JP3619974B2 - Manufacturing method of inorganic fiber buffer sealing material - Google Patents
Manufacturing method of inorganic fiber buffer sealing material Download PDFInfo
- Publication number
- JP3619974B2 JP3619974B2 JP01798596A JP1798596A JP3619974B2 JP 3619974 B2 JP3619974 B2 JP 3619974B2 JP 01798596 A JP01798596 A JP 01798596A JP 1798596 A JP1798596 A JP 1798596A JP 3619974 B2 JP3619974 B2 JP 3619974B2
- Authority
- JP
- Japan
- Prior art keywords
- inorganic fiber
- sealing material
- nonwoven fabric
- buffer sealing
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012784 inorganic fiber Substances 0.000 title claims description 80
- 239000003566 sealing material Substances 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000004745 nonwoven fabric Substances 0.000 claims description 41
- 239000003054 catalyst Substances 0.000 claims description 29
- 230000003197 catalytic effect Effects 0.000 claims description 18
- 239000000835 fiber Substances 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 description 14
- 229920003002 synthetic resin Polymers 0.000 description 13
- 239000000057 synthetic resin Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000565 sealant Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Sealing Material Composition (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、排気ガス浄化用触媒コンバータの触媒担体を金属製シェル内に保持し且つシールする目的で、触媒担体と金属製シェルとの間に装着するための無機繊維緩衝シール材を製造する方法に関する。
【0002】
【従来の技術】
従来、自動車に搭載する排気ガス浄化用触媒コンバータとして、図7に示すごとき触媒コンバータが知られている。図7において、排気ガス浄化用触媒コンバータ(A)は、触媒担体(40)と該触媒担体(40)の外側を覆うシェル(20)と、両者の間に配置された緩衝シール材(30)とよりなっている。この排気ガス浄化用触媒コンバータAは、先ず触媒担体(40)の外面を緩衝シール材(30)で覆い、その外側から上部シェル(21)と下部シェル(22)を被せて締め付け、各シェルのフランジ(210)、(220)同士を溶接して製造する。触媒担体(40)を緩衝シール材(30)で覆うには、シート状の緩衝シール材(30)の両端部に必要に応じ適宜形状の係合部を形成し、触媒担体(40)の外周を一周させその両端部を接合或いは係合部同士を嵌合させることにより行う。(31)はその両端部の接する継ぎ目部分である。
【0003】
前記触媒担体(40)には、例えばその断面をハニカム状に成形したコージェライト担体が用いられ、この触媒担体(40)には一般に白金等の触媒が担持されている。また、前記緩衝シール材(30)としては、従来例えばシリカ・アルミナ系セラミックファイバー、未膨張バーミキュライト、無機結合材及び有機弾性物質の混合物をシート状に成形したものが用いられている。シェル(20)は一般には金属製である。
【0004】
前記緩衝シール材(30)は、自動車の走行時などに排気ガス浄化用触媒コンバータAが振動したとき、触媒担体(40)が外周のシェルと接触して損傷するのを防ぎ、またシェル(20)と触媒担体(40)との間から排気ガスが漏洩するのを防ぐ目的で配置されている。また、この緩衝シール材(30)は、一般に製品の密度が低く、嵩高で、厚みが大きいため、所定の寸法、形状に切断し、これを真空フィルムパック装置で圧縮しフィルムパックの状態にして厚みを小さくして、装着に使用している。
【0005】
【発明が解決しようとする課題】
ところで、近年、自動車の高性能化及び各種の法規制により、排気ガスの温度が著しく上昇しており、従来の使用されていた緩衝シール材では耐熱性が不足し、充分な性能を確保することが困難になってきている。かかる排気ガス温度の上昇に対応するため、近年、より耐熱性の高い無機繊維不織布を緩衝シール材として用いることが考えられている。
【0006】
しかしながら、耐熱性の良好な無機繊維不織布を緩衝シール材に使用する場合には、従来の緩衝シール材を使用する場合の如く真空吸引してフィルムパックすると、無機繊維不織布の繊維の長さや径、密度が不均一であること及び不織布の強度が小さいことに起因して、無機繊維不織布が垂直に圧縮されず層間にずれを生じ、フィルムパック状態にしたときに外形の寸法及び形状が不定形に変化し、所定の寸法、形状のものが得られない。このような無機繊維不織布の外形の寸法及び形状が変化した無機繊維緩衝シール材を触媒担体の外周に巻いた場合には、その両端部の接合或いは係合部同士の嵌合が不充分となり、この嵌合部から排気ガスの漏れが生じるという支障を来す問題点が生じた。また、従来の真空吸引しフィルムパックする方法では無機繊維不織布を高密度に圧縮することができなく、嵩高になっているため、外側から金属製シェルを被せて装着する操作に支障を来す問題点が生じた。
【0007】
本発明は、上記の事情に鑑みなされたもので、排気ガス浄化用触媒コンバータにおいて緩衝材及びシール材として用いる無機繊維不織布を、外形の変形を生じさせることなく所定の形状に、且つ高密度にした状態にてフィルムパックできるようにした無機繊維緩衝シール材の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、所定の形状に切断した無機繊維不織布を、その外形は変形させることなく、厚さ方向に圧縮して、所定の形状にフィルムパックする手段について種々検討した結果、真空パック操作とプレス操作を併用すると上記の問題点を解消できることを見出し、本発明を完成した。
【0009】
すなわち、本発明は、排気ガス浄化用触媒コンバータの触媒担体と該触媒担体の外周を覆うシェルとの間に配置する無機繊維緩衝シール材の製造方法であって、型枠と同じ形状に切断した無機繊維不織布を型枠に挿入し、該型枠内でプレスし、真空吸引してフィルムパックにすることを特徴とする無機繊維緩衝シール材の製造方法である。
【0010】
本発明における排気ガス浄化用触媒コンバータは、触媒担体とその外周を覆うシェルとの間に緩衝シール材を配置した形式の触媒コンバータであるが、触媒担体、シェルは従来既知の材質、形状のものが使用される。また、本発明では、緩衝シール材の素材に無機繊維不織布を使用する。無機繊維不織布は、高温時の耐熱性に優れているが、密度が低く、嵩高で、変形し易い。この無機繊維としてはセラミック繊維、特にアルミナ質繊維が使用される。アルミナ質繊維は、Al2O3−SiO2質の原料を溶融して繊維化したものが好ましく、特に好ましいものは、Al2O3含有量80%以上のAl2O3−SiO2繊維である。
【0011】
この無機繊維不織布を、所定の形状、すなわち排気ガス浄化用触媒コンバータの触媒担体の外周に巻きつけるに十分な大きさで且つ必要に応じその両端部に係合部を形成させた形状に切断する。切断は打ち抜き加工で行うと円滑に所望の形状の無機不織布が得られる。この切断した無機繊維不織布を型枠に挿入し、該型枠内でプレスし、真空吸引してフィルムパックにする。
【0012】
すなわち、例えば、先ず真空吸引フィルムパック装置の作業台の上に不通気性合成樹脂フィルムを拡げ、その上に切断した無機繊維不織布と同形で且つ2分割可能に細工した型枠を載せる。この型枠内に無機繊維不織布を挿入し、更にその上に該無機繊維不織布より大きな寸法の不通気性合成樹脂フィルムを装着する。そして、その上から型枠内の形状と略同形状の突部を形成させたポンチを当てがい、これを下降させてプレスし、無機繊維不織布を所定の密度まで圧縮する。
【0013】
次にこのプレスした状態で、型枠を分割して取り除き、フィルムを加熱しながら真空吸引してフィルム同士を接着させる。その後加熱及び真空吸引を停止し、ポンチを上昇させ、フィルムパックされた無機繊維不織布、すなわち本発明の無機繊維緩衝シール材を取り出す。上記のプレスによる無機繊維不織布の圧縮は、無機繊維不織布の密度が0.23g/cm3以上、好ましくは0.25〜0.35g/cm3になるように行う。上記の不通気性合成樹脂フィルムは、ポリエチレン、ポリプロピレン、ナイロンなどの不通気性合成樹脂フィルムの片面に、該フィルムより融点の低い合成樹脂をラミネートした積層物などである。
【0014】
【作用及び効果】
本発明によれば、排気ガス浄化用触媒コンバータの触媒担体と該触媒担体の外周を覆うシェルとの間に配置する無機繊維緩衝シール材について、予め目的とする緩衝シール材の形状に切断した無機繊維不織布を、前記無機繊維緩衝シール材の形状の型枠に挿入し、型枠内でプレスして真空吸引しフィルムパックにしたので、その外形の寸法や形状を変化させることなく無機繊維緩衝シール材を製造することができる。それ故、この無機繊維緩衝シール材を触媒担体の外周に巻くとき、該緩衝シール材の両端部の係合部同士を完全に嵌合させることができ、この嵌合部から排気ガスの漏れる支障がない。
【0015】
従来の真空フィルムパック装置では、圧縮する圧力の最大が絶対真空であることから、無機繊維不織布の厚み小さくし、所望の密度まで圧縮することができない欠点を有していた。本発明方法によると、上記の如くフィルムパックに際しプレスを併用することにより、無機繊維緩衝シール材の外形の寸法や形状を変化させることなく、その無機繊維不織布のフィルムパックの密度を0.23g/cm3以上とすることができる。
【0016】
そして、この密度を0.23g/cm3以上とすることによって触媒担体の周りに無機繊維緩衝シール材を巻き付けた後のシェルの装着が容易になる。無機繊維緩衝シール材の密度が0.23g/cm3より小さい場合には、シール性が劣り、またシールするのに十分な量を使用すると嵩高になるため、これを触媒担体の外周に巻いたとき、その外径がシェルの幅より大きくなり、その外側に上部シェルと下部シェルとを被せる際、上部シェルと下部シェルとの合わせ目付近で無機繊維緩衝シール材の無機繊維不織布にせん断力が加わり層間にずれが生じ、シェルのフランジ部の合わせ目にこの無機繊維不織布が挟まれてしまう。この状態では上部シェルのフランジと下部シェルのフランジとを完全に溶接することができず、隙間が発生して排気ガスが漏れる原因となる。
【0017】
また、無機繊維不織布の繊維をアルミナ質繊維とすることで、触媒担体と金属製シェルの熱膨張差で広がったギャップにアルミナ質繊維緩衝シール材が追従し、排気ガスの漏れを防止することができるばかりでなく、触媒担体を確実に保持することができる。これはアルミナ質繊維は結晶質であるため、常温から排気ガスの最高温度まで温度における繊維単体の強度変化がなく、高温下での復元性が優れるていることによる。
【0018】
【実施例及び比較例】
本発明の無機繊維緩衝シール材の製造方法の実施例及び比較例について、図1〜6を参照して説明する。
実施例1
先ず図1の斜視図に示すように、真空吸引フィルムパック装置の作業台(図示せず)に不通気性合成樹脂フィルム(3)をセットし、その上に型枠内を無機繊維緩衝シール材の外形と同形にした型枠(5)を装着する。この型枠(5)は型枠(51)と型枠(52)を結合したもので2分割できるようにしたものである。次に予め目的とする無機繊維緩衝シール材の形状に打ち抜いた無機繊維不織布(2)を前記型枠(5)内に挿入し、更にその上に前記無機繊維不織布(2)の寸法より大きな不通気性合成樹脂フィルム(4)を装着する。図2はこの状態を示す斜視図である。図2の状態において、フィルム(4)の上から型枠内の形状と略同形状の突部を形成させたポンチを当てがい、これを下降させてプレスし、無機繊維不織布を所定の密度まで圧縮する。
【0019】
次にこのプレスした状態で、前記型枠(5)を型枠(51)と型枠(52)に分割して取り除く。不通気性合成樹脂フィルム(4)を加熱しながら真空吸引し、フィルム(3)とフィルム(4)を接着させる。加熱及び真空吸引を停止し、ポンチを上昇させてフィルムパックされた無機繊維緩衝シール材を取り出す。図3は、このようにして得られた本発明の無機繊維緩衝シール材を示す斜視図である。(1)は無機繊維緩衝シール材、(2)は無機繊維不織布、(3)は下側の不通気性合成樹脂フィルム、(4)は上側の不通気性合成樹脂フィルムであり、両フィルムが接する部分ではフィルム同士が接着している。(6)、(7)は無機繊維緩衝シール材の両側に設けた係合部で、(6)は凸部、(7)は凹部であり、両者は嵌合できるように形成されている。この無機繊維緩衝シール材(1)は、密度が大きく、打ち抜いたときの無機繊維不織布の外形が保持されていた。
【0020】
図4は、上記作成した無機繊維緩衝シール(1)を触媒担体(40)の外周に沿うように巻き、凹状係合部(6)と凹状係合部(7)を互いに勘合させた状態を示す斜視図である。(31)はこのとき無機繊維緩衝シール(1)の両端部分が接する継ぎ目部分である。本発明の方法で製造した無機繊維緩衝シール(1)は、その外形が変形していないので、きっちりと巻くことができ、その継ぎ目部分(31)には間隙が生じなかった。この外側を金属製のシェルで覆い、触媒コンバーターを製造した。この触媒コンバーターを2リッター4気筒ガソリンエンジンに搭載し評価した結果、CO、HC、NOxの濃度は正常であった。
【0021】
比較例1
真空吸引フィルムパック装置の作業台に不通気性合成樹フィルムをセットし、その上に予め目的とする緩衝シール材の形状に打ち抜いた無機繊維不織布を載置し、さらにその上にこの無機繊維不織布の寸法より大きな不通気性合成樹フィルムフィルムを装着する。次に、上側のフィルムを加熱しながら真空吸引し、下側のフィルムと上側のフィルムを接着させる。次に加熱及び真空吸引を停止して、フィルムパックされた無機繊維緩衝シールを取り出す。
【0022】
図5は、上記の如くして製造した無機繊維緩衝シール材(11)を示す斜視図である。(2)は無機繊維不織布、(3)は下側の不通気性合成樹脂フィルム、(4)は上側の不通気性合成樹脂フィルムであり、両フィルムが接する部分ではフィルム同士が接着している。(6)、(7)は無機繊維緩衝シール材の両側に設けた係合部で、(6)は凸状係合部、(7)は凹状係合部であり、両者は嵌合できるように形成されている。この無機繊維緩衝シール材(11)は、密度が小さく、打ち抜いたときの無機繊維不織布の外形が保持されていなく、その端部が崩れた形状であった。
【0023】
図6は、上記の製造方法で作成した無機繊維緩衝シール(11)を触媒担体(40)の外周に沿うように巻き、凹状係合部(6)と凹状係合部(7)を互いに勘合させたときの状態を示す斜視図である。(31)はこのとき無機繊維緩衝シール材(11)の両端部分が接する継ぎ目部分である。上記比較例の方法で製造した無機繊維緩衝シール(11)は、その外形が変形しているので、きっちりと巻くことができず、その継ぎ目部分(31)には間隙が生じた。その外側を金属製のシェルで覆い、触媒コンバーターを作成した。この触媒コンバーターを2リッター4気筒ガソリンエンジンに搭載し評価した結果、CO、HC、NOxの濃度は実施例1の場合に比し多かった。
【図面の簡単な説明】
【図1】本発明の無機繊維緩衝シール材の製造方法の実施例の製造過程を示す斜視図
【図2】図1の製造過程の次の製造過程を示す斜視図
【図3】本発明の製造方法で得られた無機繊維緩衝シール材の斜視図
【図4】本発明の製造方法で得られた無機繊維緩衝シール材を取り付けた斜視図
【図5】比較例の製造方法で得られた無機繊維緩衝シール材の斜視図
【図6】比較例の製造方法で得られた無機繊維緩衝シール材を取り付けた斜視図
【図7】排気ガス浄化用触媒コンバーターを説明する斜視図
【符号の説明】
1 無機繊維緩衝シール材、2 無機繊維不織布、3、4 不通気性合成樹脂フィルム、5 型枠、6 凸状係合部、7 凹状係合部、31継ぎ目、20 シェル、40 触媒担体[0001]
[Industrial application fields]
The present invention relates to a method for producing an inorganic fiber buffer sealing material for mounting between a catalyst carrier and a metal shell for the purpose of holding and sealing the catalyst carrier of an exhaust gas purifying catalytic converter in the metal shell. About.
[0002]
[Prior art]
Conventionally, a catalytic converter as shown in FIG. 7 is known as an exhaust gas purifying catalytic converter to be mounted on an automobile. In FIG. 7, an exhaust gas purifying catalytic converter (A) includes a catalyst carrier (40), a shell (20) covering the outside of the catalyst carrier (40), and a buffer seal material (30) disposed between the two. And more. In this exhaust gas purifying catalytic converter A, first, the outer surface of the catalyst carrier (40) is covered with a buffer sealing material (30), and the upper shell (21) and the lower shell (22) are covered and tightened from the outside. The flanges (210) and (220) are welded together. In order to cover the catalyst carrier (40) with the buffer sealing material (30), an engagement portion having an appropriate shape is formed at both ends of the sheet-like buffer sealing material (30) as needed, and the outer periphery of the catalyst carrier (40). And the both ends are joined or the engaging portions are fitted to each other. (31) is a joint portion where both end portions are in contact.
[0003]
For example, a cordierite support whose cross section is formed in a honeycomb shape is used for the catalyst support (40), and a catalyst such as platinum is generally supported on the catalyst support (40). As the buffer sealing material (30), conventionally, for example, a silica / alumina ceramic fiber, unexpanded vermiculite, a mixture of an inorganic binder and an organic elastic material formed into a sheet shape is used. The shell (20) is generally made of metal.
[0004]
The buffer seal material (30) prevents the catalyst carrier (40) from coming into contact with the outer shell when the exhaust gas purifying catalytic converter A vibrates during driving of the automobile or the like. ) And the catalyst carrier (40) for the purpose of preventing the exhaust gas from leaking. Moreover, since this buffer sealing material (30) generally has a low product density, is bulky, and has a large thickness, it is cut into a predetermined size and shape, and compressed into a film pack state by a vacuum film pack device. The thickness is reduced and used for mounting.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, the temperature of exhaust gas has risen remarkably due to the high performance of automobiles and various laws and regulations, and the buffer seal material that has been used in the past has insufficient heat resistance to ensure sufficient performance. Has become difficult. In order to cope with such an increase in exhaust gas temperature, it has recently been considered to use an inorganic fiber nonwoven fabric having higher heat resistance as a buffer sealing material.
[0006]
However, when using an inorganic fiber nonwoven fabric with good heat resistance as a buffer seal material, the length and diameter of the fiber of the inorganic fiber nonwoven fabric when vacuum packed as in the case of using a conventional buffer seal material, Due to the non-uniform density and the low strength of the nonwoven fabric, the inorganic fiber nonwoven fabric is not compressed vertically and shifts between the layers, and the dimensions and shape of the outer shape become indeterminate when in a film pack state. It changes, and the thing of a predetermined size and shape cannot be obtained. When the inorganic fiber buffer sealing material with the outer dimension and shape of the inorganic fiber nonwoven fabric changed is wound around the outer periphery of the catalyst carrier, the joining of the both ends or the fitting between the engaging parts becomes insufficient, There arises a problem that the exhaust gas leaks from the fitting portion. In addition, the conventional vacuum sucking and film packing method cannot compress the inorganic fiber nonwoven fabric with high density, and is bulky, so that the operation of mounting with a metal shell from the outside is hindered. A point occurred.
[0007]
The present invention has been made in view of the above circumstances, and an inorganic fiber nonwoven fabric used as a buffer material and a sealing material in a catalytic converter for exhaust gas purification has a predetermined shape and a high density without causing deformation of the outer shape. It is an object of the present invention to provide a method for producing an inorganic fiber buffer sealing material that can be packed in a film.
[0008]
[Means for Solving the Problems]
As a result of various studies on means for compressing the inorganic fiber nonwoven fabric cut into a predetermined shape in the thickness direction without deforming its outer shape and film-packing it into a predetermined shape, the vacuum packing operation and The present inventors have found that the above-mentioned problems can be solved by using a press operation in combination.
[0009]
That is, the present invention is a method for manufacturing an inorganic fiber buffer sealing material disposed between a catalyst carrier of an exhaust gas purifying catalytic converter and a shell covering the outer periphery of the catalyst carrier, and is cut into the same shape as a mold A method for producing an inorganic fiber buffer sealing material, wherein an inorganic fiber nonwoven fabric is inserted into a mold, pressed in the mold, and vacuum sucked into a film pack.
[0010]
The catalytic converter for purifying exhaust gas in the present invention is a catalytic converter of a type in which a buffer seal material is disposed between a catalyst carrier and a shell covering the outer periphery thereof. The catalyst carrier and the shell are of a conventionally known material and shape. Is used. Moreover, in this invention, an inorganic fiber nonwoven fabric is used for the raw material of a buffer sealing material. The inorganic fiber nonwoven fabric is excellent in heat resistance at high temperatures, but has a low density, is bulky, and is easily deformed. As this inorganic fiber, a ceramic fiber, particularly an alumina fiber is used. The alumina fiber is preferably one obtained by melting and fiberizing an Al 2 O 3 —SiO 2 raw material, and particularly preferred is an Al 2 O 3 —SiO 2 fiber having an Al 2 O 3 content of 80% or more. is there.
[0011]
The inorganic fiber nonwoven fabric is cut into a predetermined shape, that is, a size sufficient to wrap around the outer periphery of the catalyst carrier of the exhaust gas purifying catalytic converter and, if necessary, an engagement portion formed at both ends thereof. . When cutting is performed by punching, an inorganic nonwoven fabric having a desired shape can be obtained smoothly. The cut inorganic fiber nonwoven fabric is inserted into a mold, pressed in the mold, and vacuum sucked to form a film pack.
[0012]
That is, for example, first, a non-breathable synthetic resin film is spread on a work table of a vacuum suction film pack apparatus, and a form crafted in the same shape as the cut inorganic fiber nonwoven fabric and capable of being divided into two is placed thereon. An inorganic fiber nonwoven fabric is inserted into the mold, and an impermeable synthetic resin film having a size larger than that of the inorganic fiber nonwoven fabric is further mounted thereon. And the punch which formed the protrusion substantially the same shape as the shape in a formwork is applied from the top, this is dropped and pressed, and an inorganic fiber nonwoven fabric is compressed to a predetermined density.
[0013]
Next, in this pressed state, the mold is divided and removed, and the films are bonded together by vacuum suction while heating the films. Thereafter, heating and vacuum suction are stopped, the punch is raised, and the film-packed inorganic fiber nonwoven fabric, that is, the inorganic fiber buffer sealing material of the present invention is taken out. The inorganic fiber nonwoven fabric is compressed by the above press so that the density of the inorganic fiber nonwoven fabric is 0.23 g / cm 3 or more, preferably 0.25 to 0.35 g / cm 3 . The air-impermeable synthetic resin film is a laminate in which a synthetic resin having a melting point lower than that of the film is laminated on one surface of an air-impermeable synthetic resin film such as polyethylene, polypropylene, and nylon.
[0014]
[Action and effect]
According to the present invention, the inorganic fiber buffer seal material disposed between the catalyst carrier of the exhaust gas purifying catalytic converter and the shell covering the outer periphery of the catalyst carrier is preliminarily cut into the shape of the target buffer seal material. Since the fiber nonwoven fabric is inserted into the mold having the shape of the inorganic fiber buffer sealant, pressed in the mold and vacuum-sucked into a film pack, the inorganic fiber buffer seal without changing the size and shape of the outer shape. The material can be manufactured. Therefore, when this inorganic fiber buffer sealing material is wound around the outer periphery of the catalyst carrier, the engaging portions at both ends of the buffer sealing material can be completely fitted to each other, and the exhaust gas leaks from this fitting portion. There is no.
[0015]
In the conventional vacuum film pack apparatus, since the maximum pressure to be compressed is absolute vacuum, the thickness of the inorganic fiber non-woven fabric is reduced, so that it cannot be compressed to a desired density. According to the method of the present invention, by using a press together with the film pack as described above, the density of the inorganic fiber nonwoven fabric film pack is 0.23 g / min without changing the size and shape of the outer shape of the inorganic fiber buffer sealant. cm 3 or more.
[0016]
By setting the density to 0.23 g / cm 3 or more, the shell can be easily mounted after the inorganic fiber buffer seal material is wound around the catalyst carrier. When the density of the inorganic fiber buffer sealing material is less than 0.23 g / cm 3 , the sealing performance is inferior, and when a sufficient amount is used for sealing, it becomes bulky. When the outer diameter is larger than the width of the shell, and the upper shell and the lower shell are covered on the outside, the inorganic fiber nonwoven fabric of the inorganic fiber buffer sealant has a shearing force near the joint of the upper shell and the lower shell. In addition, displacement occurs between the layers, and the inorganic fiber nonwoven fabric is sandwiched at the joint of the flange portion of the shell. In this state, the flange of the upper shell and the flange of the lower shell cannot be completely welded, and a gap is generated, causing exhaust gas to leak.
[0017]
In addition, by using inorganic fibers as the fibers of the inorganic fiber nonwoven fabric, the alumina fiber buffer sealant can follow the gap widened by the difference in thermal expansion between the catalyst carrier and the metal shell, thereby preventing exhaust gas leakage. In addition to being able to do so, the catalyst carrier can be reliably held. This is because the alumina fiber is crystalline, so that there is no change in strength of the fiber itself from room temperature to the maximum temperature of the exhaust gas, and the resilience at high temperature is excellent.
[0018]
[Examples and Comparative Examples]
The Example and comparative example of the manufacturing method of the inorganic fiber buffer sealing material of this invention are demonstrated with reference to FIGS.
Example 1
First, as shown in the perspective view of FIG. 1, a non-breathable synthetic resin film (3) is set on a work table (not shown) of a vacuum suction film pack apparatus, and an inorganic fiber buffer sealing material is placed on the inside of the mold frame. A form (5) having the same shape as the outer shape is mounted. This mold (5) is a combination of the mold (51) and the mold (52), and can be divided into two. Next, the inorganic fiber nonwoven fabric (2) punched out in advance in the shape of the target inorganic fiber buffer sealant is inserted into the mold (5), and further, the non-woven fabric larger than the size of the inorganic fiber nonwoven fabric (2) is placed thereon. A breathable synthetic resin film (4) is attached. FIG. 2 is a perspective view showing this state. In the state of FIG. 2, a punch formed with a protrusion having substantially the same shape as the shape in the mold is applied from above the film (4), and the punch is lowered and pressed to bring the inorganic fiber nonwoven fabric to a predetermined density. Compress.
[0019]
Next, in this pressed state, the mold (5) is divided into a mold (51) and a mold (52) and removed. The air-impermeable synthetic resin film (4) is vacuum-sucked while being heated, and the film (3) and the film (4) are adhered. Heating and vacuum suction are stopped, the punch is raised, and the inorganic fiber buffer sealing material packed in a film is taken out. FIG. 3 is a perspective view showing the inorganic fiber buffer sealing material of the present invention thus obtained. (1) is an inorganic fiber buffer sealing material, (2) is an inorganic fiber nonwoven fabric, (3) is a lower air-impermeable synthetic resin film, and (4) is an upper air-impermeable synthetic resin film. The films are bonded to each other at the contact portion. (6) and (7) are engaging portions provided on both sides of the inorganic fiber buffer sealing material, (6) is a convex portion, and (7) is a concave portion, and both are formed so that they can be fitted. This inorganic fiber buffer sealing material (1) had a high density, and retained the outer shape of the inorganic fiber nonwoven fabric when punched.
[0020]
FIG. 4 shows a state in which the inorganic fiber buffer seal (1) created above is wound along the outer periphery of the catalyst carrier (40) and the concave engaging portion (6) and the concave engaging portion (7) are fitted to each other. It is a perspective view shown. (31) is a joint portion where both end portions of the inorganic fiber buffer seal (1) are in contact with each other. Since the outer shape of the inorganic fiber buffer seal (1) produced by the method of the present invention was not deformed, it could be tightly wound, and no gap was formed in the joint portion (31). The outside was covered with a metal shell to produce a catalytic converter. As a result of evaluating the catalytic converter mounted on a 2-liter 4-cylinder gasoline engine, the concentrations of CO, HC and NOx were normal.
[0021]
Comparative Example 1
A non-breathable synthetic tree film is set on the work table of the vacuum suction film pack device, and an inorganic fiber nonwoven fabric punched out in the shape of a desired buffer sealing material is placed thereon, and further this inorganic fiber nonwoven fabric is placed thereon. Wear a non-breathable synthetic tree film larger than Next, the upper film is vacuumed while being heated, and the lower film and the upper film are bonded. Next, heating and vacuum suction are stopped, and the film-packed inorganic fiber buffer seal is taken out.
[0022]
FIG. 5 is a perspective view showing the inorganic fiber buffer sealing material (11) manufactured as described above. (2) is an inorganic fiber nonwoven fabric, (3) is a lower air-impermeable synthetic resin film, (4) is an upper air-impermeable synthetic resin film, and the films are bonded to each other at the portion where both films are in contact with each other. . (6) and (7) are engaging portions provided on both sides of the inorganic fiber buffer seal material, (6) is a convex engaging portion, and (7) is a concave engaging portion so that both can be fitted together. Is formed. This inorganic fiber buffer sealing material (11) had a low density, the outer shape of the inorganic fiber nonwoven fabric when punched out was not maintained, and the end portion was broken.
[0023]
FIG. 6 shows the inorganic fiber buffer seal (11) produced by the above manufacturing method is wound along the outer periphery of the catalyst carrier (40), and the concave engagement portion (6) and the concave engagement portion (7) are fitted to each other. It is a perspective view which shows the state when letting it be made. (31) is a joint portion where both end portions of the inorganic fiber buffer sealing material (11) are in contact with each other. Since the outer shape of the inorganic fiber buffer seal (11) manufactured by the method of the comparative example was deformed, it could not be tightly wound, and a gap was generated in the joint portion (31). The outside was covered with a metal shell to create a catalytic converter. As a result of evaluating the catalytic converter mounted on a 2-liter 4-cylinder gasoline engine, the concentrations of CO, HC, and NOx were higher than those in Example 1.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a manufacturing process of an embodiment of a manufacturing method of an inorganic fiber buffer seal material of the present invention. FIG. 2 is a perspective view showing a manufacturing process subsequent to the manufacturing process of FIG. FIG. 4 is a perspective view of the inorganic fiber buffer sealing material obtained by the manufacturing method. FIG. 4 is a perspective view of the inorganic fiber buffer sealing material obtained by the manufacturing method of the present invention. FIG. FIG. 6 is a perspective view of an inorganic fiber buffer sealing material obtained by a comparative manufacturing method. FIG. 7 is a perspective view of an exhaust gas purifying catalytic converter. ]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01798596A JP3619974B2 (en) | 1996-02-02 | 1996-02-02 | Manufacturing method of inorganic fiber buffer sealing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01798596A JP3619974B2 (en) | 1996-02-02 | 1996-02-02 | Manufacturing method of inorganic fiber buffer sealing material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09208930A JPH09208930A (en) | 1997-08-12 |
JP3619974B2 true JP3619974B2 (en) | 2005-02-16 |
Family
ID=11959026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01798596A Expired - Fee Related JP3619974B2 (en) | 1996-02-02 | 1996-02-02 | Manufacturing method of inorganic fiber buffer sealing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3619974B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4491939B2 (en) * | 2000-09-01 | 2010-06-30 | イビデン株式会社 | Fuel cell reformer |
JP4878699B2 (en) * | 2001-05-31 | 2012-02-15 | イビデン株式会社 | Method for producing alumina fiber assembly |
JP4730497B2 (en) * | 2001-05-25 | 2011-07-20 | イビデン株式会社 | Holding seal material for catalytic converter and manufacturing method thereof |
EP2037093A3 (en) | 2001-05-25 | 2012-10-03 | Ibiden Co., Ltd. | Alumnia-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumnia fiber aggregation |
JP5767503B2 (en) * | 2010-05-17 | 2015-08-19 | イビデン株式会社 | Holding sealing material, winding method around wound body using the holding sealing material, and exhaust gas purification device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5142257B2 (en) * | 1974-02-18 | 1976-11-15 | ||
JP3155638B2 (en) * | 1992-12-15 | 2001-04-16 | 株式会社三創 | Fly ash fiber |
JP3403232B2 (en) * | 1993-12-24 | 2003-05-06 | イビデン株式会社 | Exhaust gas purification converter and method of attaching heat insulating seal material to the converter |
JP3341022B2 (en) * | 1994-03-31 | 2002-11-05 | イビデン株式会社 | How to install a converter heat-insulating sealing material for automotive exhaust gas purification |
JP3025445B2 (en) * | 1995-11-21 | 2000-03-27 | 三菱化学株式会社 | Catalytic converter and method for producing the same |
-
1996
- 1996-02-02 JP JP01798596A patent/JP3619974B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09208930A (en) | 1997-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0906495B1 (en) | Mounting system for pollution control devices | |
US5862590A (en) | Method of manufacturing catalytic converter for the purification of exhaust gas | |
JP4021618B2 (en) | Wearing article and contamination control device | |
CN1900405B (en) | Punching die for manufacturing seal member and method for manufacturing seal member | |
JP3619974B2 (en) | Manufacturing method of inorganic fiber buffer sealing material | |
EP1745897B1 (en) | Punching die for manufacturing seal member and method for manufacturing seal member | |
JP3341022B2 (en) | How to install a converter heat-insulating sealing material for automotive exhaust gas purification | |
JP4239485B2 (en) | Method for assembling catalyst reformer | |
JPH10196355A (en) | Exhaust emission control catalytic converter and manufacture therefor | |
JPS631708A (en) | Sealed buffer for catalytic converter | |
JP3527966B2 (en) | Method of assembling converter for exhaust gas purification | |
JP3996046B2 (en) | EXHAUST GAS PURIFY CONVERTER AND METHOD OF Attaching Insulating Seal Material To The Converter | |
JPH07197811A (en) | Converter for controlling exhaust emission | |
JP2007205307A (en) | Monolith holding material | |
JP3751270B2 (en) | Sealing material and exhaust gas purifying converter using the same | |
JP3365011B2 (en) | Method for producing converter for purifying exhaust gas | |
JP4119006B2 (en) | Thermal insulation and sound insulation cover | |
JP3370583B2 (en) | Method for producing sealing material for catalytic converter | |
JP2004098059A (en) | Catalyst carrier with crystalline alumina fiber mat wound thereon and converter for exhaust gas | |
WO1991019082A1 (en) | Catalytic converters | |
JP2000170991A (en) | Heat-insulating member | |
JPH07197813A (en) | Method for mounting insulation seal of converter to control exhaust emission for automobile | |
JPH07189677A (en) | Mounting method for exhaust emission control converter heat insulating seal member for automobile | |
JPH07189678A (en) | Mounting method for exhaust emission control converter heat insulating seal member for automobile | |
JP3361169B2 (en) | How to install a converter heat-insulating sealing material for automotive exhaust gas purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041104 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |