JP3619724B2 - Molded product having transparent super water-repellent surface and method for producing the same - Google Patents

Molded product having transparent super water-repellent surface and method for producing the same Download PDF

Info

Publication number
JP3619724B2
JP3619724B2 JP31847799A JP31847799A JP3619724B2 JP 3619724 B2 JP3619724 B2 JP 3619724B2 JP 31847799 A JP31847799 A JP 31847799A JP 31847799 A JP31847799 A JP 31847799A JP 3619724 B2 JP3619724 B2 JP 3619724B2
Authority
JP
Japan
Prior art keywords
fine particles
resin layer
resin
producing
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31847799A
Other languages
Japanese (ja)
Other versions
JP2001131318A (en
Inventor
英子 徳永
隆之 槙野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP31847799A priority Critical patent/JP3619724B2/en
Publication of JP2001131318A publication Critical patent/JP2001131318A/en
Application granted granted Critical
Publication of JP3619724B2 publication Critical patent/JP3619724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、水に対する接触角が150度以上の超撥水性を有し、且つ透明性に優れた表面を有する成形物の製造方法成形物およびその製造方法に関する。
【0002】
【従来の技術】
固体の表面を超撥水化する方法としては、例えば、プラズマ等の処理により固体の表面に微小な凹凸突起を生じせしめ、固体の表面積を拡大させた後に、表面エネルギーが低い化合物を固体の表面に結合させることにより撥水化する方法がある。具体的には、基材に対してサブミクロン〜ミクロンオーダーの粗面化処理を行い、フルオロアルキルシラン化合物と反応させて被膜を形成する方法(特開平4−288349号公報)、プラスチックフィルムの表面に対して酸素含有ガスでプラズマ処理を行い、フルオロアルキルシラン化合物と反応させる方法(特開平6−25449号公報)等が知られている。
【0003】
【発明が解決しようとする課題】
しかし、特開平4−288349号公報記載の方法では、その製品の透明性が著しく低下する。また、特開平6−25449号公報記載の方法では、アクリル樹脂に適用した場合、十分な粗面が得られないので、水に対する接触角が150度以上の超撥水性を得るのは困難である。
【0004】
本発明は、この様な従来技術の課題を解決すべくなされたものであり、その目的は、透明性を著しく低下させずに、超撥水性の表面を有する成形物およびその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、平均粒子径が10〜100nmであるケイ素酸化物微粒子および/または金属酸化物微粒子が表面から露出することにより微小な突起が形成され、かつ該微小な突起が形成された表面にフルオロアルキルシラン化合物が化学的に結合して成る透明な超撥水性表面と、アクリル樹脂からなる基材とを有する成形物である。
【0006】
さらに本発明は、上記成形物を製造する方法であって、アクリル樹脂からなる基材上に樹脂層(A)を形成する工程と、該樹脂層(A)の表面に微小な突起を形成する工程と、その表面にフルオロアルキルシラン化合物を反応させる工程とを少なくとも有する透明な超撥水性表面を有する成形物の製造方法である。
【0007】
【発明の実施の形態】
以下、好ましい実施の形態も含めて、本発明を詳しく説明する。
【0008】
本発明者らは、先に述べた従来の表面超撥水化技術を、成形物の表面、特に透明性に優れるアクリル樹脂成形物に応用しようと試みた。この場合、超撥水化された表面も透明性に優れていることが必要となる。本発明者らは、鋭意検討の結果、透明性を確保するには表面の微小な突起の大きさが重要であり、これが小さいほど透明性の点では好ましいが、あまり小さいと撥水性の機能が損なわれることを見い出した。さらに、突起を有する表面に、低表面エネルギー化合物を化学的に結合させる場合、この低表面エネルギー化合物として、フルオロアルキルシラン化合物を用い、特定の微粒子の露出により微小な突起が形成された表面に化学的に結合させること(特に微粒子の表面に存在する官能基との反応による結合)が好ましいことも見い出した。すなわち、本発明者らは、このような検討の結果、特定の平均粒子径および特定の材料から成る微粒子を基材表面に固着露出させ、フルオロアルキルシラン化合物を化学的に結合させると、非常に優れた効果が得られるという知見に至り、本発明を完成したのである。
【0009】
本発明に用いるケイ素酸化物微粒子としては、二酸化ケイ素(SiO)、ガラス繊維等の微粒子が挙げられる。本発明に用いる金属酸化物微粒子としては、二酸化チタン(TiO)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、酸化鉄(FeO、Fe、Fe)、酸化アンチモン(Sb)、酸化セリウム(CeO)、酸化錫(SnO)等の微粒子が挙げられる。これらは2種以上を混合して用いてもよい。特にフルオロアルキルシラン化合物との反応性が良好であるという点で、二酸化ケイ素(SiO)の微粒子が好ましい。
【0010】
本発明に用いる微粒子の平均粒子径は、10〜100nmである。これが100nmを超えると透明性が著しく低下し、10nm未満であると超撥水性が発現しない。さらに、平均粒子径は30〜60nmであることが好ましい。この平均粒子径の値は、微粒子100個を単独で、または成形物の表面に露出している微粒子100個を電子顕微鏡で観察してそれぞれの粒子径を測定し、平均することによって求めたものである。
【0011】
本発明に用いる微粒子は、表面への露出により微小な突起を形成できる程度の微細形状であればよい。すなわち、ここでいう微粒子とは、厳密な意味で粒状と言われるものは勿論のこと、例えば、鱗片状、繊維状、不定形状、多面体状などの各種の任意形状であっても、その形状が微細な故に微粒子と言い得るものをも包含する意味である。
【0012】
本発明では、このような微粒子を表面から露出させて、微小な突起を成形物の表面に形成する。微小な突起を形成する前の微粒子の形態は特に限定されない。例えば、粉体として存在する形態、あるいは、水、アルコール、有機溶媒などにコロイド粒子として分散している状態(分散液)等の微粒子を用いることができる。本発明の成形物表面に露出した微粒子は、凝集することなく分散していることが好ましい。
【0013】
微粒子を表面から露出させて微小な突起を成形物の表面に形成する方法としては、例えば、樹脂表面に微粒子を機械的に付着させる方法、微粒子が分散した樹脂層を基材表面に形成し、この樹脂層の表面を化学的または物理的な処理で部分除去して微粒子の表面を露出させる方法などがある。後者の方法は、複雑な形状の成形物にも容易に適用できるので好ましい方法である。後者の方法の化学的処理としては、溶剤による樹脂層の溶解除去や化学薬品による分解除去などが適用できる。また、物理的処理としては、プラズマ処理や紫外線等の電磁波による樹脂層の分解除去などが適用できる。更に、これらの化学的処理と物理的処理の組み合わせも有効である。
【0014】
特に、基材表面に微小な突起の形成およびフルオロアルキルシラン化合物と反応する官能基の導入を行うための樹脂層(A)を形成する方法が好ましい。この樹脂層(A)は、代表的には、平均粒子径が10〜100nmであるケイ素酸化物微粒子および/または金属酸化物微粒子を含む樹脂組成物で基材表面を被覆することにより形成すればよい。樹脂層(A)の厚みは、密着性や透明性の点から20μm以下が好ましい。さらに、この樹脂層(A)をプラズマ処理により部分的に分解除去(特に表面部分の樹脂成分を除去)すれば、フルオロアルキルシラン化合物と反応する官能基を有する微粒子が十分に露出し、微小な突起が形成された表面を簡易かつ良好に形成できる。このプラズマ処理条件は、所望に応じて決定すればよいが、例えば酸素を100ml/minの流速で流した状態で、100Wで3分間程度のプラズマ処理を実施すれば、良好な除去が可能である。
【0015】
本発明において、表面に形成される微小な突起の具体的な高さは、微粒子の付与処理方法に応じて異なるが、その高さは、少なくとも微粒子の粒子径以下となる。また表面の単位面積当たりの突起の個数も、その処理条件によって異なる。例えば、上述の樹脂層(A)を形成する方法をとる場合、微粒子の添加量が単位面積当たりの突起の頻度に影響する。この場合の微粒子の添加量は、プラズマ処理等の微粒子を露出させる工程を行なう前の樹脂層(A)中1〜50質量%が好ましく、5〜40質量%がより好ましい。これら範囲の上限値は、特に表面の機械的特性の点で有意義であり、下限値は超撥水性の発現の点で有意義である。
【0016】
例えば、粒子径が10〜100nmの微粒子(球状シリカ微粒子等)が、添加量1〜50質量%で凝集することなく分散したと仮定した場合、プラズマ処理後の樹脂表面には、計算上、高さ100nm以下の突起が1μm当たり1〜8600個形成されることになる。また例えば、さらに好ましい形態として、粒子径が30〜60nmの微粒子(球状シリカ微粒子等)を5〜40質量%用いた場合は、計算上、高さ60nm以下の突起が1μm当たり20〜1400個形成されることになる。
【0017】
樹脂層(A)に用いる樹脂成分は、特に限定されないが、例えば、アクリル系樹脂、塩化ビニル−酢酸ビニル共重合体、ポリエステル系樹脂、ウレタン系樹脂、エポキシ系樹脂などが挙げられる。透明性を考慮すると、アクリル系樹脂が特に好ましい。アクリル系樹脂の具体例としては、ポリメタクリル酸メチル、メタクリル酸メチルを主成分とする共重合体、ジペンタエリストールヘキサ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、シクロヘキサ(メタ)アクリレート、メチルトリグリコール(メタ)アクリレート、カルビトール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、n−ステアリル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等が挙げられる。これらは単独でまたは二種以上を組合せて使用できる。なお、本発明において、「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを意味する。
【0018】
樹脂層(A)は、例えば、樹脂成分にケイ素酸化物微粒子および/または金属酸化物微粒子を添加し、必要に応じて溶剤を混合し、更に必要に応じて、着色剤、紫外線吸収剤、帯電防止剤など任意の添加材を添加した樹脂組成物を、例えば基材表面に塗布することで形成できる。樹脂組成物の塗布方法は特に限定されず、従来より知られる各種の方法を用いることができる。例えば、アプリケーターやバーコーターを用いたコーティング、ロールコート、スプレーコート、ディップコート等が挙げられる。また、樹脂組成物に溶剤が含まれる場合は塗布後に溶剤を蒸発させ、モノマーが含まれる場合は塗布後にUV硬化や熱硬化させればよい。また、モノマー中での微粒子の分散性を改善する為に、微粒子の水酸基の一部を疎水化することも好ましい。
【0019】
以上説明したようにケイ素酸化物微粒子および/または金属酸化物微粒子を用いて微小な突起を表面に形成すると、その微粒子が表面からむき出しになるので、微小な突起の形成と同時に、表面にフルオロアルキルシラン化合物と反応する官能基である水酸基を導入したことにもなる。この後、表面にフルオロアルキルシラン化合物を化学的に結合させれば、本発明の超撥水性表面を有する成形物が得られる。
【0020】
本発明で用いるフルオロアルキルシラン化合物としては、例えば、CFCHCHSi(OCH、CFCHCHSiCl、CF(CFCHCHSi(OCH、CF(CFCHCHSiCl、CF(CFCHCHSi(OCH、CF(CFCHCHSiCl、CF(CFCHCHSi(OCH、CF(CFCHCHSiCl、CF(CFCHCHSi(OCH)Cl等が挙げられる。特に、フッ素原子の数が多い方が高い撥水性が得られるので、CF(CFCHCHSi(OCH、CF(CFCHCHSiCl、CF(CFCHCHSi(OCH)Cl等が好ましい。
【0021】
フルオロアルキルシラン化合物は、必要に応じて、溶媒に溶解して使用すればよい。この溶媒としては、エタノール、2−プロパノール等の低級アルコール;m−キシレンヘキサフロライド等のフッ素系溶媒;などが挙げられる。また、重縮合温度を低下させるために、塩酸、酢酸などの酸を添加してもよい。フルオロアルキルシラン化合物の塗布方法は特に限定されず、従来より知られる各種の方法を用いることができる。例えば、アプリケーターやバーコーターを用いたコーティング、ロールコート、スプレーコート、ディップコート等が挙げられる。また、ケイ素酸化物微粒子および/または金属酸化物微粒子の水酸基と、フルオロアルキルシラン化合物との反を加速させるために加熱してもよい。
【0022】
本発明の成形物の基材としては、成型加工が容易特に透明性を有する樹脂であるアクリル樹脂からなる基材を用いる
【0023】
本発明の成形物の形状は特に限定されず、不特定の固定された形状を有するものであればよい。その形状は用途等に応じて、シート状、フィルム状、板状、その他の一般的形状、製品形状等を適宜採用すればよい。
【0024】
本発明の成形物の表面は、超撥水性と透明性を併せ持つものである。その具体的特性は、所望に応じて適宜決定すればよい。一般的には、水に対する接触角が150度以上であることが好ましく、155度以上であることがより好ましい。また、全光線透過率は80%以上であることが好ましく、90%以上であることがより好ましい。また、ヘイズは40%以下であることが好ましく、30%以下であることがより好ましい。
【0025】
【実施例】
以下、実施例により本発明を更に詳しく説明する。なお、実施例中「部」、「%」は、それぞれ「質量部」「質量%」を意味する。また、実施例中の評価は、以下の方法に従い実施した。
(1)接触角:
ERMA INC.製G−T型接触角測定計を用いて測定した。
(2)ヘイズおよび全光線透過率:
スガ試験機社製ヘイズメーターを用いて、超撥水性表面を有する成形物について測定した。
【0026】
<実施例1>
シリカ微粒子(アエロジル社製、商品名アエロジルTT600、平均1次粒子径40nm)20部を、ジペンタエリストールヘキサアクリレート40部と1,6−ヘキサンジオールジアクリレート40部の混合溶液中に、高性能機械分散機コボールミルを用いて分散させ、さらに光重合開始剤(チバガイギー社製、商品名イルガキュア184)1.2部を溶解させて塗工液を得た。この塗工液を、厚さ3mmのポリメチルメタクリレート(以下「PMMA」と記す)板に、膜厚が4μmになるようにアプリケーターで塗布し、UV照射で硬化して、樹脂層(A)である硬化塗膜(シリカ濃度20%)を形成した。
【0027】
この硬化塗膜形成後のPMMA板を、酸素流量100ml/min、出力100Wで6分間プラズマ処理し、樹脂層(A)の表面部分の樹脂成分を分解除去した。次いで、ヘプタデカフルオロデシルトリメトキシシラン塗工液[CF(CFCHCHSi(OCH、東芝シリコーン社製、商品名XC98−A5382]に1分間ディッピングし、その後風乾して、70℃で30分熱処理を行った。さらに、過剰のシラン化合物を除去する為にイソプロパノールで洗浄した。以上の処理により、PMMA板の表面を超撥水性にすることができた。
【0028】
<実施例2>
コロイダルシリカ分散液(日産化学社製、商品名ST−20OL、コロイダルシリカ20%、水80%、シリカ平均粒子径40〜50nm)100部中の分散媒(水)を、イソプロパノール80部に置換した。この分散液100部に、γ−メタクリロイルオキシプロピルトリメトキシシラン1.9部、0.1M塩酸0.055部を良く混合して、70℃で2時間還流し、モノマー中でも分散するようにコロイダルシリカの水酸基の一部を疎水化した。次いで、この分散液中の分散媒(イソプロパノール)を、ジペンタエリストールヘキサアクリレート40部とヘキサンジオールジアクリレート40部の混合溶液に置換した。この置換後の分散液100部にキシレン8部、酢酸エチレングリコールモノエチルエーテル34部、光重合開始剤(イルガキュア184)1.2部を溶解させて塗工液を得た。
【0029】
この塗工液を、70℃に加熱した厚さ3mmのPMMA板に、膜厚7μmになるようにアプリケーターで塗布した。次いで、70℃で2分間乾燥して、キシレンおよび酢酸エチレングリコールモノエチルエーテルを蒸発させ、UV照射して硬化させて、樹脂層(A)である硬化塗膜(シリカ濃度20%)を形成した。これ以降は、実施例1と同様にしてPMMA板の表面を超撥水性にした。
【0030】
<実施例3>
プラズマ処理時間を3分に変更したこと以外は、実施例2と同様にしてPMMA板の表面を超撥水性にした。
【0031】
<比較例1>
プラズマ処理を行わなかったこと以外は実施例2と同様にして表面処理PMMA板を得た。
【0032】
<比較例2>
ヘプタデカフルオロデシルトリメトキシシランによる処理を行わなかったこと以外は、実施例2と同様にして表面処理PMMA板を得た。
【0033】
<比較例3>
厚さ3mmのPMMA板を、酸素流量100ml/min、出力100Wで6分間プラズマ処理した。次いで、ヘプタデカフルオロデシルトリメトキシシラン塗工液(XC98−A5382)に1分間ディッピングし、その後風乾して、70℃で30分熱処理を行ない、さらに過剰のフルオロアルキルシラン化合物を除去する為にイソプロパノールで洗浄し、表面処理PMMA板を得た。
【0034】
<比較例4>
PMMA80部をメチルエチルケトン400部に溶解させてポリマー溶液を調製し、さらに平均粒子径7.2μmのガラスフィラー(龍森社製、商品名ヒューズレックスY−40)20部を添加して、毎分500回転で10分間攪拌して分散させて塗工液を得た。この塗工液を、厚さ3mmのPMMA板に膜厚25μmになるようにアプリケーターで塗布した。次いで70℃で10分、120℃で2分乾燥して、樹脂層(シリカ濃度20%)を形成した。この塗膜形成後のPMMA板を、酸素流量100ml/min、出力100Wで6分間プラズマ処理し、樹脂相(A)の表面部分の樹脂成分を分解除去した。次いで、ヘプタデカフルオロデシルトリメトキシシラン塗工液[XC98−A5382]に1分間ディッピングし、その後風乾して、70℃で30分熱処理を行ない、さらに過剰のフルオロアルキルシラン化合物を除去する為にイソプロパノールで洗浄することにより、表面処理PMMA板を得た。
【0035】
<比較例5>
プラズマ処理時間を3分間に変更したこと以外は、比較例4と同様にして表面処理PMMA板を得た。
【0036】
<比較例6>
メチルエチルケトンの量を600部に変更し、ガラスフィラーの量を102部にすることにより樹脂層中のシリカ微粒子濃度を56%に変更したこと以外は、比較例4と同様にして表面処理PMMA板を得た。
【0037】
<比較例7>
プラズマ処理時間を3分間に変更したこと以外は、比較例6と同様にして表面処理PMMA板を得た。
【0038】
<評価>
実施例1〜3および比較例1〜7で得た各表面処理PMMA板について、水に対する接触角、ヘイズ、全光線透過率を測定した。結果を下記表1に示す。
【0039】
【表1】

Figure 0003619724
表1に示すように、実施例1〜3で得た表面処理PMMA板は、水に対する接触角が大きな超撥水性を有し、また同時に透明性を有するものであった。一方、比較例1〜7で得た表面処理PMMA板は、使用する粒子の平均粒子径が大き過ぎるか、プラズマ処理を行っていないか(すなわちプラズマ除去による突起形成を行っていないか)、フルオロアルキルシラン化合物による処理がなされていないか、あるいは粒子を使用していないので、実施例1〜3と比較して水に対する接触角が小さく、撥水性の点で劣るものであった。
【0040】
【発明の効果】
以上説明したように、本発明によれば、透明性を著しく低下させずに、超撥水性の表面を有する成形物およびその製造方法を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a molded article having a super water-repellent contact angle with water of 150 degrees or more and having a surface excellent in transparency, and a method for producing the same.
[0002]
[Prior art]
As a method of making the surface of the solid super water-repellent, for example, by forming minute irregularities on the surface of the solid by treatment with plasma or the like to increase the surface area of the solid, a compound having a low surface energy is applied to the surface of the solid. There is a method of making it water-repellent by bonding to the. Specifically, the surface of the substrate is subjected to a surface roughening treatment on the order of submicron to micron and reacted with a fluoroalkylsilane compound to form a film (JP-A-4-288349), the surface of a plastic film For example, a method of performing a plasma treatment with an oxygen-containing gas and reacting with a fluoroalkylsilane compound (JP-A-6-25449) is known.
[0003]
[Problems to be solved by the invention]
However, in the method described in JP-A-4-288349, the transparency of the product is remarkably lowered. Further, in the method described in JP-A-6-25449, when applied to an acrylic resin, a sufficiently rough surface cannot be obtained, so that it is difficult to obtain super water repellency with a contact angle with water of 150 degrees or more. .
[0004]
The present invention has been made to solve such problems of the prior art, and an object of the present invention is to provide a molded article having a super-water-repellent surface without significantly reducing transparency and a method for producing the same. There is.
[0005]
[Means for Solving the Problems]
According to the present invention, fine protrusions are formed by exposing silicon oxide fine particles and / or metal oxide fine particles having an average particle diameter of 10 to 100 nm from the surface, and fluoro is formed on the surface on which the fine protrusions are formed. A molded article having a transparent super water-repellent surface formed by chemically bonding an alkylsilane compound and a base material made of an acrylic resin .
[0006]
Furthermore, the present invention is a method for producing the molded product , wherein a step of forming a resin layer (A) on a base material made of an acrylic resin, and forming minute protrusions on the surface of the resin layer (A) It is a method for producing a molded article having a transparent superhydrophobic surface having at least a step and a step of reacting a fluoroalkylsilane compound on the surface thereof.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail including preferred embodiments.
[0008]
The inventors of the present invention tried to apply the above-described conventional surface superhydrophobic technology to the surface of a molded product, particularly to an acrylic resin molded product having excellent transparency. In this case, the super water-repellent surface needs to be excellent in transparency. As a result of diligent studies, the present inventors have found that the size of minute protrusions on the surface is important for ensuring transparency, and the smaller the size, the better in terms of transparency. I found that it was damaged. Furthermore, when a low surface energy compound is chemically bonded to the surface having protrusions, a fluoroalkylsilane compound is used as the low surface energy compound, and the surface on which minute protrusions are formed by exposure of specific fine particles is used. It has also been found that it is preferable to bond them with each other (particularly, binding by reaction with functional groups present on the surface of the fine particles). That is, as a result of such studies, the inventors have found that when a fine particle composed of a specific average particle size and a specific material is fixedly exposed on the substrate surface and the fluoroalkylsilane compound is chemically bonded, The inventors have reached the knowledge that an excellent effect can be obtained and completed the present invention.
[0009]
Examples of the silicon oxide fine particles used in the present invention include fine particles such as silicon dioxide (SiO 2 ) and glass fibers. As metal oxide fine particles used in the present invention, titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 ), oxidation Examples thereof include fine particles such as antimony (Sb 2 O 3 ), cerium oxide (CeO 2 ), and tin oxide (SnO 2 ). You may use these in mixture of 2 or more types. In particular, fine particles of silicon dioxide (SiO 2 ) are preferable in that the reactivity with the fluoroalkylsilane compound is good.
[0010]
The average particle diameter of the fine particles used in the present invention is 10 to 100 nm. When this exceeds 100 nm, the transparency is remarkably lowered, and when it is less than 10 nm, super water repellency is not exhibited. Furthermore, it is preferable that an average particle diameter is 30-60 nm. The value of the average particle diameter was obtained by measuring 100 particles by observing with an electron microscope 100 individual particles or 100 particles exposed on the surface of the molded product, and averaging them. It is.
[0011]
The fine particles used in the present invention may be fine enough to form minute protrusions when exposed to the surface. That is, the fine particles here are not only those that are granular in the strict sense, but also, for example, various arbitrary shapes such as scales, fibers, irregular shapes, polyhedrons, etc. It is meant to include what can be called fine particles because it is fine.
[0012]
In the present invention, such fine particles are exposed from the surface to form minute protrusions on the surface of the molded product. The form of the fine particles before forming the minute protrusions is not particularly limited. For example, fine particles in a form existing as a powder, or in a state of being dispersed as colloidal particles (dispersion liquid) in water, alcohol, organic solvent, or the like can be used. The fine particles exposed on the surface of the molded product of the present invention are preferably dispersed without agglomeration.
[0013]
As a method of forming fine projections on the surface of the molded product by exposing the fine particles from the surface, for example, a method of mechanically attaching the fine particles to the resin surface, a resin layer in which the fine particles are dispersed is formed on the substrate surface, There is a method of exposing the surface of fine particles by partially removing the surface of the resin layer by chemical or physical treatment. The latter method is a preferable method because it can be easily applied to a molded article having a complicated shape. As the chemical treatment of the latter method, dissolution removal of the resin layer with a solvent or decomposition removal with a chemical can be applied. Further, as the physical treatment, plasma treatment or decomposition and removal of the resin layer by electromagnetic waves such as ultraviolet rays can be applied. Furthermore, a combination of these chemical treatments and physical treatments is also effective.
[0014]
In particular, a method of forming a resin layer (A) for forming minute protrusions on the substrate surface and introducing a functional group that reacts with the fluoroalkylsilane compound is preferable. The resin layer (A) is typically formed by coating the substrate surface with a resin composition containing silicon oxide fine particles and / or metal oxide fine particles having an average particle diameter of 10 to 100 nm. Good. The thickness of the resin layer (A) is preferably 20 μm or less from the viewpoint of adhesion and transparency. Furthermore, if this resin layer (A) is partially decomposed and removed by plasma treatment (particularly, the resin component on the surface portion is removed), fine particles having a functional group that reacts with the fluoroalkylsilane compound are sufficiently exposed, and minute The surface on which the protrusion is formed can be easily and satisfactorily formed. The plasma treatment conditions may be determined as desired. For example, if the plasma treatment is performed at 100 W for about 3 minutes with oxygen flowing at a flow rate of 100 ml / min, good removal is possible. .
[0015]
In the present invention, the specific height of the minute protrusions formed on the surface varies depending on the fine particle application method, but the height is at least equal to or smaller than the particle diameter of the fine particles. Also, the number of protrusions per unit area of the surface varies depending on the processing conditions. For example, when the above-described method for forming the resin layer (A) is employed, the amount of fine particles added affects the frequency of protrusions per unit area. In this case, the addition amount of fine particles is preferably 1 to 50% by mass, more preferably 5 to 40% by mass in the resin layer (A) before performing the step of exposing fine particles such as plasma treatment. The upper limit value of these ranges is particularly significant in terms of the mechanical properties of the surface, and the lower limit value is significant in terms of the appearance of super water repellency.
[0016]
For example, when it is assumed that fine particles (spherical silica fine particles, etc.) having a particle size of 10 to 100 nm are dispersed without aggregation at an addition amount of 1 to 50% by mass, the resin surface after the plasma treatment has a high 1 to 8600 protrusions with a thickness of 100 nm or less are formed per 1 μm 2 . Further, for example, as a more preferable form, when 5 to 40% by mass of fine particles (spherical silica fine particles and the like) having a particle size of 30 to 60 nm are used, 20 to 1400 protrusions having a height of 60 nm or less are calculated per 1 μm 2. Will be formed.
[0017]
The resin component used for the resin layer (A) is not particularly limited, and examples thereof include acrylic resins, vinyl chloride-vinyl acetate copolymers, polyester resins, urethane resins, and epoxy resins. In view of transparency, an acrylic resin is particularly preferable. Specific examples of acrylic resins include polymethyl methacrylate, copolymers based on methyl methacrylate, dipentaerythrole hexa (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, isocyanuric acid ethylene oxide Modified tri (meth) acrylate, triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol Di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, cyclohexa (meth) acrylate, methyltriglyco (Meth) acrylate, carbitol (meth) acrylate, butoxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, n-stearyl (meth) acrylate, 2-ethylhexyl ( And (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and the like. These can be used alone or in combination of two or more. In the present invention, “(meth) acrylate” means acrylate and / or methacrylate.
[0018]
In the resin layer (A), for example, silicon oxide fine particles and / or metal oxide fine particles are added to the resin component, a solvent is mixed as necessary, and a colorant, an ultraviolet absorber, a charging agent are added as necessary. For example, it can be formed by applying a resin composition to which an optional additive such as an inhibitor is added to the surface of the substrate. The application method of the resin composition is not particularly limited, and various conventionally known methods can be used. Examples thereof include coating using an applicator and a bar coater, roll coating, spray coating, dip coating, and the like. Further, when the resin composition contains a solvent, the solvent is evaporated after coating, and when the monomer is contained, UV curing or heat curing may be performed after coating. Further, in order to improve the dispersibility of the fine particles in the monomer, it is also preferable to make part of the hydroxyl groups of the fine particles hydrophobic.
[0019]
As described above, when fine projections are formed on the surface using silicon oxide fine particles and / or metal oxide fine particles, the fine particles are exposed from the surface. It also means that a hydroxyl group that is a functional group that reacts with the silane compound is introduced. Thereafter, if a fluoroalkylsilane compound is chemically bonded to the surface, the molded article having the super water-repellent surface of the present invention can be obtained.
[0020]
Examples of the fluoroalkylsilane compound used in the present invention include CF 3 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 CH 2 CH 2 SiCl 3 , CF 3 (CF 2 ) 3 CH 2 CH 2 Si (OCH 3). ) 3 , CF 3 (CF 2 ) 3 CH 2 CH 2 SiCl 3 , CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 CH 2 CH 2 SiCl 3 , CF 3 (CF 2) 7 CH 2 CH 2 Si (OCH 3) 3, CF 3 (CF 2) 7 CH 2 CH 2 SiCl 3, CF 3 (CF 2) 7 CH 2 CH 2 Si (OCH 3) Cl 2 , etc. Is mentioned. In particular, the higher the number of fluorine atoms, the higher the water repellency is obtained, so CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 CH 2 CH 2 SiCl 3 , CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) Cl 2 or the like is preferable.
[0021]
The fluoroalkylsilane compound may be used after being dissolved in a solvent, if necessary. Examples of the solvent include lower alcohols such as ethanol and 2-propanol; fluorine-based solvents such as m-xylene hexafluoride; In order to lower the polycondensation temperature, an acid such as hydrochloric acid or acetic acid may be added. The method for applying the fluoroalkylsilane compound is not particularly limited, and various conventionally known methods can be used. Examples thereof include coating using an applicator and a bar coater, roll coating, spray coating, dip coating, and the like. Further, heating may be performed to accelerate the reaction between the hydroxyl group of the silicon oxide fine particles and / or metal oxide fine particles and the fluoroalkylsilane compound.
[0022]
Examples of a base material for forming the shape of the present invention, a substrate made of adult-type machining a resin having a easy particularly transparent acrylic resin.
[0023]
The shape of the molded product of the present invention is not particularly limited as long as it has an unspecified fixed shape. As the shape, a sheet shape, a film shape, a plate shape, other general shapes, a product shape, or the like may be appropriately employed depending on the application.
[0024]
The surface of the molded product of the present invention has both super water repellency and transparency. The specific characteristics may be appropriately determined as desired. In general, the contact angle with water is preferably 150 degrees or more, and more preferably 155 degrees or more. The total light transmittance is preferably 80% or more, and more preferably 90% or more. The haze is preferably 40% or less, and more preferably 30% or less.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, “part” and “%” mean “part by mass” and “% by mass”, respectively. Moreover, the evaluation in an Example was implemented according to the following method.
(1) Contact angle:
ERMA INC. It measured using the G-T type | mold contact angle measuring meter made from.
(2) Haze and total light transmittance:
It measured about the molding which has a super-water-repellent surface using the Suga Test Instruments company haze meter.
[0026]
<Example 1>
20 parts of silica fine particles (Aerosil TT600, trade name Aerosil TT600, average primary particle size 40 nm) in a mixed solution of 40 parts of dipentaerystol hexaacrylate and 40 parts of 1,6-hexanediol diacrylate Dispersion was performed using a mechanical disperser Coball Mill, and 1.2 parts of a photopolymerization initiator (trade name: Irgacure 184, manufactured by Ciba Geigy Co.) was dissolved to obtain a coating solution. This coating solution was applied to a polymethylmethacrylate (hereinafter referred to as “PMMA”) plate having a thickness of 3 mm with an applicator so as to have a film thickness of 4 μm, cured by UV irradiation, and a resin layer (A). A cured coating film (silica concentration 20%) was formed.
[0027]
The PMMA plate after this cured coating film was formed was plasma treated at an oxygen flow rate of 100 ml / min and an output of 100 W for 6 minutes to decompose and remove the resin component on the surface portion of the resin layer (A). Next, it was dipped in heptadecafluorodecyltrimethoxysilane coating solution [CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 , Toshiba Silicone, trade name XC98-A5382] for 1 minute, and then air-dried. Then, heat treatment was performed at 70 ° C. for 30 minutes. Furthermore, in order to remove excess silane compounds, it was washed with isopropanol. With the above treatment, the surface of the PMMA plate could be made super water-repellent.
[0028]
<Example 2>
The dispersion medium (water) in 100 parts of colloidal silica dispersion (manufactured by Nissan Chemical Co., Ltd., trade name ST-20OL, colloidal silica 20%, water 80%, silica average particle size 40-50 nm) was replaced with 80 parts of isopropanol. . To 100 parts of this dispersion, 1.9 parts of γ-methacryloyloxypropyltrimethoxysilane and 0.055 part of 0.1M hydrochloric acid are mixed well, and the mixture is refluxed at 70 ° C. for 2 hours. A part of the hydroxyl group was hydrophobized. Next, the dispersion medium (isopropanol) in the dispersion was replaced with a mixed solution of 40 parts of dipentaerystol hexaacrylate and 40 parts of hexanediol diacrylate. In 100 parts of the dispersion after replacement, 8 parts of xylene, 34 parts of ethylene glycol monoethyl ether and 1.2 parts of a photopolymerization initiator (Irgacure 184) were dissolved to obtain a coating solution.
[0029]
This coating solution was applied to a 3 mm thick PMMA plate heated to 70 ° C. with an applicator so as to have a film thickness of 7 μm. Subsequently, it was dried at 70 ° C. for 2 minutes to evaporate xylene and ethylene glycol monoethyl ether, and cured by UV irradiation to form a cured coating film (silica concentration 20%) as the resin layer (A). . Thereafter, the surface of the PMMA plate was made super water-repellent in the same manner as in Example 1.
[0030]
<Example 3>
The surface of the PMMA plate was made super water-repellent in the same manner as in Example 2 except that the plasma treatment time was changed to 3 minutes.
[0031]
<Comparative Example 1>
A surface-treated PMMA plate was obtained in the same manner as in Example 2 except that the plasma treatment was not performed.
[0032]
<Comparative example 2>
A surface-treated PMMA plate was obtained in the same manner as in Example 2 except that the treatment with heptadecafluorodecyltrimethoxysilane was not performed.
[0033]
<Comparative Example 3>
A PMMA plate having a thickness of 3 mm was plasma-treated at an oxygen flow rate of 100 ml / min and an output of 100 W for 6 minutes. Next, it is dipped in a heptadecafluorodecyltrimethoxysilane coating solution (XC98-A5382) for 1 minute, then air-dried, heat treated at 70 ° C. for 30 minutes, and isopropanol to remove excess fluoroalkylsilane compound. And a surface-treated PMMA plate was obtained.
[0034]
<Comparative example 4>
A polymer solution was prepared by dissolving 80 parts of PMMA in 400 parts of methyl ethyl ketone, and further adding 20 parts of a glass filler (trade name: Furelex Y-40, manufactured by Tatsumori Co., Ltd.) having an average particle diameter of 7.2 μm. The coating liquid was obtained by stirring and dispersing for 10 minutes by rotation. This coating solution was applied to a PMMA plate having a thickness of 3 mm with an applicator so as to have a film thickness of 25 μm. Subsequently, it was dried at 70 ° C. for 10 minutes and at 120 ° C. for 2 minutes to form a resin layer (silica concentration 20%). The PMMA plate after this coating was formed was plasma treated at an oxygen flow rate of 100 ml / min and an output of 100 W for 6 minutes to decompose and remove the resin component on the surface portion of the resin phase (A). Next, it is dipped in a heptadecafluorodecyltrimethoxysilane coating solution [XC98-A5382] for 1 minute, then air-dried and heat-treated at 70 ° C. for 30 minutes, and isopropanol to remove excess fluoroalkylsilane compound. The surface-treated PMMA plate was obtained by washing with
[0035]
<Comparative Example 5>
A surface-treated PMMA plate was obtained in the same manner as in Comparative Example 4 except that the plasma treatment time was changed to 3 minutes.
[0036]
<Comparative Example 6>
A surface-treated PMMA plate was prepared in the same manner as in Comparative Example 4, except that the amount of methyl ethyl ketone was changed to 600 parts, and the silica fine particle concentration in the resin layer was changed to 56% by changing the amount of glass filler to 102 parts. Obtained.
[0037]
<Comparative Example 7>
A surface-treated PMMA plate was obtained in the same manner as in Comparative Example 6 except that the plasma treatment time was changed to 3 minutes.
[0038]
<Evaluation>
About each surface treatment PMMA board obtained in Examples 1-3 and Comparative Examples 1-7, the contact angle with respect to water, haze, and total light transmittance were measured. The results are shown in Table 1 below.
[0039]
[Table 1]
Figure 0003619724
As shown in Table 1, the surface-treated PMMA plates obtained in Examples 1 to 3 had super water repellency with a large contact angle with water, and at the same time had transparency. On the other hand, in the surface-treated PMMA plates obtained in Comparative Examples 1 to 7, the average particle diameter of the particles to be used is too large, whether plasma treatment is performed (that is, projection formation by plasma removal is not performed), fluoro Since the treatment with the alkylsilane compound was not performed or no particles were used, the contact angle with water was small compared to Examples 1 to 3, and the water repellency was inferior.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a molded article having a super water-repellent surface and a method for producing the same without significantly reducing transparency.

Claims (3)

平均粒子径が10〜100nmであるケイ素酸化物微粒子および/または金属酸化物微粒子が表面から露出することにより微小な突起が形成され、かつ該微小な突起が形成された表面にフルオロアルキルシラン化合物が化学的に結合して成る透明な超撥水性表面と、アクリル樹脂からなる基材とを有する成形物。When the silicon oxide fine particles and / or metal oxide fine particles having an average particle diameter of 10 to 100 nm are exposed from the surface, fine protrusions are formed, and a fluoroalkylsilane compound is formed on the surface on which the fine protrusions are formed. A molded article having a transparent super water-repellent surface formed by chemically bonding and a base material made of an acrylic resin. 請求項1記載の成形物を製造する方法であって、アクリル樹脂からなる基材上に樹脂層(A)を形成する工程と、該樹脂層(A)の表面に微小な突起を形成する工程と、その表面にフルオロアルキルシラン化合物を反応させる工程とを少なくとも有する透明な超撥水性表面を有する成形物の製造方法。 A method for producing a molded product according to claim 1 , wherein a step of forming a resin layer (A) on a substrate made of an acrylic resin, and a step of forming minute protrusions on the surface of the resin layer (A) And a method for producing a molded article having a transparent superhydrophobic surface having at least a step of reacting a fluoroalkylsilane compound on the surface thereof. 樹脂層(A)を形成する工程として、平均粒子径が10〜100nmであるケイ素酸化物微粒子および/または金属酸化物微粒子を含む樹脂組成物でアクリル樹脂からなる基材表面を被覆する工程を有し、さらに該樹脂層(A)の表面に微小な突起を形成する工程として、形成された樹脂層(A)をプラズマ処理により部分除去する工程を有する請求項2記載の透明な超撥水性表面を有する成形物の製造方法。The step of forming the resin layer (A) includes a step of coating the substrate surface made of an acrylic resin with a resin composition containing silicon oxide fine particles and / or metal oxide fine particles having an average particle size of 10 to 100 nm. The transparent superhydrophobic surface according to claim 2, further comprising a step of partially removing the formed resin layer (A) by plasma treatment as a step of forming minute protrusions on the surface of the resin layer (A). The manufacturing method of the molding which has this.
JP31847799A 1999-11-09 1999-11-09 Molded product having transparent super water-repellent surface and method for producing the same Expired - Fee Related JP3619724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31847799A JP3619724B2 (en) 1999-11-09 1999-11-09 Molded product having transparent super water-repellent surface and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31847799A JP3619724B2 (en) 1999-11-09 1999-11-09 Molded product having transparent super water-repellent surface and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001131318A JP2001131318A (en) 2001-05-15
JP3619724B2 true JP3619724B2 (en) 2005-02-16

Family

ID=18099559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31847799A Expired - Fee Related JP3619724B2 (en) 1999-11-09 1999-11-09 Molded product having transparent super water-repellent surface and method for producing the same

Country Status (1)

Country Link
JP (1) JP3619724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138993A (en) 2014-03-31 2016-12-06 미쓰비시 마테리알 가부시키가이샤 Fluorine-containing silane compound

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284492A (en) * 2006-04-13 2007-11-01 General Electric Co <Ge> Article with surface having low wettability and its manufacturing method
JP5564658B2 (en) * 2009-06-05 2014-07-30 国立大学法人 香川大学 Translucent member for display device, method for producing the same, display device using the same, and article
JP2010280147A (en) * 2009-06-05 2010-12-16 Kagawa Univ Water-repellent oil-repellent antifouling transparent member and method for producing the same, and article using them
JP4878650B1 (en) * 2010-08-12 2012-02-15 森永乳業株式会社 Lid for cup-shaped container and method for manufacturing the same
JP5804548B2 (en) * 2011-04-14 2015-11-04 国立大学法人 香川大学 Super water- and oil-repellent antifouling translucent film, production method thereof, glass window using them, solar energy utilization device, optical device, and display device
JP2014156257A (en) * 2013-02-15 2014-08-28 Toppan Printing Co Ltd Lid member and method of manufacturing the same
JP6485993B2 (en) * 2013-02-15 2019-03-20 凸版印刷株式会社 Lid and its manufacturing method
WO2014181448A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Functional member provided with hydrophilic surface or hydrophobic surface
JP6255748B2 (en) * 2013-07-02 2018-01-10 東洋製罐グループホールディングス株式会社 Resin molded body having a surface excellent in water slidability
JP6206660B2 (en) * 2013-09-25 2017-10-04 日産自動車株式会社 Transparent water repellent and method for producing
JP6176035B2 (en) * 2013-09-30 2017-08-09 日産自動車株式会社 Fine surface structure and manufacturing method thereof
JP2017171701A (en) * 2016-03-18 2017-09-28 三菱マテリアル株式会社 Composition for film formation and method for producing the same, and film
WO2017179678A1 (en) 2016-04-13 2017-10-19 ダイキン工業株式会社 Super-liquid-repellent coating film and curable composition for forming super-liquid-repellent coating film
JP2018103534A (en) * 2016-12-27 2018-07-05 綜研化学株式会社 Hard coat film and method for producing the same
JP6997390B2 (en) 2017-10-18 2022-01-17 ダイキン工業株式会社 Coating
KR102125932B1 (en) * 2018-09-04 2020-06-23 한국세라믹기술원 SLIPS structure and fabricating method of the same
KR102255551B1 (en) * 2018-12-05 2021-05-24 한국세라믹기술원 SLIPS pollution prevention structure comprising self-assembled monolayer and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138993A (en) 2014-03-31 2016-12-06 미쓰비시 마테리알 가부시키가이샤 Fluorine-containing silane compound
US9926339B2 (en) 2014-03-31 2018-03-27 Mitsubishi Materials Corporation Fluorine-containing silane compound

Also Published As

Publication number Publication date
JP2001131318A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP3619724B2 (en) Molded product having transparent super water-repellent surface and method for producing the same
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP5241492B2 (en) Polymer-coated metal oxide fine particles and their applications
JP5057199B2 (en) Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating
JP5221084B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
TWI439419B (en) Aggregate of spherical core shell type cerium oxide/polymeric hybrid nano particles and manufacturing method thereof
JP5142617B2 (en) Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5099382B2 (en) 3D pattern forming material
WO2006129411A1 (en) DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
JP2008163205A (en) Coating for forming transparent coating film and substrate with transparent coating film
JP2008291174A (en) Coating material for forming transparent coating film and substrate with transparent film
KR20080083249A (en) Substrate for hard coating film and coating solution for hard coating film
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP5877708B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP3031571B2 (en) Hard coat film and substrate with hard coat film
JP4480408B2 (en) Coating composition for silver plating and method for producing the same
JP2000169591A (en) Particle coated with photo-setting resin, its production and production of liquid crystal display element
JP2011132343A (en) Antistatic hard coating material and optical member
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
JP3918400B2 (en) Antiglare antistatic hard coat resin composition and hard coat film and hard coat film-formed article
JP2008291175A (en) Coating material for forming transparent coating film and substrate with transparent film
JP2016095498A (en) Anti-reflection member, transfer member, and manufacturing method for anti-reflection member
JP5405861B2 (en) Transparent conductive film and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees