JP3622374B2 - Method and apparatus for determining contamination state of object - Google Patents

Method and apparatus for determining contamination state of object Download PDF

Info

Publication number
JP3622374B2
JP3622374B2 JP28328796A JP28328796A JP3622374B2 JP 3622374 B2 JP3622374 B2 JP 3622374B2 JP 28328796 A JP28328796 A JP 28328796A JP 28328796 A JP28328796 A JP 28328796A JP 3622374 B2 JP3622374 B2 JP 3622374B2
Authority
JP
Japan
Prior art keywords
coin
image data
gradation value
contamination
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28328796A
Other languages
Japanese (ja)
Other versions
JPH10111965A (en
Inventor
裕史 木嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP28328796A priority Critical patent/JP3622374B2/en
Publication of JPH10111965A publication Critical patent/JPH10111965A/en
Application granted granted Critical
Publication of JP3622374B2 publication Critical patent/JP3622374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/005Testing the surface pattern, e.g. relief

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬貨等の物体を取扱う各種の自動取引機に内部構成されるような物体の汚損状態判別方法に関し、さらに詳しくは物体の汚損状態を精度よく判別する物体の汚損状態判別方法およびその装置に関する。
【0002】
【従来の技術】
以下、硬貨の汚損状態判別装置を例にとって説明すると、例えば特開昭61ー18844号公報に示すように、光ファイバを用いて定められた検知時間間隔で硬貨の数箇所の反射光量を取得し、この取得した反射光量と予め設定された汚損判定レベルとを比較することにより硬貨の汚損状態を局部的に検知している。
【0003】
【発明が解決しようとする課題】
しかし、この場合は硬貨の汚損状態を局部的に検知するため、硬貨全体の汚損状態を正確に検知できず、検知ムラが生じて不正確な判定になりやすく、それゆえ誤判定を誘引するなど検知精度の信頼性に乏しい問題を有していた。
【0004】
そこでこの発明は、物体の汚損状態を検知する際、局部的ではなく物体の全体を均一に検知することにより、物体の汚損状態を正確に検知できるようにした物体の汚損状態判別方法およびその装置の提供を目的とする。
【0005】
【課題を解決するための手段】
この発明は、物体の全体的な画像データを画像データ取得手段により取得し、この取得した画像データについて、個々の階調値における画素数分布から求められる面積比率が全体の予め定められたある比率値となる階調値を階調の高い方から算出し、この算出した階調値が予め設定した基準階調値と比較して低い場合に汚損有りと判別する物体の汚損状態判別方法であることを特徴とする。
【0006】
この発明の態様として、前記物体として硬貨を対象とし、正偽識別手段で正偽および金種を識別し、正硬貨と識別すれば識別した金種に予め設定した基準階調値に基づいて前記判別を実行する物体の汚損状態判別方法とすることができる。
【0007】
またこの発明は、物体の全体的な画像データを取得する画像データ取得手段と、上記画像データ取得手段が取得した画像データについて、個々の階調値における画素数分布から求められる面積比率が全体の予め定められたある比率値となる階調値を階調の高い方から算出する手段と、汚損を判定するために基準階調値を設定した基準値設定手段と、上記算出する手段で算出した階調値が上記基準値設定手段設定した基準階調値比較して低い場合に汚損有りと判別する判別手段とを備えた物体の汚損状態判別装置であることを特徴とする。
【0008】
この発明の態様として、前記物体として硬貨を対象とし、上記硬貨の正偽および金種を識別する正偽識別手段を備え、上記正偽識別手段で正硬貨と識別すれば識別した金種に予め設定した基準階調値に基づいて前記判別を実行する設定とした物体の汚損状態判別装置とすることができる。
【0009】
【作用】
この発明によれば、物体の汚損状態を判別する際、先ず、物体の全体的な画像データを画像データ取得手段により取得し、この取得した画像データについて、個々の階調値における画素数分布を求め、この求めた画素数分布から求められる面積比率が全体の予め定められたある比率値となる階調値から物体の汚損状態を判別する。
【0010】
また、物体の汚損状態を判別する際、物体の全体的な画像データを画像データ取得手段により取得し、この取得した画像データについて個々の階調値における画素数分布を求め、この求めた画素数分布から算出される面積比率が全体の予め定められた比率値となる階調値と、物体の種類を識別すると共にその識別した物体の種類に応じて記憶した基準階調値とを比較して物体の汚損状態を判別する。
【0011】
【発明の効果】
この結果、物体の全体を捉えた画像データの階調値における画素数分布から求められる面積比率が全体の予め定められた比率値となる階調値から物体の全体の汚損状態を判別できるため、硬貨等の物体の汚損判別時に検知ムラがなくなり、均一で正確な判別ができる。特に、局部的に検知するのではなく全体的に検知して判断するため、人間の感性に近い汚損判別ができる。それゆえ、誤判別を自然に解消することができ、また信頼性の高い汚損判別ができる。
【0012】
また、取扱い種類の多い硬貨等の物体の汚損状態を判別する場合であっても、金種別に設定した基準値と比較して判別すれば、汚損のない正常硬貨と汚れたり傷付いた汚損硬貨とを正確に区別することができる。また、この信頼性の高い汚損状態判別装置を自動取引機に組込んだ場合は、汚損硬貨と正常硬貨を的確に選別して汚損硬貨を流通規制し、正常硬貨のみを確実にリサイクル利用できる。
【0013】
【実施例】
この発明の実施例を以下図面に基づいて詳述する。
[第1実施例]
図1は硬貨の汚損状態判別装置11の硬貨検知構造を示し、この硬貨検知構造は搬送ベルト12,13、送りローラ14…等の搬送部材を組合わせて水平方向に硬貨15を挟持搬送する硬貨搬送路16を設け、この硬貨搬送路16に沿って硬貨検知センサ17を配設して、ここに導かれた硬貨15を金種判別および汚損状態を判別する。
【0014】
この場合、硬貨検知センサ17は、環状配置されたLED17aの照射光17bを水平状態に搬送される硬貨15の上面全体に照射させ、この硬貨の上面凹凸模様の反射光17cをCCDカメラ17dで検知して硬貨の表面模様とその汚損状態を表す画像データを取得する。この硬貨検知センサ17でここに導かれた搬送途中の硬貨を瞬時に読取処理し、読取られた硬貨はそのまま後段へと搬送される。
【0015】
図2は硬貨の汚損状態判別装置11の回路構成図を示し、これは画像入力部21と、A/D変換部22と、濃度ヒストグラム作成部23と、2値化部24と、識別部25と、汚損レベル判定部26とを備えて構成される。
【0016】
画像入力部21は、硬貨検知センサ17のCCDカメラ17dで硬貨15の表面全体の反射光を画像データとして取得し、この取得した画像データをA/D変換部22でアナログからディジタル(多値)に変換する。
【0017】
このA/D変換部22を介して得られる画像データから濃度分布と金種とを求めるものであって、一方の濃度ヒストグラム作成部23でA/D変換された画像データから各濃度(階調値)毎の画素数分布を算出し、他方の2値化部24でA/D変換された画像データを金種判定用に多値から2値に変換する。
【0018】
識別部25は、各金種毎の表裏に対応する基準濃度分布を記憶しており、この基準濃度分布と2値化データとを比較して金種を判定する。
【0019】
汚損レベル判定部26は、汚損を判定するために予め設定した金種毎の汚損判定レベルを記憶しており、この汚損判定レベルと、濃度ヒストグラム作成部23で算出した各濃度毎の画素数分布とを比較して硬貨の汚損状態を判別する。
【0020】
図3は汚損のない流通に適した美麗な正常硬貨の画像データ31を示し、例えば256×256画素(256階調/1画素)の画像データで表され、この正常硬貨の場合は比較的明瞭に硬貨の凹凸模様が取得される。
【0021】
図4は正常硬貨の画像データから各濃度(階調値)毎の画素数分布を算出した濃度ヒストグラム41の一例を示し、この正常硬貨から得られる濃度ヒストグラム41は階調値の高い方(濃い方)から面積比率が全体のある比率値(15%程度)となる濃度位置(階調値=105)を算出し、これと予め設定した汚損判定レベル(基準階調値=64)とを比較して基準階調値より算出した階調値の方が大きければ汚損なしと判定し、小さければ汚損有りと判定する。この正常硬貨の場合は、十分に大きい(64<105)ため汚損なしと判定する。
【0022】
図5は流通に不適な汚損硬貨の画像データ51を示し、この汚損硬貨の場合は低反射で不明瞭に硬貨の凹凸模様が取得され、正規の凹凸模様を十分に取得できない。
【0023】
図6は汚損硬貨の画像データから各濃度(階調値)毎の画素数分布を算出した濃度ヒストグラム61の一例を示し、この汚損硬貨から得られる濃度ヒストグラム61の場合は、階調値の高い方から面積比率が全体の15%となる濃度位置(階調値=1)を算出し、これと予め設定した汚損判定レベル(基準階調値=64)とを比較して汚損の有無を判定する。この汚損硬貨の場合は、かなり小さい(64>1)ため汚損有りと判定する。
【0024】
このように構成された硬貨の汚損状態判別装置11の全体処理動作を図7のフローチャートを参照して説明する。
今、硬貨15が硬貨搬送路16に搬送されて硬貨検知センサ17の位置に導かれると、ここで硬貨15に照射した反射光がCCDカメラで受像され、この硬貨の上面全体の画像データが画像入力部21で取得される(ステップn1 )。
【0025】
この取得された画像データはA/D変換部22でアナログからディジタル(多値)に変換された後、濃度ヒストグラム作成部23と2値化部24との双方に出力され(ステップn2 )、
濃度ヒストグラム作成部23ではA/D変換された画像データから各濃度(階調値)毎の画素数分布を作成し(ステップn3 )、
一方、2値化部24ではA/D変換された画像データを金種判定用に多値から2値に変換し、この変換した2値化データに基づいて識別部25で硬貨の正偽および金種を識別する(ステップn4 〜n5 )。
【0026】
この識別結果に基づいて正硬貨と識別すれば、続いて汚損レベル判定部26で同硬貨の汚損状態の判定処理を行い流通硬貨としての適・不適の有効性を判定する。これに対し、偽硬貨であれば、返却や回収等の偽硬貨処理を行う(ステップn6 〜n7 )。
【0027】
次に、硬貨の汚損状態判別装置11の汚損判別処理動作を図8のフローチャートを参照して説明する。
今、汚損レベル判定部26で硬貨15の汚損状態を判別するとき、この汚損レベル判定部26は先ず、識別部25から正硬貨と認められた同硬貨の金種データを取得する(ステップn11)。
【0028】
続いて、濃度ヒストグラム作成部23から15%の面積比率の階調値を算出し(ステップn12)、
この算出した階調値を、金種や表裏毎に予め設定された汚損判定レベルと比較して判別する(ステップn13)。
【0029】
このとき、汚損のない硬貨と判定すれば、同硬貨を流通利用に適した硬貨と判定する(ステップn14〜n15)。
【0030】
一方、汚損硬貨と判定すれば、汚れたり傷んでリサイクル利用に不適な硬貨のため機器内部に回収して流通規制する(ステップn16)。
【0031】
[第2実施例]
図9は硬貨の汚損状態判別装置91の硬貨検知構造を示し、この硬貨検知構造は搬送ベルト92,93、送りローラ94…等の搬送部材を組合わせて水平方向に硬貨95を挟持搬送する硬貨搬送路96を設け、この硬貨搬送路96に沿って硬貨検知センサ97と磁気検知センサ98とをこの順に配設して、ここに導かれた硬貨95の汚損状態と金種とを判別する。
【0032】
この場合、硬貨検知センサ97の環状配置されたLED97aが照射した反射光をCCDカメラ97bが受像して硬貨95の表面模様とその汚損状態を表す画像データを取得すると共に、その後段の磁気検知センサ98で硬貨の外径および材質を求める硬貨の磁気データを取得する。
【0033】
図10は硬貨の汚損状態判別装置91の回路構成図を示し、これは画像入力部101と、画像A/D変換部102と、濃度ヒストグラム作成部103と、磁気入力部104と、磁気A/D変換部105と、識別部106と、汚損レベル判定部107とを備えて構成される。
【0034】
画像入力部101は、硬貨検知センサ97のCCDカメラ97bで硬貨95の表面全体の反射光を画像データとして取得し、この取得した画像データを画像A/D変換部102でアナログからディジタル(多値)に変換する。
【0035】
濃度ヒストグラム作成部103は、A/D変換された画像データから各濃度(階調値)毎の画素数分布を算出する。
【0036】
一方、磁気入力部104は、磁気検知センサ98で硬貨95の外径および材質の磁気データを取得し、この取得した磁気データを磁気A/D変換部105で金種判定用にアナログからディジタル(多値)に変換する。
【0037】
識別部106は、金種毎の外径および材質に対応する基準磁気データを記憶しており、この基準磁気データと磁気検知センサ98で検知された磁気データとを比較して金種判定する。
【0038】
汚損レベル判定部107は、汚損を判定するために予め設定した金種毎の汚損判定レベルを記憶しており、この汚損判定レベルと濃度ヒストグラム作成部103で算出した各濃度毎の画素数分布とを比較して、硬貨95の汚損状態を判別する。このように硬貨の金種を判定する磁気検知センサ98を配設した場合は、このセンサの検知情報から金種判定をさらに絞り込んで金種判定の識別精度を高めることができる。
【0039】
このように構成された硬貨の汚損状態判別装置91の処理動作を図11のフローチャートを参照して説明する。
今、硬貨95が硬貨搬送路96に搬送されて硬貨検知センサ97の位置に導かれると、ここで硬貨95に照射した反射光がCCDカメラで受像され、この硬貨の上面全体の画像データが画像入力部101に取得される(ステップn21)。
【0040】
この取得された画像データは画像A/D変換部102でアナログからディジタル(多値)に変換された後、濃度ヒストグラム作成部103に出力され(ステップn22)、
濃度ヒストグラム作成部103でA/D変換された画像データから各濃度(階調値)毎の画素数分布を作成し(ステップn23)、
この作成した画素数分布を汚損状態の判別要素として汚損レベル判定部107に入力させる(ステップn24)。
【0041】
一方、磁気検知センサ98を介して硬貨95の磁気データを取得した磁気入力部104は、その磁気データを磁気A/D変換部105でアナログからディジタル(多値)に変換した後(ステップn25〜n26)、
この磁気データから識別部106で硬貨の正偽および金種を識別する(ステップn27)。
【0042】
この識別結果に基づいて正硬貨と識別すれば、続いて汚損レベル判定部107で同硬貨の汚損状態の判定処理を行い流通硬貨としての適・不適の有効性を判定する。これに対し、偽硬貨であれば、返却や回収等の偽硬貨処理を行う(ステップn28)。
【0043】
上述のように、硬貨の全体を捉えた画像データの濃度分布から硬貨の全体の汚損状態を判別できるため、硬貨の検知時に検知ムラがなくなり、均一で正確な汚損判別ができる。特に、局部的に判別するのではなく全体的に検知して判断するため、人間の感性に近い汚損判別ができる。それゆえ、誤判別を確実に解消でき、また信頼性の高い汚損判別ができる。また、取扱い種類の多い硬貨の汚損状態を判別する場合は、金種別に設定した基準階調値と比較することにより、汚損のない正常硬貨と汚れたり傷付いた汚損硬貨とを正確に区別することができる。また、この信頼性の高い汚損状態判別装置を自動取引機に組込んだ場合は、汚損硬貨と正常硬貨を的確に選別して汚損硬貨を流通規制し、正常硬貨のみを的確にリサイクル利用することができる。
【0044】
この発明と、上述の実施例の構成との対応において、
この発明の物体の汚損状態判別装置は、実施例の硬貨の汚損状態判別装置11,91に対応し、
以下同様に、
物体は、硬貨15,95に対応し、
画像データ取得手段は、硬貨検知センサ17,97および画像入力部21,101に対応し、
個々の階調値における画素数分布から求められる面積比率が全体の予め定められたある比率値となる階調値を階調の高い方から算出する手段は、濃度ヒストグラム作成部23,103、及び汚損レベル判定部26,107に対応し
基準値設定手段および正偽識別手段は、識別部25,106に対応し、
判別手段、汚損レベル判定部26,107に対応するも、この発明は上述の実施例の構成のみに限定されるものではない。
【図面の簡単な説明】
【図1】この発明の第1実施例の硬貨の汚損状態判別装置の硬貨検知構造を示す側面図。
【図2】この発明の第1実施例の硬貨の汚損状態判別装置の回路構成図。
【図3】この発明の第1実施例の汚損のない正常硬貨の画像データ図。
【図4】この発明の第1実施例の正常硬貨の濃度ヒストグラムの一例を示す図表。
【図5】この発明の第1実施例の汚損硬貨の画像データ図。
【図6】この発明の第1実施例の汚損硬貨の濃度ヒストグラムの一例を示す図表。
【図7】この発明の第1実施例の硬貨の汚損状態判別装置の全体処理動作を示すフローチャート。
【図8】この発明の第1実施例の硬貨の汚損状態判別装置の汚損判別処理動作を示すフローチャート。
【図9】この発明の第2実施例の硬貨の汚損状態判別装置の硬貨検知構造を示す側面図。
【図10】この発明の第2実施例の硬貨の汚損状態判別装置の回路構成図。
【図11】この発明の第2実施例の硬貨の汚損状態判別装置の処理動作を示すフローチャート。
【符号の説明】
11,91…硬貨の汚損状態判別装置
15,95…硬 貨
17,97…硬貨検知センサ
21,101…画像入力部
23,103…濃度ヒストグラム作成部
25,106…識別部
26,107…汚損レベル判定部
31…正常硬貨の画像データ
41…正常硬貨の濃度ヒストグラム
51…汚損硬貨の画像データ
61…汚損硬貨の濃度ヒストグラム
98…磁気検知センサ
104…磁気入力部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for determining an object's fouling state as configured in various types of automatic transaction machines that handle objects such as coins, and more specifically, an object's fouling state determination method for accurately determining the object's fouling state and its Relates to the device.
[0002]
[Prior art]
Hereinafter, a description will be given of a coin fouling state discriminating device as an example. By comparing this acquired amount of reflected light with a preset contamination determination level, the contamination state of the coin is locally detected.
[0003]
[Problems to be solved by the invention]
However, in this case, because the state of the coins is locally detected, the entire state of the coins cannot be detected accurately, and detection irregularities are likely to cause inaccurate determinations. It had a problem with poor reliability of detection accuracy.
[0004]
Therefore, the present invention provides an object contamination state determination method and apparatus capable of accurately detecting the object contamination state by detecting the entire object uniformly, not locally, when detecting the object contamination state. The purpose is to provide.
[0005]
[Means for Solving the Problems]
According to the present invention, the entire image data of the object is acquired by the image data acquisition means, and the area ratio obtained from the pixel number distribution in each gradation value of the acquired image data is a predetermined ratio in the whole. This is a method for determining the contamination state of an object by calculating a gradation value to be a value from a higher gradation and determining that there is contamination when the calculated gradation value is lower than a preset reference gradation value. It is characterized by that.
[0006]
As an aspect of the present invention, the object is a coin, the true / false identification means identifies the true / false and the denomination, and if it is identified as the true coin, based on the reference gradation value preset for the identified denomination It is possible to use a method for determining the contamination state of an object for which the determination is performed.
[0007]
Further, according to the present invention, the image data acquisition means for acquiring the overall image data of the object, and the image data acquired by the image data acquisition means, the area ratio obtained from the pixel number distribution in each gradation value is the whole. Calculated by means for calculating a gradation value that is a predetermined ratio value from a higher gradation, reference value setting means for setting a reference gradation value for determining contamination, and the above-mentioned calculating means gradation value is equal to or is an object of the fouling state detecting apparatus provided with a discriminating means for discriminating that there is contamination in the case lower than the reference grayscale value set in the reference value setting means.
[0008]
As an aspect of the present invention, the object is a coin, and includes a true / false identifying means for identifying whether the coin is true or false and denomination, and if the true / false identifying means identifies the coin as a positive coin, An object contamination state determination apparatus configured to execute the determination based on the set reference gradation value can be provided.
[0009]
[Action]
According to the present invention, when determining the contamination state of an object, first, the entire image data of the object is acquired by the image data acquisition means, and the pixel number distribution in each gradation value is obtained for the acquired image data. Then, the contamination state of the object is determined from the gradation value at which the area ratio obtained from the obtained pixel number distribution becomes a predetermined ratio value as a whole .
[0010]
Further, when determining the contamination state of the object, the entire image data of the object is acquired by the image data acquisition unit, the pixel number distribution in each gradation value is obtained for the acquired image data , and the obtained pixel number Comparing the gradation value whose area ratio calculated from the distribution is a predetermined ratio value of the whole with the reference gradation value stored according to the identified object type and the identified object type Determine the contamination status of the object.
[0011]
【The invention's effect】
As a result, since the area ratio obtained from the pixel number distribution in the gradation value of the image data capturing the entire object can determine the overall contamination state of the object from the gradation value that becomes the predetermined ratio value of the entire object, Detection unevenness is eliminated when determining the contamination of an object such as a coin, and uniform and accurate determination can be made. In particular, since the detection is not performed locally but is detected as a whole, and determination is made, it is possible to determine the contamination close to human sensitivity. Therefore, erroneous discrimination can be resolved naturally, and highly reliable stain discrimination can be performed.
[0012]
In addition, even when determining the state of fouling of coins and other objects with many types of handling, normal coins that are not fouled and fouled coins that are soiled or damaged can be determined by comparing with the reference value set for the money type. And can be accurately distinguished. In addition, when this highly reliable contamination state discriminating apparatus is incorporated in an automatic transaction machine, it is possible to accurately select the contamination coins and normal coins, restrict the distribution of the contamination coins, and reliably use only normal coins.
[0013]
【Example】
Embodiments of the present invention will be described in detail below with reference to the drawings.
[First embodiment]
FIG. 1 shows a coin detection structure of a coin fouling state discriminating apparatus 11, which is a coin that sandwiches and conveys a coin 15 in the horizontal direction by combining conveying members such as conveying belts 12, 13, feed rollers 14,. A conveyance path 16 is provided, and a coin detection sensor 17 is provided along the coin conveyance path 16 to determine the denomination and the fouling state of the coin 15 introduced here.
[0014]
In this case, the coin detection sensor 17 irradiates the entire upper surface of the coin 15 conveyed in a horizontal state with the irradiation light 17b of the annularly arranged LED 17a, and the CCD camera 17d detects the reflected light 17c of the upper surface uneven pattern of the coin. Then, image data representing the surface pattern of the coin and its fouling state is acquired. This coin detection sensor 17 instantaneously reads a coin in the middle of conveyance led here, and the read coin is conveyed to the subsequent stage as it is.
[0015]
FIG. 2 is a circuit configuration diagram of the coin fouling state discriminating apparatus 11, which includes an image input unit 21, an A / D conversion unit 22, a density histogram creation unit 23, a binarization unit 24, and an identification unit 25. And a contamination level determination unit 26.
[0016]
The image input unit 21 acquires reflected light of the entire surface of the coin 15 as image data by the CCD camera 17d of the coin detection sensor 17, and the acquired image data is converted from analog to digital (multivalue) by the A / D conversion unit 22. Convert to
[0017]
The density distribution and the denomination are obtained from the image data obtained through the A / D conversion unit 22, and each density (gradation) is obtained from the image data A / D converted by one density histogram creation unit 23. The pixel number distribution for each (value) is calculated, and the image data A / D converted by the other binarization unit 24 is converted from multivalue to binary for denomination determination.
[0018]
The identification unit 25 stores a reference concentration distribution corresponding to the front and back of each denomination, and compares the reference concentration distribution with the binarized data to determine the denomination.
[0019]
The contamination level determination unit 26 stores a contamination determination level for each denomination that is set in advance to determine contamination. The contamination determination level and the distribution of the number of pixels for each density calculated by the density histogram creation unit 23. To determine the fouling state of the coin.
[0020]
FIG. 3 shows image data 31 of a beautiful normal coin suitable for circulation without fouling, and is represented by, for example, image data of 256 × 256 pixels (256 gradations / one pixel), and this normal coin is relatively clear. An uneven pattern of coins is acquired.
[0021]
FIG. 4 shows an example of a density histogram 41 obtained by calculating a pixel number distribution for each density (gradation value) from image data of normal coins. The density histogram 41 obtained from normal coins has a higher gradation value (darker). ), The density position (tone value = 105) where the area ratio becomes a certain ratio value (about 15%) is calculated, and this is compared with a preset contamination judgment level (reference tone value = 64). If the calculated gradation value is larger than the reference gradation value, it is determined that there is no contamination, and if it is smaller, it is determined that there is contamination. In the case of this normal coin, since it is sufficiently large (64 <105), it is determined that there is no fouling.
[0022]
FIG. 5 shows image data 51 of a fouled coin that is unsuitable for distribution. In the case of this fouled coin, the concave / convex pattern of the coin is acquired unclearly with low reflection, and the regular concave / convex pattern cannot be acquired sufficiently.
[0023]
FIG. 6 shows an example of a density histogram 61 in which the pixel number distribution for each density (tone value) is calculated from the image data of the soiled coin. In the case of the density histogram 61 obtained from this soiled coin, the tone value is high. The density position (gradation value = 1) where the area ratio is 15% of the whole is calculated from the one, and the presence / absence of contamination is determined by comparing this with a preset contamination determination level (reference gradation value = 64). To do. In the case of this fouling coin, it is determined that there is fouling because it is quite small (64> 1).
[0024]
The overall processing operation of the thus configured coin fouling state discriminating apparatus 11 will be described with reference to the flowchart of FIG.
Now, when the coin 15 is conveyed to the coin conveyance path 16 and guided to the position of the coin detection sensor 17, the reflected light irradiated on the coin 15 is received by the CCD camera, and the image data of the entire upper surface of the coin is imaged. Obtained by the input unit 21 (step n1).
[0025]
The acquired image data is converted from analog to digital (multivalue) by the A / D converter 22, and then output to both the density histogram generator 23 and the binarizer 24 (step n2).
The density histogram creation unit 23 creates a pixel number distribution for each density (gradation value) from the A / D converted image data (step n3).
On the other hand, the binarization unit 24 converts the A / D-converted image data from multivalue to binary for denomination determination, and based on the converted binarization data, the identification unit 25 determines whether the coin is true or false. The denomination is identified (steps n4 to n5).
[0026]
If it is identified as a regular coin based on the identification result, the contamination level determination unit 26 subsequently determines the contamination state of the coin to determine the appropriate / unsuitable validity as a circulation coin. On the other hand, if it is a fake coin, fake coin processing such as return or collection is performed (steps n6 to n7).
[0027]
Next, the fouling determination processing operation of the coin fouling state determination device 11 will be described with reference to the flowchart of FIG.
Now, when the fouling level determination unit 26 determines the fouling state of the coin 15, the fouling level determination unit 26 first acquires denomination data of the same coin recognized as a regular coin from the identification unit 25 (step n11). .
[0028]
Subsequently, a gradation value having an area ratio of 15% is calculated from the density histogram creating unit 23 (step n12).
The calculated gradation value is determined by comparing it with a contamination determination level preset for each denomination and front and back (step n13).
[0029]
At this time, if it is determined that there is no fouling, the coin is determined to be a coin suitable for distribution use (steps n14 to n15).
[0030]
On the other hand, if the coin is determined to be a dirty coin, the coin is dirty or damaged and is unsuitable for recycling, so that it is collected inside the device and regulated for distribution (step n16).
[0031]
[Second Embodiment]
FIG. 9 shows a coin detection structure of a coin fouling state discriminating device 91. This coin detection structure is a combination of transport members such as transport belts 92, 93, feed rollers 94, etc., and sandwiches and transports a coin 95 in the horizontal direction. A conveyance path 96 is provided, and a coin detection sensor 97 and a magnetic detection sensor 98 are arranged in this order along the coin conveyance path 96 to discriminate the fouling state and denomination of the coin 95 introduced here.
[0032]
In this case, the CCD camera 97b receives the reflected light emitted from the annularly arranged LED 97a of the coin detection sensor 97 to acquire image data representing the surface pattern of the coin 95 and its fouling state, and the subsequent magnetic detection sensor. At 98, the magnetic data of the coin for obtaining the outer diameter and material of the coin is acquired.
[0033]
FIG. 10 shows a circuit configuration diagram of a coin fouling state discriminating apparatus 91, which includes an image input unit 101, an image A / D conversion unit 102, a density histogram creation unit 103, a magnetic input unit 104, and a magnetic A / D. A D conversion unit 105, an identification unit 106, and a contamination level determination unit 107 are provided.
[0034]
The image input unit 101 acquires reflected light of the entire surface of the coin 95 as image data by the CCD camera 97b of the coin detection sensor 97, and the acquired image data is converted from analog to digital (multivalued) by the image A / D conversion unit 102. ).
[0035]
The density histogram creation unit 103 calculates a pixel number distribution for each density (gradation value) from the A / D converted image data.
[0036]
On the other hand, the magnetic input unit 104 acquires the magnetic data of the outer diameter and material of the coin 95 with the magnetic detection sensor 98, and the acquired magnetic data is converted from analog to digital (for analog denomination by the magnetic A / D conversion unit 105). Multivalue).
[0037]
The identification unit 106 stores reference magnetic data corresponding to the outer diameter and material for each denomination, and compares the reference magnetic data with the magnetic data detected by the magnetic detection sensor 98 to determine the denomination.
[0038]
The contamination level determination unit 107 stores a contamination determination level for each denomination set in advance to determine contamination, and the contamination determination level and the pixel number distribution for each density calculated by the density histogram creation unit 103. Are compared, and the fouling state of the coin 95 is determined. Thus, when the magnetic detection sensor 98 for determining the denomination of the coin is provided, the denomination determination can be further narrowed down based on the detection information of this sensor, and the identification accuracy of the denomination determination can be improved.
[0039]
The processing operation of the coin fouling state discriminating apparatus 91 configured as described above will be described with reference to the flowchart of FIG.
Now, when the coin 95 is conveyed to the coin conveyance path 96 and guided to the position of the coin detection sensor 97, the reflected light irradiated on the coin 95 is received by the CCD camera, and the image data of the entire upper surface of the coin is imaged. Obtained by the input unit 101 (step n21).
[0040]
The acquired image data is converted from analog to digital (multi-value) by the image A / D converter 102 and then output to the density histogram generator 103 (step n22).
A pixel number distribution for each density (gradation value) is created from the image data A / D converted by the density histogram creation unit 103 (step n23).
The created pixel number distribution is input to the contamination level determination unit 107 as a contamination state determination element (step n24).
[0041]
On the other hand, the magnetic input unit 104 that has acquired the magnetic data of the coin 95 via the magnetic detection sensor 98 converts the magnetic data from analog to digital (multi-value) by the magnetic A / D conversion unit 105 (steps n25 to n25). n26),
From the magnetic data, the identification unit 106 identifies the true / false of the coin and the denomination (step n27).
[0042]
If it is identified as a regular coin based on this identification result, the contamination level determination unit 107 subsequently determines the contamination state of the same coin to determine the appropriate / inappropriate validity as a distribution coin. On the other hand, if it is a fake coin, a fake coin process such as return or collection is performed (step n28).
[0043]
As described above, since the contamination state of the entire coin can be determined from the density distribution of the image data that captures the entire coin, there is no detection unevenness when detecting the coin, and uniform and accurate contamination determination can be performed. In particular, since it is determined not by local determination but by overall detection, it is possible to perform contamination determination close to human sensitivity. Therefore, it is possible to reliably eliminate erroneous determination and to perform highly reliable contamination determination. Also, when discriminating the fouling status of coins with many types of handling, it is possible to accurately distinguish normal coins that are not fouled from fouling coins that are dirty or damaged by comparing them with the standard gradation value set for the money type. be able to. In addition, when this highly reliable pollution status determination device is incorporated into an automatic transaction machine, the dirty coins and normal coins should be accurately selected to restrict the circulation of the contaminated coins, and only normal coins should be recycled accurately. Can do.
[0044]
In correspondence between the present invention and the configuration of the above-described embodiment,
The object contamination state determination device of the present invention corresponds to the coin contamination state determination device 11, 91 of the embodiment,
Similarly,
The object corresponds to coins 15, 95,
The image data acquisition means corresponds to the coin detection sensors 17, 97 and the image input units 21, 101,
Means for calculating a gradation value from the higher gradation, in which the area ratio obtained from the distribution of the number of pixels in each gradation value becomes a predetermined ratio value as a whole, is a density histogram creation unit 23 , 103 , and Corresponding to the contamination level determination unit 26 , 107 ,
The reference value setting means and the authenticity identification means correspond to the identification units 25 and 106,
Discriminating means also corresponds to the damage level determining section 26,107, the invention is not limited only to the above-mentioned arrangement of the embodiment.
[Brief description of the drawings]
FIG. 1 is a side view showing a coin detection structure of a coin fouling state discriminating apparatus according to a first embodiment of the present invention.
FIG. 2 is a circuit configuration diagram of the coin fouling state discriminating apparatus according to the first embodiment of the present invention;
FIG. 3 is an image data diagram of normal coins without fouling according to the first embodiment of the present invention.
FIG. 4 is a table showing an example of a normal coin density histogram according to the first embodiment of the present invention;
FIG. 5 is an image data diagram of a soiled coin according to the first embodiment of the present invention.
FIG. 6 is a chart showing an example of a density coin density histogram according to the first embodiment of the present invention;
FIG. 7 is a flowchart showing an overall processing operation of the coin fouling state determination apparatus according to the first embodiment of the present invention;
FIG. 8 is a flowchart showing a fouling determination processing operation of the coin fouling state determination device according to the first embodiment of the present invention;
FIG. 9 is a side view showing a coin detection structure of a coin fouling state discriminating apparatus according to a second embodiment of the present invention.
FIG. 10 is a circuit configuration diagram of a coin fouling state discriminating apparatus according to a second embodiment of the present invention.
FIG. 11 is a flowchart showing the processing operation of the coin fouling state discriminating apparatus according to the second embodiment of the present invention;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11,91 ... Coin fouling state discrimination | determination apparatus 15,95 ... Coin 17,97 ... Coin detection sensor 21,101 ... Image input part 23,103 ... Density histogram preparation part 25,106 ... Identification part 26,107 ... Fouling level Determining unit 31 ... Normal coin image data 41 ... Normal coin density histogram 51 ... Fouling coin image data 61 ... Fouling coin density histogram 98 ... Magnetic detection sensor 104 ... Magnetic input unit

Claims (4)

物体の全体的な画像データを画像データ取得手段により取得し、
この取得した画像データについて、
個々の階調値における画素数分布から求められる面積比率が全体の予め定められたある比率値となる階調値を階調の高い方から算出し、
この算出した階調値が予め設定した基準階調値と比較して低い場合に汚損有りと判別する
物体の汚損状態判別方法。
The overall image data of the object is acquired by the image data acquisition means,
About this acquired image data ,
Calculate the gradation value from the higher gradation, in which the area ratio obtained from the distribution of the number of pixels in each gradation value becomes a certain ratio value as a whole,
Fouling state determination method of an object gradation value thus calculated is determined that there is contamination in the case lower than the reference grayscale value set in advance.
前記物体として硬貨を対象とし、
正偽識別手段で正偽および金種を識別し、
正硬貨と識別すれば識別した金種に予め設定した基準階調値に基づいて前記判別を実行する
請求項1記載の物体の汚損状態判別方法。
Targeting a coin as the object,
Authenticating false and denomination by means of authenticity identification,
If it is identified as a positive coin, the determination is executed based on a reference gradation value preset for the identified denomination.
The method for determining a contamination state of an object according to claim 1 .
物体の全体的な画像データを取得する画像データ取得手段と、
上記画像データ取得手段が取得した画像データについて、個々の階調値における画素数分布から求められる面積比率が全体の予め定められたある比率値となる階調値を階調の高い方から算出する手段と、
汚損を判定するために基準階調値を設定した基準値設定手段と、
上記算出する手段で算出した階調値が上記基準値設定手段設定した基準階調値比較して低い場合に汚損有りと判別する判別手段とを備えた
物体の汚損状態判別装置。
Image data acquisition means for acquiring overall image data of the object;
With respect to the image data acquired by the image data acquisition means , a gradation value is calculated from the higher gradation level so that the area ratio obtained from the pixel number distribution in each gradation value becomes a predetermined ratio value as a whole. Means,
A reference value setting means for setting a reference gradation value in order to determine fouling;
Object fouling state detecting apparatus provided with a judging means for gradation value calculated by a means for calculating said it is determined that there is contamination in the case lower than the reference grayscale value set in the reference value setting means.
前記物体として硬貨を対象とし、
上記硬貨の正偽および金種を識別する正偽識別手段を備え、
上記正偽識別手段で正硬貨と識別すれば識別した金種に予め設定した基準階調値に基づいて前記判別を実行する設定とした
請求項3記載の物体の汚損状態判別装置。
Targeting a coin as the object,
A correct / false identification means for identifying the correctness and denomination of the coin,
It is set to execute the determination based on a reference gradation value set in advance for the identified denomination if it is identified as a genuine coin by the authenticity identification means.
The object contamination state determination apparatus according to claim 3 .
JP28328796A 1996-10-04 1996-10-04 Method and apparatus for determining contamination state of object Expired - Fee Related JP3622374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28328796A JP3622374B2 (en) 1996-10-04 1996-10-04 Method and apparatus for determining contamination state of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28328796A JP3622374B2 (en) 1996-10-04 1996-10-04 Method and apparatus for determining contamination state of object

Publications (2)

Publication Number Publication Date
JPH10111965A JPH10111965A (en) 1998-04-28
JP3622374B2 true JP3622374B2 (en) 2005-02-23

Family

ID=17663500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28328796A Expired - Fee Related JP3622374B2 (en) 1996-10-04 1996-10-04 Method and apparatus for determining contamination state of object

Country Status (1)

Country Link
JP (1) JP3622374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174917B2 (en) * 2008-09-24 2013-04-03 グローリー株式会社 Coin damage determination apparatus and damage determination method

Also Published As

Publication number Publication date
JPH10111965A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US6766045B2 (en) Currency verification
JP4113393B2 (en) Coin discrimination method and apparatus
JP3652558B2 (en) Coin discrimination device
JP3909667B2 (en) Bill identification device and identification method
US20040131242A1 (en) Monitoring method
CN1701032B (en) Optical double feed detection
JP4222546B2 (en) Paper sheet identification apparatus and method
WO2004077366A1 (en) Sheet identifying device and method
US7010154B2 (en) Money identifying method and device
JP5174917B2 (en) Coin damage determination apparatus and damage determination method
JP3622374B2 (en) Method and apparatus for determining contamination state of object
WO2004097752A1 (en) Sheet identifying device and method
JP3359986B2 (en) Coin recognition device
JP3827792B2 (en) Authenticity judgment device for paper sheets using a fluorescence sensor
JPH07210720A (en) Coin recognition device
JP3108277B2 (en) Coin recognition device and its preprocessing method
JP3167540B2 (en) Coin recognition device
JPH09190558A (en) Medium detection device
JP2002183791A (en) Coin identifying method and device
JP4176611B2 (en) Coin discrimination method and apparatus
JPH08263717A (en) Paper money identifying device
JP4382564B2 (en) Paper sheet identification apparatus and method
JP2003296791A (en) Method and device for identifying coin
JPH0935112A (en) Coin reader and coin pattern reader
JPH09161077A (en) Coin discriminating device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees