying transpiration and opening / closing of the door, the moisture in the cold air condenses and freezes on the surface of the evaporator at a low temperature during heat exchange, and frost is formed.
[0007]
As a result of continuing the operation of the refrigerator, when the amount of frost formation in the evaporator increases to some extent, the heat exchange performance is significantly reduced due to a decrease in wind speed due to an increase in ventilation resistance, and the power consumption of the refrigerator is increased. Furthermore, when the air air path between the fins is almost closed with frost, the amount of heat exchange is greatly reduced, and normal operation of the refrigerator cannot be continued. In order to prevent this, in general, a defrost heater is arranged in the cold air duct slightly apart from the lower part of the evaporator, and the defrost is removed by heating the heater periodically or when the amount of frost formation increases. Is done.
[0008]
In such defrosting, the inside of the storage is not cooled during defrosting, the temperature of the storage room rises, and heating by a defrost heater or recooling after defrosting (evaporator and surroundings above freezing point) For example, it is desirable to improve the utilization efficiency of the heat of the heater in the defrosting to shorten the defrosting time because an extra power consumption is required for cooling the members. Therefore, conventionally, various improved techniques related to such a defrosting method have been disclosed.
[0009]
For example, Japanese Patent Laid-Open No. 8-110146 previously proposed by the inventors discloses that a heater cover above or below the defrost heater is a chevron plate, an inclined flat plate, or a curved surface plate that protrudes upward. It is intended to reduce the problem of the conventional defrost heater that the defrost water stays and is heated and evaporated to waste the heat of the defrost heater.
[0010]
Japanese Patent Application Laid-Open No. 10-292974 discloses that a defrost heater having an upper heater cover such as a chevron plate is arranged behind the cold air duct so that the warm air generated by the defrost heater is transferred only before and after the evaporator. Instead of discharging over a wide range, the convection of warm air in the cold air duct is more active than before, and the defrosting is made more efficient.
[0011]
[Problems to be solved by the invention]
Defrosting is intended to remove the frost from the evaporator by applying sensible heat and latent heat necessary for melting it to the defrosted water with a defrosting heater and guiding it to the drain outlet below the cold air duct. . When the defrost heater is activated, the heat from the heater body (typically a glass tube structure with nichrome wire inside) is heated to the frost of the evaporator by two mechanisms: radiation and convection. Reportedly.
[0012]
First, in radiation, the heat rays from the high-temperature heater body and the surrounding heater cover (generally made of aluminum plate) (heated by radiation from the heater body) reach the evaporator or frost directly or while reflecting off the surrounding wall. (This includes the amount that is transmitted from the heated evaporator by conduction) and is finally transmitted to frost. In this radiation process, excessive heating and evaporation of defrost water that has fallen on the cover and the wall surface are reflected on the heater cover and the surrounding wall where the heat rays are reflected. The rate will not be 100%, and the reflectivity will drop if wetted with water), with extra heating of the surrounding walls.
[0013]
In convection, the air around the heater body or between the heater body and the heater cover is warmed, discharged from the front and rear ends of the upper heater cover toward the evaporator, and convects upward and downward in the cold air duct that is elongated vertically. Heat is transferred to the evaporator and frost by warm air. In this convection process, the convection warm air not only heats the evaporator and frost but also the surrounding walls before and after the cold air duct.
[0014]
In conventional refrigerators, it is most common to use a defrost heater whose upper heater cover is a flat plate, but since defrost water tends to stay in the upper heater cover or the like, defrost water accompanying radiation There is a tendency for excessive heating and evaporation to increase. Also, since warm air is discharged from the two front and rear ends of the upper heater cover, the convection in the cold air duct is not strong, the heating of the evaporator and frost by the convection is weak, the defrosting time is extended, and the surrounding wall is excessive Heating also tends to increase. For these reasons, in the case of the most common conventional defrost heater in which the upper heater cover has a horizontal flat plate shape, there is a lot of wasted heating, which is disclosed in Japanese Patent Laid-Open No. 8-110146 previously proposed by the inventors. As shown, the amount of power effective for melting frost in the conventional method is estimated to be 1/3 or less of the amount of power input to the defrost heater.
[0015]
Moreover, in the conventional improvement technique disclosed in Japanese Patent Application Laid-Open No. 8-110146, although the drainage of the upper heater cover and the like is improved and excessive heating and evaporation of the defrost water is reduced, the upper heater cover is an inclined flat plate. However, there remains a defect that the generation of warm air in the defrost heater and the convection in the cold air duct do not become strong, and sufficient defrosting efficiency is not achieved.
[0016]
Further, in the conventional improvement technique disclosed in Japanese Patent Application Laid-Open No. 10-292974, excessive heating and evaporation of defrost water is reduced by the upper heater cover of the chevron plate, but only by deviating the defrost heater backward. There is a drawback that the convection in the cold air duct is not so strong and the heater cover only above does not increase the generation of warm air in the defrost heater, which is also not sufficient for efficient defrosting.
[0017]
An object of the present invention is to reduce the defrosting efficiency by reducing the excessive heating and evaporation of defrost water accompanying radiation from the defrost heater, and at the same time, strengthening the generation of warm air in the convection and the convection in the cold air duct. The improvement, that is, shortening of the defrosting time, is to reduce the power consumption accompanying defrosting and finally to reduce the power consumption of the refrigerator.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, a refrigerator according to the present invention includes an evaporator, a defrost heater that is installed below the evaporator and includes a heater body and a heater cover provided around the heater body, and In a refrigerator including an evaporator and a cold air duct in which the defrost heater is disposed, the heater cover is configured as a substantially two-member structure that covers the front side and the rear side of the heater body, respectively. And the upper end of the front member of the heater cover is located above and behind the upper end of the rear member, and is bent from obliquely upward to downward. And the discharge port of the heater cover is located at a position biased to the rear side from the center of the cold air duct.
[0019]
In the refrigerator, the front member of the heater cover of the defrost heater has a shape in which a lower half portion protrudes while being inclined downward, or the defrost heater is located behind the center of the cold air duct in the front-rear direction. It may be arranged in a biased manner.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Prior to the description of the embodiment of the present invention, the structure around the evaporator of the refrigerator, the state of normal operation, and the state at the time of defrosting by the conventional defrosting heater will be described with reference to FIGS.
[0021]
FIG. 4 is a cross-sectional view of a conventional refrigerator having a defrost heater having a conventional structure as seen from the side of the lower half of the refrigerator box, and FIG. 5 shows heat transfer / defrosting of such a refrigerator. It is the fragmentary sectional view seen from the side of the evaporator periphery which showed the state of defrost water.
[0022]
In the cold air forced circulation refrigerator 1, each storage chamber 2 is insulated and partitioned by a box wall 3 and a door 4, and during normal operation, a cold air passage 5 (an evaporator 6 is vertically disposed inside) is partitioned separately from the storage chamber 2. It cools by circulating the cool air 9 sent from the defrost heater 7 in the lower part, and the blower 8 in the upper part. The evaporator 6 is cooled to about −30 ° C. by the refrigerant sent from other refrigeration cycle parts, and further cools by exchanging heat with the cold air 9 (the average temperature below the freezing point as a whole average temperature) that circulates and returns inside Then, the cooled cold air 9 is sent out again into the warehouse by the upper blower 8.
[0023]
The evaporator 6 is generally a heat exchanger having a structure in which a large number of fins 10 are integrated so as to penetrate the refrigerant pipe 11, and at a lower temperature than the cold air 9 below the freezing point returning from the storage chamber 2 during normal operation. In addition, since the returning cold air 9 has a high humidity due to moisture transpiration from food in the warehouse and the intrusion of humid air accompanying opening and closing of the door, the moisture in the cold air on the surface at the time of heat exchange Is condensed and frozen to form frost 14.
[0024]
Continuing the refrigerator operation will increase the amount of frost 14 adhering, and if it exceeds a certain level, the heat exchange performance will decrease due to the decrease in wind speed due to the increase in draft resistance, etc. The amount will increase. Further, when the air air path between the fins 10 is almost blocked by the frost 14, the refrigerator cannot be operated normally (the interior cannot be kept at the set temperature).
[0025]
In order to prevent this, in general, a defrost heater 7 is arranged in the cold air duct 5 slightly apart from the lower part of the evaporator 6, and the normal operation is interrupted regularly or when the amount of frost formation increases, etc. And defrosting is performed by melting and removing the frost 14 of the evaporator 6. If the frost 14 is removed from the evaporator 6 by defrosting, the heat exchange performance of the evaporator 6 is restored, and the refrigerator can also perform normal cooling operation.
[0026]
However, during defrosting, the interior of the storage chamber 2 is not cooled during defrosting, and it is necessary to recool after defrosting after heating the peripheral members other than frost 14 with defrosting. Therefore, it is desirable to improve the utilization efficiency of the heat of defrosting and shorten the defrosting time because of the power consumption.
[0027]
In the defrosting, the frost 14 of the evaporator 6 is given sensible heat and latent heat necessary for melting by the defrost heater 7 to be defrosted water 15, and a drain port below the cold air duct 5 (broken line in FIG. 5). To be removed). The conventional defrost heater 7 has a structure in which the heater body 12 that is a heat source is covered with a heater cover 13 (the upper cover is essential to prevent damage to the heater body 12 and noise generation due to dripping of the defrost water 15). It has become. When the defrosting heater 7 is operated, the heat from the heater main body 12 that has become high temperature (about 400 ° C.) is mainly radiated (the hot wire 16 is indicated by a zigzag arrow) and convection (the flow of the warm air 17 is indicated by a curved arrow). Is transmitted to the frost 14 of the evaporator 6 (however, heat is transferred from the warmed evaporator to the frost by conduction).
[0028]
In radiation, the heat rays 16 from the heater body 12 or the heated heater cover 13 reach the evaporator 6 and the frost 14 in the near range directly and further away from the surrounding wall while being reflected by the surrounding wall, and finally melt still. It is transmitted to the frost 14 of the non-defrosted portion (melting of the frost occurs in the form of gradually moving upward from the lower part of the evaporator close to the defrosting heater). In the defrost heater 7 having a conventional structure, since the upper heater cover 13 is a horizontal flat plate, most of the defrost water 15 falling from the evaporator 6 tends to stay in the upper heater cover 13 (water droplets / water film is large). Therefore, the defrosted water 15 is heated to an excessive temperature above the freezing point or part of the defrosted water 15 is evaporated, resulting in heat loss. In addition, even if aluminum tape or the like is applied to the surrounding wall and the reflectance is increased, the surrounding wall is excessively heated by radiation because it is reflected many times or the surface is wet with water, and heat loss Occurs.
[0029]
In convection, air is warmed around the heater body 12 or between the heater body 12 and the heater cover 13 to generate warm air 17, and the warm air 17 having a low density rises upward in the cold air duct 5 to evaporate the evaporator 6. Then, the temperature is lowered by touching the frost 14 or the like, the density is increased, and a flow is formed in which it descends from the middle and returns to the defrost heater 7. In the defrost heater 7 having the conventional structure, the warm air 17 is discharged upward from the two front and rear ends of the horizontal flat plate-shaped upper heater cover 13, and the defrost heater 7 is moved in the front-rear direction of the cold air duct 5. Therefore, the rising warm air 17 flows slightly spread around the center of the cold air duct 5 (since it is discharged from two locations). In contrast to the rising warm air 17, the warm air 17 descending the cool air duct 5 flows closer to the front and rear surrounding walls. Convection is possible.
[0030]
In this way, if the upflow and the downflow overlap in a narrow duct, they are easy to mix with each other, so that only weak convection that does not reach the upper side can be formed, and heat is not easily transmitted to the upper evaporator 6 or frost 14. If heat transfer to the evaporator 6 and the frost 14 due to convection is weak and takes a long time, the heat loss due to extra warming of the surrounding wall flowing along it also increases. Further, in the defrost heater 7 having the conventional structure, the heater cover 13 has many openings, and the heat rays 16 reflected from the inner surface of the heater cover 13 are difficult to gather in the heater body 12. There is also a drawback that the generation of warm air 17 does not become strong.
[0031]
Therefore, in a refrigerator having a defrost heater having a conventional structure, there is an inefficiency in heat transfer from the defrost heater to frost by radiation and convection during defrosting, the defrosting efficiency is low, and power consumption associated with defrosting The amount is thought to be increasing.
[0032]
Next, the state at the time of defrosting by the defrosting heater to which the conventional improved technique is applied is demonstrated.
[0033]
FIG. 6 is a side view of the evaporator around the side showing the state of heat transfer / defrost water during defrosting in a refrigerator to which the conventional improved technique of Japanese Patent Laid-Open No. 8-110146 described in the prior art is applied. FIG.
[0034]
In this refrigerator, the upper part of the heater cover 13 of the defrosting heater 7 is an inclined plate with a front lowering. With such a heater cover 13, the defrosted water 15 that has fallen does not stay in the upper heater cover 13, but immediately flows down, so heat loss due to radiation due to excessive heating and evaporation of the defrosted water 15. Will be small. On the other hand, in convection, warm air 17 discharged from the upper heater cover 13 is discharged more from the rear end surface, which is the upper side of the inclined plate, but is also discharged from the front end surface with a small amount. The convection of the warm air 17 formed in 5 has two upper and lower systems as in the conventional structure, and the convection cannot be so strong. As in the case of the conventional structure, the shape of the heater cover 13 does not increase the warm air 17 generated in the defrost heater 7.
[0035]
Therefore, in a refrigerator with a defrost heater using the conventional improved technology, heat transfer due to radiation during defrosting is improved, but inefficiency remains in heat transfer due to convection. Is not sufficient, and it is considered that the reduction in power consumption accompanying defrosting is not sufficient.
[0036]
FIG. 7 is a side of an evaporator surrounding the state of heat transfer / defrost water at the time of defrosting in a refrigerator to which another conventional improvement technique of Japanese Patent Laid-Open No. 10-292974 described in the prior art is applied. It is the fragmentary sectional view seen from the direction.
[0037]
In this refrigerator, the heater cover 13 of the defrost heater 7 is in the shape of a chevron plate only at the upper portion, and the defrost heater 7 is arranged so as to be biased rearward from the front-rear center of the cold air duct 5. In the case of such a heater cover 13, the defrost water 15 is unlikely to stay in the upper heater cover 13 as in the above-described conventional improved technology. The heat loss is small. On the other hand, in the convection, although the position of the defrost heater 7 is biased to the rear side from the center of the cold air duct, the warm air 17 discharged from the upper heater cover 13 is discharged in the same amount from the front and rear ends of the chevron plate. Therefore, the convection of the warm air 17 formed in the cold air duct 5 is limited to the extended upward flow along the front and rear peripheral walls (mainly the front side), and the convection cannot be so strong. . As in the case of the conventional structure, the shape of the heater cover 13 does not increase the warm air 17 generated in the defrost heater 7.
[0038]
Therefore, even in a refrigerator having a defrosting heater according to another conventional improvement technique, heat transfer due to radiation during defrosting is improved, but inefficiency remains in heat transfer due to convection. It is considered that the improvement in the power consumption is not sufficient, and the reduction in power consumption accompanying defrosting is not sufficient.
[0039]
Furthermore, the state at the time of defrosting by the defrosting heater of the typical structure of this invention is demonstrated.
[0040]
FIG. 8 is a partial cross-sectional view seen from the side of the periphery of the evaporator showing the state of heat transfer / defrost water during defrosting in a refrigerator to which the defrosting heater of the present invention is applied.
[0041]
In the defrosting heater 7 having the configuration of the present invention, the heater cover 13 has a substantially two-member structure that covers the front side and the rear side of the heater body 12, and the lower and upper openings of the heater body 12 are warm air 17. It is a suction port and a discharge port. The heater cover 13 can be formed as a single member including both axial end portions of the heater body 12 if the front and rear members are connected in a ladder shape at the suction port and the discharge port. is there. At the upper discharge port of the heater cover 13, the upper end of the front member extends to a position above and behind the upper end of the rear member, and is bent from the diagonally upward direction to the downward direction only near the tip like a ridge. In addition, the position of the discharge port is biased to the rear side from the center of the cold air duct 5 in the front-rear direction.
[0042]
With such a defrosting heater according to the present invention, the defrosting water 15 does not stay on the outer surface of the heater cover 13 because of the radiation at the time of defrosting, and the front side and the rear side of the heater cover 13 do not stay. Although the side overlaps vertically at the discharge port, the defrosted water 15 does not enter the inside of the cover because the upper end of the front side portion that comes up has a bowl shape. As a result, extra heating and evaporation of the defrost water 17 inside and outside the heater cover 13 can be less than that of the conventional improved technology.
[0043]
In convection, first, since the heater cover 13 covers the front and back, there are few openings, and the heat rays 16 reflected from the inner surface of the heater cover 13 are also likely to gather in the heater body 12, so that warm air 17 is generated in the defrost heater 7. There is an advantage that increases. Further, since the discharge port is formed as a gap between the upper ends of the front and rear members, there is only one discharge port in the front-rear direction of the cold air duct 5. Furthermore, the discharge port of the heater cover 13 is biased to the rear side from the center of the cold air duct 5 in the front-rear direction. Accordingly, since the warm air 17 generated a lot in the defrost heater 7 is concentrated and discharged from the rear outlet at one location, it rises along the rear peripheral wall in the cool air duct 5 and the front periphery. A flow of warm air 17 descending along the wall is formed. This convection has a large amount of warm air 17 generated and has only one system of rising and lowering in the cold air duct 5 that is vertically elongated, so that there is little mixing on the way and it is strong that reaches upward. If the convection is strong and heat is easily transmitted to the upper evaporator 6 and the frost 14, the frost will not take time to melt and the heating of the surrounding walls flowing along it will be reduced.
[0044]
Therefore, in the refrigerator to which the defrosting heater of the present invention is applied, heat transfer by radiation and convection during defrosting becomes efficient, so that the defrosting efficiency is sufficiently improved and the power consumption accompanying defrosting is reduced. It will be possible.
[0045]
The inventors conducted a model experiment simulating the defrosting state of the refrigerator in order to quantitatively check the defrosting performance of the above-described conventional structure, the conventional improved technology, and the defrosting heater in the configuration of the present invention. .
[0046]
As a model experiment method for defrosting, only the cold air duct part is constructed using actual refrigerator parts and styrofoam plates, and heat is exchanged with low-temperature and high-humidity air while flowing below the freezing point through the evaporator. In a state where the fluid and air were stopped, the defrost heater was energized to defrost, and the amount of defrost water and the time change of each part temperature were measured. The specifications of the defrost heaters tested are the conventional structure ("conventional type") that has already explained the defrost state with reference to FIGS. 5 to 8, the conventional improved technique (Japanese Patent Laid-Open No. 8-110146, "the improved technique"). A ") and other conventional improvement techniques (Japanese Patent Laid-Open No. 10-292974," Improvement technique B "), and the configuration of the present invention (" present invention ").
[0047]
FIG. 9 is a diagram comparing the defrost characteristics of the conventional structure in the defrost model experiment and the defrost heater of the conventional improved technology. Compared with the “conventional type” of the conventional structure, the “improved type A” of the conventional improved technology defrosts in almost the same time even though the final amount of defrosted water discharged below the cold air duct is about 10%. This is a slight improvement (however, the rise of the air temperature at the top of the evaporator is slightly slower for “Improved A”). This is a result supporting the qualitative explanation already given that the efficiency of radiant heat transfer for defrosting is improved in “modified type A” rather than “conventional type”, but the efficiency of convective heat transfer does not change much. .
[0048]
FIG. 10 shows similar defrosting characteristics for the conventional structure and other conventional defrosting heaters. In this case, the final value of the amount of defrost water is about 10% longer in the “improved type B” of another conventional improved technique than the “conventional type” of the conventional structure, but the defrost time is also about 10% longer. Therefore, there is not much improvement (the rise of the air temperature at the top of the evaporator is also slightly slower with “improved type B”). In the explanation that has already been given, the efficiency of radiant heat transfer for defrosting is improved in "Improved type B" rather than "conventional type", but the efficiency of convective heat transfer is not changed so much. However, there is no improvement such as qualitative explanation.
[0049]
FIG. 11 shows similar defrosting characteristics for the conventional structure and the defrosting heater of the present invention. Unlike the above-mentioned two conventional improved technologies, the “present invention” of the configuration of the present invention has a time shorter by 10% or more than the “conventional type” although the final defrost water amount is 50% more. Defrosting has been completed (the rise of the air temperature at the top of the evaporator is considerably faster in the “present invention”). This coincides with the explanation already made that the improvement is great because both the radiant heat transfer and the convective heat transfer of the defrost are efficiently performed in the present invention rather than the “conventional type”.
[0050]
From the results of the above defrost model experiment, the defrost heater having the configuration of the present invention is used to improve the defrost efficiency from the conventional structure, which is larger than in the case of the conventional improved technology, that is, to shorten the defrost time and defrost. It turns out that the reduction of the power consumption accompanying it is obtained.
[0051]
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0052]
FIG. 1 is a partial cross-sectional view around the defrosting heater for the refrigerator according to the first embodiment of the present invention. The structure of the defrosting heater according to the first embodiment of the present invention is substantially the same as that described above as the defrosting heater having the typical configuration of the present invention in FIG. Has a substantially two-member structure in which the heater cover 13 covers the front side and the rear side of the heater body 12, respectively, and the lower and upper openings of the heater body 12 serve as a suction port and a discharge port for the warm air 17, respectively. . Also heater cover
In the upper 13 outlet, the upper end of the front member extends to a position above and behind the upper end of the rear member, and is bent obliquely upward to downward near the tip like a ridge, Further, the position of the discharge port is also deviated from the center in the front-rear direction of the cold air duct 5 to the rear side.
[0053]
If it is such a defrost heater of this invention, as already demonstrated in FIG. 8, in the radiant heat transfer at the time of defrost, the outer surface of the heater cover 13 is almost only a slope, and defrost water 15 stays. In addition, the front side and the rear side of the heater cover 13 overlap each other vertically at the discharge port, but the upper end of the front side portion that rises has a bowl shape so that the defrost water 15 does not enter the cover. As a result, extra heating and evaporation of the defrosted water inside and outside the heater cover 13 can be less than that of the conventional improved technology, and if the heater cover 13 does not get so wet and the temperature is high, radiation of the hot wire 16 from the surface is also possible. It will also increase.
[0054]
In the convection, first, the heater cover 13 covers the front and back, so there are few openings, and the heat rays 16 reflected from the inner surface of the heater cover 13 are also likely to gather in the heater body 12. Occurrence increases. Further, since the discharge port is formed as a gap between the upper ends of the front and rear members, the discharge port of the heater cover 13 is located behind the center of the cold air duct 5 in the front-rear direction. It is biased to the side. Accordingly, since the warm air 17 generated a lot in the defrost heater 7 is concentrated and discharged from the rear outlet at one location, it rises along the rear peripheral wall in the cool air duct 5 and the front periphery. A flow of warm air 17 descending along the wall is formed.
[0055]
This convection has a large amount of warm air 17 generated and has only one system of rising and lowering in the cold air duct 5 that is vertically elongated, so that there is little mixing on the way and it is strong that reaches upward. If the convection is strong and heat is easily transmitted to the upper evaporator 6 and the frost 14, the frost will not take time to melt and the heating of the surrounding walls flowing along it will be reduced.
[0056]
From the above, in the refrigerator according to the first embodiment of the present invention, radiation during defrosting by the defrost heater and heat transfer by convection become efficient, so that the defrosting efficiency is sufficiently improved and defrosting is performed. The accompanying power consumption can be reduced.
[0057]
FIG. 2 is a partial cross-sectional view around the defrosting heater for the refrigerator of the second embodiment according to the present invention. The structure of the defrosting heater according to the second embodiment of the present invention is characterized in that the front side member of the heater cover 13 of the defrosting heater 7 has a shape in which the lower half portion protrudes while inclining forward. . Even if there is such a difference in structure, it is considered that the defrosting state compared to the first embodiment of the present invention may be caused by the fact that the amount of warm air 17 generated is slightly reduced or remains the same. As can be seen, the effect of improving the defrosting characteristics of the defrosting heater 7 from the conventional structure is almost the same, and the improvement of the defrosting efficiency and the reduction of the power consumption associated with the defrosting are obtained as well.
[0058]
On the other hand, the accompanying effects peculiar to the defrosting heater in the second embodiment of the present invention include the following. During normal operation of the refrigerator, most of the cool air 9 flows in from the front side of the cool air duct 5 while colliding with the defrost heater 7, and is immediately bent upward and directed to the evaporator 6. In the defrosting heater according to the first embodiment of the present invention shown in FIG. 1, the lower half of the front member of the heater cover 13 is nearly vertical, so that this flow may be disturbed compared to this book. In the defrosting heater according to the second embodiment of the invention, the lower half of the front member of the heater cover 13 is inclined forwardly downward, so that a large amount of cool air 9 is smoothly directed toward the upper evaporator 6. It can flow. Thereby, the heat exchange performance of the evaporator 6 can be improved by increasing the air volume of the cool air 9 and reducing the turbulence during normal operation of the refrigerator, and the power consumption of the refrigerator can be reduced.
[0059]
FIG. 3: is a fragmentary sectional view around the defrost heater about the refrigerator of 3rd Embodiment which becomes this invention. The structure of the defrosting heater according to the third embodiment of the present invention is characterized in that the defrosting heater 7 is arranged so as to be biased rearward from the center in the front-rear direction of the cold air duct 5. Even if there is such a difference in structure, the defrosting state compared to the first embodiment of the present invention is substantially the same as the convection state formed by the biasing of the suction port as well as the discharge port of the warm air 17. As can be seen from the above description, the improvement effect from the conventional structure related to the defrosting characteristics of the defrosting heater 7 is almost the same, and the improvement of the defrosting efficiency and the power consumption accompanying defrosting are the same. A reduction is obtained as well.
[0060]
On the other hand, the defrosting heater according to the third embodiment of the present invention has the same incidental effect as that of the second embodiment of the present invention. In the third embodiment of the present invention, the defrost heater 7 is shifted to the rear side of the cold air duct 5 with respect to the cold air 9 that flows into the defrost heater 7 from the front side of the cold air duct 5 during normal operation of the refrigerator. Since the front side is wide, most of the cool air 9 can flow smoothly toward the upper evaporator 6. As a result, as in the second embodiment of the present invention, the heat exchange performance of the evaporator 6 can be improved by increasing the air volume or reducing the turbulence of the cold air 9 during normal operation of the refrigerator so that the power consumption of the refrigerator can be reduced. Become.
[0061]
【The invention's effect】
According to the present invention, excessive heating and evaporation of defrost water accompanying radiation from the defrost heater can be reduced, and at the same time, generation of warm air in convection and convection in the cold air duct can be strengthened. The power consumption accompanying defrosting can be reduced and the power consumption of the refrigerator can be reduced.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view around a defrost heater in a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a partial cross-sectional view around a defrost heater in a refrigerator according to a second embodiment of the present invention.
FIG. 3 is a partial cross-sectional view around a defrost heater in a refrigerator according to a third embodiment of the present invention.
FIG. 4 is a cross-sectional view of the lower half of the box of a conventional refrigerator as viewed from the side.
FIG. 5 is a partial sectional view showing a state of heat transfer / defrost water at the time of defrosting as seen from the side of the periphery of the evaporator in a conventional refrigerator.
FIG. 6 is a partial cross-sectional view seen from the side of an evaporator and its surroundings showing the state of heat transfer / defrost water during defrosting in a refrigerator to which a conventional improved technique is applied.
FIG. 7 is a partial cross-sectional view seen from the side of an evaporator and its surroundings showing the state of heat transfer / defrost water during defrosting in a refrigerator to which another conventional improved technique is applied.
FIG. 8 is a partial cross-sectional view showing the state of heat transfer / defrost water at the time of defrosting as seen from the side around the evaporator in the refrigerator of the present invention.
FIG. 9 is a characteristic diagram showing a comparison between defrosting characteristics in a defrosting heater of a conventional structure and a conventional defrosting heater in a defrosting model experiment.
FIG. 10 is a characteristic diagram comparing the defrosting characteristics of a conventional defrosting heater in a defrosting heater according to another conventional technology and a conventional structure in a defrosting model experiment.
FIG. 11 is a characteristic diagram comparing the defrost characteristics of the conventional structure in the defrost model experiment and the defrost heater of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 5 ... Cold air duct, 6 ... Evaporator, 7 ... Defrost heater, 9 ... Cold air, 12 ... Heater main body, 13 ... Heater cover, 14 ... Frost, 15 ... Defrost water, 16 ... Hot wire, 17 ... Warm air.

Claims (1)

蒸発器と、前記蒸発器の下方に設置され、かつヒータ本体と前記ヒータ本体の周囲に設けられるヒータカバーとからなる除霜ヒータと、前記蒸発器と前記除霜ヒータとを内部に配置した冷気ダクトとを備えた冷蔵庫において、前記ヒータカバーを前記ヒータ本体の前側と後ろ側とをそれぞれ覆う実質2部材の構造として、前記ヒータ本体の下方と上方にそれぞれ吸い込み口と吐出口を形成し、かつ前記吐出口で前記ヒータカバーの前側部材の上端が後ろ側部材の上端より上方かつ後ろ側に位置すると共に、斜め上向きから下向きへと曲げられており、かつ前記ヒータカバーの前記吐出口が前記冷気ダクトの中心より後ろ側に偏った位置にくるようにしたことを特徴とする冷蔵庫。Cold air in which an evaporator, a defrost heater installed below the evaporator and including a heater main body and a heater cover provided around the heater main body, and the evaporator and the defrost heater are disposed inside In a refrigerator including a duct, the heater cover has a substantially two-member structure that covers a front side and a rear side of the heater body, respectively, and a suction port and a discharge port are formed below and above the heater body, and The upper end of the front member of the heater cover is located above and behind the upper end of the rear member at the discharge port, and is bent obliquely from upward to downward, and the discharge port of the heater cover is cooled by the cold air. A refrigerator characterized by being placed at a position biased to the rear side of the center of the duct.
JP35547899A 1999-12-15 1999-12-15 refrigerator Expired - Fee Related JP3622611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35547899A JP3622611B2 (en) 1999-12-15 1999-12-15 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35547899A JP3622611B2 (en) 1999-12-15 1999-12-15 refrigerator

Publications (2)

Publication Number Publication Date
JP2001174134A JP2001174134A (en) 2001-06-29
JP3622611B2 true JP3622611B2 (en) 2005-02-23

Family

ID=18444187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35547899A Expired - Fee Related JP3622611B2 (en) 1999-12-15 1999-12-15 refrigerator

Country Status (1)

Country Link
JP (1) JP3622611B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313857B2 (en) * 2009-12-18 2013-10-09 シャープ株式会社 refrigerator
JP2013245885A (en) * 2012-05-28 2013-12-09 Panasonic Corp Refrigerator
JP2017026173A (en) * 2015-07-16 2017-02-02 シャープ株式会社 Cooling system and refrigerator
JP2017215118A (en) * 2016-06-02 2017-12-07 パナソニックIpマネジメント株式会社 refrigerator
JP7181591B2 (en) * 2018-12-20 2022-12-01 アクア株式会社 Defrost device

Also Published As

Publication number Publication date
JP2001174134A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP5023025B2 (en) refrigerator
US4077229A (en) Household refrigerator with air circulation and cooling arrangement
JP6089222B2 (en) refrigerator
US20080092569A1 (en) Cooling unit with multi-parameter defrost control
WO2013084460A1 (en) Refrigerator
JP6364221B2 (en) refrigerator
JP2009079807A (en) Refrigerator
US20220170675A1 (en) Method for controlling refrigerator
JP2010133590A (en) Refrigerator-freezer
KR102610474B1 (en) Evaporating unit and refrigerator having the same
JP5966145B2 (en) refrigerator
WO2015029409A1 (en) Refrigerator
JP4872558B2 (en) refrigerator
JP3622611B2 (en) refrigerator
JP5788264B2 (en) refrigerator
JP6321483B2 (en) refrigerator
JP2019138513A (en) refrigerator
CN107076495B (en) Frost-free refrigeration appliance
JP4914172B2 (en) refrigerator
CN215597871U (en) Refrigerating and freezing device
CN214536998U (en) Refrigerating and freezing device
JP3507736B2 (en) refrigerator
CN111609633B (en) Air-cooled refrigerator
JP3130804B2 (en) Cooling storage
JP7012139B2 (en) refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees