JP3620302B2 - Manufacturing method of electronic parts - Google Patents

Manufacturing method of electronic parts Download PDF

Info

Publication number
JP3620302B2
JP3620302B2 JP24941698A JP24941698A JP3620302B2 JP 3620302 B2 JP3620302 B2 JP 3620302B2 JP 24941698 A JP24941698 A JP 24941698A JP 24941698 A JP24941698 A JP 24941698A JP 3620302 B2 JP3620302 B2 JP 3620302B2
Authority
JP
Japan
Prior art keywords
substrate
lid
parent
parent substrate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24941698A
Other languages
Japanese (ja)
Other versions
JP2000077552A (en
Inventor
鉄三 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP24941698A priority Critical patent/JP3620302B2/en
Publication of JP2000077552A publication Critical patent/JP2000077552A/en
Application granted granted Critical
Publication of JP3620302B2 publication Critical patent/JP3620302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、減圧下に保持しなければならない振動部、回転部などの機能素子を収納する電子部品の製造方法に関する。
【0002】
【従来の技術】
従来、この種の電子部品の製造方法として、特開平7−113708号公報に開示されている発明がある。この発明は、図7に示すように、シリコン基板よりなる蓋親基板11にダイヤフラム12を有する複数個のキャビティ13とダイシングラインを兼ねる溝15とを設ける。そして、この蓋親基板11とガラス基板よりなる支持親基板21とを真空中で陽極接合する。この陽極接合の際に発生する酸素ガスは溝15を通して親基板11、21の周辺から放出される。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の電子部品の製造方法は、蓋親基板11にその外部周辺まで通じる溝15を形成するので、蓋親基板11の中心部から周辺までの溝15の距離が長くなって、溝15を流れる排気ガスの流出抵抗が増し、排気効率が低下していた。このため、均一な内部圧力のキャビティ13を有する複数個の電子部品を蓋親基板11と支持親基板21で作製する場合には、排気ガスの流出抵抗を減少させるために、溝15の幅を広くしたり、また溝15の深さを大きくしなければならなかった。それに、従来の電子部品の製造方法においては、陽極接合の祭に、シリコン基板よりなる蓋親基板11とガラス基板よりなる支持親基板21とが、熱膨脹係数の相違から歪みが生じて内部応力を残留させて、キャビティ13に収納しているセンサなどの動作特性に悪影響を及ぼしていた。
【0004】
そこで、本発明は、密閉凹部の真空度を均一かつ高く維持し、更に接合時の基板歪を緩和した電子部品の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明は、支持親基板と蓋親基板とを接合してマトリックス状に形成した複数個の密閉凹部にそれぞれ機能素子を減圧密封してなる電子部品の製造方法において、前記支持親基板と蓋親基板とが、シリコン基板とガラス基板との組み合わせよりなり、これらの親基板が陽極接合されるとともに、前記密閉凹部の間に支持親基板または蓋親基板のうち少なくとも一方を加工して連続または断続する溝を形成し、この溝を外部に通気する通気孔を支持親基板または蓋親基板のうち少なくとも一方に形成したものである。この発明において、例えば、陽極接合により支持親基板と蓋親基板との接合を行うと、静電引力が最も強い部分から順次に接合していく。そして、この接合により接合面から酸素ガスが発生する。溝と通気孔の配置関係は、支持親基板および蓋親基板の中央部および周辺部において等しくなっているので、発生酸素ガスの排出経路の長さはどこでも等しくなり、また排出ガスの流出抵抗もどこでも等しくなっている。したがって、支持親基板と蓋親基板とが順次に部分的に接合していくか、同時に接合するかに関わりなく、発生した酸素ガスは溝および最寄りの通気孔を介して真空槽中に排出されるので、複数個の密閉凹部の真空度(減圧度)がばらつかず、均一になって接合される。そして、密閉凹部の真空度を高く維持することができる。
【0006】
また、前記支持親基板と蓋親基板とが、シリコン基板とガラス基板との組み合わせよりなり、これらの親基板が陽極接合されることを特徴とするものである。
【0007】
この発明において、支持親基板と蓋親基板のうち、一方がシリコン基板で、他方がガラス基板よりなるので、これらの親基板は陽極接合により結合される。この陽極接合により発生するガスは溝と通気孔を通して外部に排気される。
【0008】
【発明の実施の形態】
以下に、本発明の電子部品の製造方法の実施例について図面を参照して説明する。
【0009】
図1、図2および図4において、1はシリコン基板りなる支持親基板で、この支持親基板1には複数個の機能素子2がマトリックス状に形成される。この機能素子2は、リソグラフィ技術、エッチング技術などの半導体微細加工技術を用いて支持親基板1を加工し、または支持親基板1に堆積した材料、例えばSOI基板を加工して形成される。そして、機能素子2の形成されている領域2aの周囲には、数μm〜数十μmの深さを有する横方向の溝3aと縦方向の溝3bが形成される。
【0010】
なお、機能素子2は、例えば減圧雰囲気で動作させると感度が向上する振動部を有する角速度センサ、加速度センサ、圧力センサなどの外力検知センサ、また可動部を有するマイクロモータ、マイクロアクチュエータなどの小型機構部品などよりなる。
【0011】
一方、図1、図2および図3において、4はパイレックスガラス基板よりなる蓋親基板で、この蓋親基板4の裏面側には複数個の凹部5がフォトエッチング技術を用いてマトリックス状に形成される。また、蓋親基板4の表裏を貫通する複数個の通気孔6が、フォトエッチング技術を用いてマトリックス状に形成される。
【0012】
蓋親基板4の前記凹部5は、支持親基板1と蓋親基板4とが接合されたとき、機能素子2を蓋被する対応位置に形成される。また、蓋親基板4の前記通気孔6は、支持親基板1と蓋親基板4とが接合されたとき、横方向の溝3aと縦方向の溝3bとの交差する部位の対応する位置に形成される。
【0013】
図1および図2において、これらの支持親基板1と蓋親基板4とは、上記対応関係を維持して重ねられて、図示しない真空槽中において陽極接合される。これにより、機能素子2は密閉凹部5の中に減圧密封される。なお、図1に示す枠状の塗り潰し部分が支持親基板1と蓋親基板4の接合面7となる。
【0014】
この陽極接合においては、支持親基板1と蓋親基板4との接合面7より酸素ガスが発生するが、この発生ガスは溝3a、3bおよび最寄りの通気孔6を通して真空槽中に排出される。したがって、支持親基板1および蓋親基板4の中央部および周辺部において、いづれの接合面7からの発生酸素ガスの排出経路の長さは最寄りの通気孔6までなので、その長さはどこでも等しくなり、排出ガスの流出抵抗も等しくなって、マトリックス状に形成された複数個の密閉凹部5の真空度(減圧度)を均一化して高く維持することができる。
【0015】
図1および図2に示すように、接合された支持親基板1と蓋親基板4とは、横方向溝3aと縦方向溝3bとをダイシングラインにして切断され、個別の電子部品に分離される。
【0016】
図1、図2および図4に示す溝3a、3bは、支持親基板1および蓋親基板4の外部周辺まで連続して通じる形状のものを示したが、図5に示すように、断続する横方向の溝3cおよび縦方向の溝3dのように閉鎖状に形状にしてもよい。このように、溝3a、3bが断続して閉鎖していても、各溝3a、3bの交差する部位には、通気孔6が形成されるので、陽極接合により発生した酸素ガスは各溝3a、3bから各通気孔6を通して外部に排出される。
【0017】
また、上記実施例においては、溝3a、3bはストレート形状のものを示したが、図6に示すように、溝の側壁に凹凸を設けた溝3e、3fの形状とすることができる。これにより、支持親基板1aと蓋親基板4との陽極接合時に発生する歪を吸収して緩和することができる。なお、横方向の溝3aと縦方向の溝3bとは、どちらか一方だけでもよい。
【0018】
また、上記実施例においては、溝3a、3bは支持親基板1に設けたが、蓋親基板4に設けてもよい。また、通気孔6は蓋親基板4に設けたが、支持親基板1に設けてもよい。
【0019】
また、蓋親基板4はパイレックスガラス基板を用いたが、シリコン基板を用いてもよい。この場合、支持親基板1が同じくシリコン基板よりなるので、支持親基板と蓋親基板との接合は直接接合となる。
【0020】
【発明の効果】
請求項1に記載の発明は、溝と通気孔とが親基板の全領域にわたって均等に形成されているので、陽極接合などにより発生した酸素ガスは、最寄りの溝と通気孔を通して外部に排気される。これにより、従来に比べて、排気溝の長さが短くなってガスの流通抵抗が低くなり、親基板に複数個形成される電子部品の内部の真空度(減圧度)が均一化して、収納されている機能素子の動作特性が一定し安定したものとなる。
【0021】
また、支持親基板と蓋親基板とをシリコン基板とガラス基板との組み合わせにより形成するので、陽極接合を用いてこれらの基板を接合することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例における電子部品の平面図
【図2】図1のX−X線断面形態図
【図3】図1の電子部品の蓋親基板の平面図
【図4】図1の電子部品の支持親基板の平面図
【図5】本発明の第2実施例における電子部品の支持親基板の平面図
【図6】本発明の第3実施例における電子部品の支持親基板の平面図
【図7】従来の電子部品における支持親基板と蓋親基板との接合基板の断面形態図
【符号の説明】
1、1a 支持親基板
2 機能素子
2a 領域
3a、3c 横方向の溝
3b、3d 縦方向の溝
4 蓋親基板
5 凹部
6 通気孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an electronic component that houses functional elements such as a vibrating part and a rotating part that must be held under reduced pressure.
[0002]
[Prior art]
Conventionally, as a method for manufacturing this type of electronic component, there is an invention disclosed in Japanese Patent Laid-Open No. 7-113708. In the present invention, as shown in FIG. 7, a plurality of cavities 13 having a diaphragm 12 and a groove 15 serving also as a dicing line are provided on a lid parent substrate 11 made of a silicon substrate. Then, the lid mother substrate 11 and the supporting mother substrate 21 made of a glass substrate are anodically bonded in a vacuum. Oxygen gas generated during the anodic bonding is released from the periphery of the parent substrates 11 and 21 through the groove 15.
[0003]
[Problems to be solved by the invention]
However, since the conventional electronic component manufacturing method forms the groove 15 that leads to the outer periphery of the lid base substrate 11, the distance of the groove 15 from the center to the periphery of the lid base substrate 11 becomes long, and the groove 15. As a result, the exhaust gas flow resistance increased and the exhaust efficiency decreased. For this reason, when a plurality of electronic components having cavities 13 having a uniform internal pressure are produced with the lid parent substrate 11 and the support mother substrate 21, the width of the groove 15 is reduced in order to reduce the exhaust gas outflow resistance. The depth of the groove 15 had to be increased or increased. In addition, in the conventional method of manufacturing an electronic component, during the anodic bonding festival, the lid parent substrate 11 made of a silicon substrate and the support parent substrate 21 made of a glass substrate are distorted due to the difference in thermal expansion coefficient, thereby causing internal stress. The residual characteristics adversely affect the operating characteristics of the sensor and the like housed in the cavity 13.
[0004]
Accordingly, an object of the present invention is to provide a method for manufacturing an electronic component that maintains a uniform and high degree of vacuum in a sealed recess and further reduces substrate distortion during bonding.
[0005]
[Means for Solving the Problems]
The invention of claim 1 is a method of manufacturing a supporting mother board and the electronic component Futaoya bonding the substrate formed by the respective functional element vacuo sealed into a plurality of sealed recesses formed in a matrix, said support The parent substrate and the lid parent substrate are a combination of a silicon substrate and a glass substrate, and these parent substrates are anodically bonded, and at least one of the supporting parent substrate and the lid parent substrate is processed between the sealed recesses. Thus, a continuous or intermittent groove is formed, and a ventilation hole for venting the groove to the outside is formed on at least one of the support mother board and the cover mother board. In the present invention, for example, when the support parent substrate and the lid parent substrate are bonded by anodic bonding, the portions having the strongest electrostatic attraction are sequentially bonded. Then, oxygen gas is generated from the bonding surface by this bonding. Since the arrangement relationship between the groove and the vent hole is the same at the center and the periphery of the support mother board and the cover mother board, the length of the discharge path of the generated oxygen gas is the same everywhere, and the outflow resistance of the exhaust gas is also It is equal everywhere. Therefore, the generated oxygen gas is discharged into the vacuum chamber through the groove and the nearest vent hole regardless of whether the support mother board and the lid mother board are partially joined sequentially or simultaneously. Therefore, the degree of vacuum (degree of reduced pressure) of the plurality of sealed recesses does not vary and is joined uniformly. And the vacuum degree of an airtight recessed part can be maintained highly.
[0006]
The supporting parent substrate and the lid parent substrate are a combination of a silicon substrate and a glass substrate, and these parent substrates are anodically bonded.
[0007]
In the present invention, since one of the supporting parent substrate and the lid parent substrate is a silicon substrate and the other is a glass substrate, these parent substrates are bonded by anodic bonding. The gas generated by the anodic bonding is exhausted to the outside through the groove and the vent hole.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an electronic component manufacturing method according to the present invention will be described below with reference to the drawings.
[0009]
1, 2 and 4, 1 is a silicon substrate by Li Cheng supporting mother substrate, a plurality of functional elements 2 are formed in a matrix on the supporting mother substrate 1. The functional element 2 is formed by processing the support parent substrate 1 using a semiconductor microfabrication technique such as a lithography technique or an etching technique, or processing a material deposited on the support parent substrate 1, for example, an SOI substrate. A lateral groove 3a and a longitudinal groove 3b having a depth of several μm to several tens of μm are formed around the region 2a where the functional element 2 is formed.
[0010]
Note that the functional element 2 is a small mechanism such as an angular velocity sensor having a vibration part, an acceleration sensor, a pressure sensor, or other external force detection sensor that improves sensitivity when operated in a reduced-pressure atmosphere, or a micromotor or a microactuator having a movable part. It consists of parts.
[0011]
On the other hand, in FIGS. 1, 2 and 3, reference numeral 4 denotes a lid parent substrate made of a Pyrex glass substrate, and a plurality of recesses 5 are formed in a matrix shape on the back side of the lid parent substrate 4 using a photo-etching technique. Is done. In addition, a plurality of air holes 6 penetrating the front and back of the lid parent substrate 4 are formed in a matrix using a photo etching technique.
[0012]
The concave portion 5 of the lid parent substrate 4 is formed at a corresponding position where the functional element 2 is covered when the support parent substrate 1 and the lid parent substrate 4 are joined. Further, the vent hole 6 of the lid parent substrate 4 is located at a position corresponding to a portion where the lateral groove 3a and the longitudinal groove 3b intersect when the supporting parent substrate 1 and the lid parent substrate 4 are joined. It is formed.
[0013]
In FIG. 1 and FIG. 2, the supporting parent substrate 1 and the lid parent substrate 4 are overlapped while maintaining the above-described correspondence and are anodically bonded in a vacuum chamber (not shown). As a result, the functional element 2 is sealed in the sealed recess 5 under reduced pressure. Note that the frame-shaped painted portion shown in FIG. 1 serves as a joint surface 7 between the support parent substrate 1 and the lid parent substrate 4.
[0014]
In this anodic bonding, oxygen gas is generated from the bonding surface 7 between the support mother substrate 1 and the cover parent substrate 4, and this generated gas is discharged into the vacuum chamber through the grooves 3 a and 3 b and the nearest vent hole 6. . Therefore, in the central part and the peripheral part of the support mother board 1 and the cover mother board 4, the length of the discharge path of the generated oxygen gas from any joint surface 7 is to the nearest vent hole 6, so the length is equal everywhere. Thus, the exhaust gas flow resistance becomes equal, and the vacuum degree (decompression degree) of the plurality of sealed recesses 5 formed in a matrix can be made uniform and maintained high.
[0015]
As shown in FIG. 1 and FIG. 2, the bonded support mother board 1 and lid mother board 4 are cut into dicing lines with the horizontal grooves 3a and the vertical grooves 3b separated into individual electronic components. The
[0016]
The grooves 3a and 3b shown in FIGS. 1, 2 and 4 have a shape that continuously leads to the outer periphery of the support mother substrate 1 and the cover mother substrate 4, but are intermittent as shown in FIG. You may make it a closed shape like the horizontal groove | channel 3c and the vertical groove | channel 3d. In this way, even if the grooves 3a and 3b are intermittently closed, the air holes 6 are formed at the intersecting portions of the grooves 3a and 3b, so that oxygen gas generated by anodic bonding is generated in each groove 3a. 3b through the air holes 6 and discharged to the outside.
[0017]
Moreover, in the said Example, although the groove | channels 3a and 3b showed the thing of a straight shape, as shown in FIG. 6, it can be set as the shape of the grooves 3e and 3f which provided the unevenness | corrugation in the side wall of the groove | channel. As a result, it is possible to absorb and relieve strain generated during anodic bonding between the support mother substrate 1a and the cover mother substrate 4. Only one of the horizontal groove 3a and the vertical groove 3b may be provided.
[0018]
In the above embodiment, the grooves 3 a and 3 b are provided on the support mother board 1, but may be provided on the cover mother board 4. Further, although the air holes 6 are provided in the lid parent substrate 4, they may be provided in the support mother substrate 1.
[0019]
The lid parent substrate 4 is a Pyrex glass substrate, but may be a silicon substrate. In this case, since the support mother substrate 1 is also made of a silicon substrate, the support mother substrate and the lid parent substrate are directly joined.
[0020]
【The invention's effect】
In the first aspect of the invention, since the grooves and the vent holes are formed uniformly over the entire area of the parent substrate, oxygen gas generated by anodic bonding or the like is exhausted to the outside through the nearest grooves and vent holes. The As a result, the length of the exhaust groove is shortened and the gas flow resistance is reduced compared to the conventional case, and the degree of vacuum (decompression degree) inside the electronic components formed on the parent substrate is made uniform and stored. The operational characteristics of the functional elements are constant and stable.
[0021]
Moreover , since the supporting parent substrate and the lid parent substrate are formed by a combination of a silicon substrate and a glass substrate, these substrates can be bonded using anodic bonding.
[Brief description of the drawings]
1 is a plan view of an electronic component according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along line XX of FIG. 1. FIG. 3 is a plan view of a lid parent substrate of the electronic component of FIG. FIG. 5 is a plan view of a support parent substrate for an electronic component according to a second embodiment of the present invention. FIG. 6 is a plan view of an electronic component according to a third embodiment of the present invention. Plan view of parent substrate [FIG. 7] Cross-sectional view of a bonding substrate between a supporting parent substrate and a lid parent substrate in a conventional electronic component [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1a Support mother board | substrate 2 Functional element 2a Area | region 3a, 3c Horizontal groove | channel 3b, 3d Vertical groove | channel 4 Lid | cover parent board | substrate 5 Recessed part 6 Ventilation hole

Claims (1)

支持親基板と蓋親基板とを接合してマトリックス状に形成した複数個の密閉凹部にそれぞれ機能素子を減圧密封してなる電子部品の製造方法において、前記支持親基板と蓋親基板とが、シリコン基板とガラス基板との組み合わせよりなり、これらの親基板が陽極接合されるとともに、前記密閉凹部の間に支持親基板または蓋親基板のうち少なくとも一方を加工して連続または断続する溝を形成し、この溝を外部に通気する通気孔を支持親基板または蓋親基板のうち少なくとも一方に形成した電子部品の製造方法。In a method of manufacturing an electronic component in which a functional element is vacuum-sealed in each of a plurality of sealed recesses formed in a matrix by joining a supporting parent substrate and a lid parent substrate, the supporting parent substrate and the lid parent substrate are: Consisting of a combination of a silicon substrate and a glass substrate, these parent substrates are anodically bonded, and at least one of a supporting parent substrate or a lid parent substrate is formed between the sealed recesses to form continuous or intermittent grooves And a method of manufacturing an electronic component in which a vent hole for venting the groove to the outside is formed in at least one of the support mother board and the cover mother board.
JP24941698A 1998-09-03 1998-09-03 Manufacturing method of electronic parts Expired - Fee Related JP3620302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24941698A JP3620302B2 (en) 1998-09-03 1998-09-03 Manufacturing method of electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24941698A JP3620302B2 (en) 1998-09-03 1998-09-03 Manufacturing method of electronic parts

Publications (2)

Publication Number Publication Date
JP2000077552A JP2000077552A (en) 2000-03-14
JP3620302B2 true JP3620302B2 (en) 2005-02-16

Family

ID=17192661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24941698A Expired - Fee Related JP3620302B2 (en) 1998-09-03 1998-09-03 Manufacturing method of electronic parts

Country Status (1)

Country Link
JP (1) JP3620302B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007645A (en) * 2001-06-22 2003-01-10 Japan Radio Co Ltd Method of manufacturing electronic device package and wafer associated therewith
JP4840771B2 (en) * 2006-08-29 2011-12-21 セイコーインスツル株式会社 Method for manufacturing mechanical quantity sensor
JPWO2010061470A1 (en) * 2008-11-28 2012-04-19 セイコーインスツル株式会社 Manufacturing method of wafer and package product
CN102257612A (en) 2008-12-18 2011-11-23 精工电子有限公司 Wafer and method for manufacturing package product
JP2010186956A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc Method of manufacturing glass-sealed package, manufacturing apparatus for glass-sealed package, and oscillator
TWI513668B (en) 2009-02-23 2015-12-21 Seiko Instr Inc Manufacturing method of glass-sealed package, and glass substrate
JPWO2010097901A1 (en) * 2009-02-25 2012-08-30 セイコーインスツル株式会社 Anodic bonding method, package manufacturing method, piezoelectric vibrator manufacturing method, oscillator, electronic device, and radio timepiece
JP5375300B2 (en) * 2009-04-16 2013-12-25 大日本印刷株式会社 SEALED DEVICE AND MANUFACTURING METHOD THEREOF
CN101997269B (en) * 2010-09-15 2012-02-08 山东华光光电子有限公司 Method for manufacturing semiconductor laser bar
JP2012186532A (en) 2011-03-03 2012-09-27 Seiko Instruments Inc Wafer, package manufacturing method, and piezoelectric vibrator
JP5791322B2 (en) * 2011-03-28 2015-10-07 セイコーインスツル株式会社 Package manufacturing method
JP2013197199A (en) * 2012-03-16 2013-09-30 Seiko Instruments Inc Electronic component package and method of manufacturing electronic component package
JP6180902B2 (en) * 2013-11-25 2017-08-16 新日本無線株式会社 Manufacturing method of sensor device

Also Published As

Publication number Publication date
JP2000077552A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP3620302B2 (en) Manufacturing method of electronic parts
JP3435665B2 (en) Composite sensor element and method of manufacturing the same
EP1878306B1 (en) Micromachined microphone and multisensor and method for producing same
JP2610464B2 (en) Capacitor type pressure sensor and pressure sensor group
JP4840771B2 (en) Method for manufacturing mechanical quantity sensor
JP2012091317A (en) Micromechanical cap structure
CA2159642A1 (en) Method for Fabricating Suspension Members for Micromachined Sensors
JP2010034641A (en) Capacitance type vibration sensor
TW202015033A (en) Microphone and method of manufacturing the same
JP2002523771A (en) Components with micromachining technology protected from external influences
CN111108758B (en) MEMS microphone system
JPH10206455A (en) Manufacture for pressure-reduced sealed electronic part
JPH02888B2 (en)
JP3405108B2 (en) External force measuring device and manufacturing method thereof
JP2007192587A (en) Wiring board for dynamic quantity sensor, manufacturing method of the wiring board for dynamic quantity sensor, and dynamic quantity sensor
JP2012028900A (en) Capacitor microphone
JP7147650B2 (en) Semiconductor device and its manufacturing method
JP5375300B2 (en) SEALED DEVICE AND MANUFACTURING METHOD THEREOF
JP2004532744A (en) Micromechanical cap structure and corresponding manufacturing method
US20220324697A1 (en) Electrostatic Device, Electrostatic Device Intermediate Body and Production Method
US20040188784A1 (en) Semiconductor sensor with pressure difference adjusting means
JPH1068643A (en) Manufacture of miniature electronic part
JPH0746068B2 (en) Pressure sensor
JP3543710B2 (en) Method of manufacturing acceleration sensor
JPH10153617A (en) Compact electronic part and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees