JP3619391B2 - Thin film evaluation equipment - Google Patents

Thin film evaluation equipment Download PDF

Info

Publication number
JP3619391B2
JP3619391B2 JP14973599A JP14973599A JP3619391B2 JP 3619391 B2 JP3619391 B2 JP 3619391B2 JP 14973599 A JP14973599 A JP 14973599A JP 14973599 A JP14973599 A JP 14973599A JP 3619391 B2 JP3619391 B2 JP 3619391B2
Authority
JP
Japan
Prior art keywords
ray
thin film
sample
axis
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14973599A
Other languages
Japanese (ja)
Other versions
JP2000338060A (en
Inventor
和浩 上田
辰巳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14973599A priority Critical patent/JP3619391B2/en
Publication of JP2000338060A publication Critical patent/JP2000338060A/en
Application granted granted Critical
Publication of JP3619391B2 publication Critical patent/JP3619391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜試料のX線反射率を2つ以上の波長で測定する薄膜評価装置に関する。
【0002】
【従来の技術】
従来のX線反射率法を用いた薄膜評価装置の概念図を図7に示す。薄膜試料5はZステージ付き試料支持台6に固定され、2軸回転台7のθ軸上に配置されている。また同軸の2θ軸は、2θアーム8上に配置した分光素子9とX線検出器11を動かす軸となっている。X線源1で発生したX線は、スリット2で成形されて分光素子9で単色化される。単色化されたX線は、スリット4で成形されて薄膜試料5に入射し、薄膜試料5で反射されたX線はスリット10で受光範囲が制限され、X線検出器11で反射強度を測定していた。測定したX線反射率のプロファイルを、Parratt [Phys. Rev., 95 (1954) 359]やNevotら[Rev. Phys. Appl., 15 (1980) 761]、Sinhaら[Phys. Rev. B, 38 (1988) 2297]が検討した反射率の理論式に従って解析することにより薄膜積層体の、膜厚、密度、界面の幅(ラフネス)が得られる。
【0003】
また、特開昭61−112950号公報には、X線源で発生したX線の光路上に分光結晶、全反射ミラー、X線検出器の順となるように配置して、測定試料をX線源と分光結晶の間、または分光結晶と全反射ミラーの間に設置することで、分光結晶の回折X線の高調波を除去するX線回折法が記載されている。
ところで、近年の半導体デバイスや磁気ヘッド素子の微細化、小型化により、素子を構成する薄膜の極薄膜化、多層膜化が進み、従来のX線反射率法では解析困難となってきている。そこで、異常分散を用いたX線反射率法が検討された。この方法は、元素のX線に対する原子散乱因子(f)が元素の吸収端近傍の波長で大きく変化することを利用して測定精度を向上する手法である。しかし、この方法でも薄膜積層数の増大に伴い解析が困難になっている。
【0004】
X線反射率法は、試料表面すれすれにX線を入射し、薄膜(表面)で反射されたX線強度の入射角依存性から薄膜の情報を得る方法である。入射角を試料表面に対して0.1゜〜2゜の範囲で逐次変えながら、反射X線の強度を測定するため、X線の試料表面への入射角度制御が測定精度、再現性、解析精度に大きく影響する。
【0005】
【発明が解決しようとする課題】
試料表面とX線を平行にする作業(以後、軸立て作業と呼ぶ)は、(1)入射X線の強度が当初の50%になるように試料をX線を遮るように移動(並進)させる工程と、(2)入射X線と試料表面の法線で構成される散乱面に垂直な軸で試料を回転し、入射X線強度が最大になる角度に調整する工程を繰り返し、最大強度が当初の50%で、試料を回転すると強度が減少する様に試料を調整する。この方法は半割り法と呼ばれているが、X線と試料表面の平行度の精度が0.1゜程度と低い。反割りの後で、入射角/散乱角を全反射角度に移動し、反射X線強度が最大になるように試料の並進と入射角を調整することにより、入射角を0.01゜程度の精度で軸立てすることができる。また、淡路ら[特開平7−260712号公報]は試料を回転させながら、全反射角を測定し、その角度が試料の回転によって変化しないように軸立てする方法を提案している。淡路らはこの方法を用いることにより0.005゜の精度で軸立てができるとしている。
【0006】
従来の薄膜評価装置は、図7に示したように、試料5の上流に分光素子9がある。このため波長を切り替える毎に、入射X線と2軸回転台7の回転中心の位置合わせ、2θの原点決め、試料の軸立ての作業が必要となる。これら作業を慎重に行ったとしても、試料へのX線の入射角を0.005゜の精度で再現するのは極めて難しい。しかも、新しく決めた入射角は、前の波長のときの入射角とは一致しない。複数の波長を用いた測定では、各波長間での入射角ずれ量を0.0005゜以下で決定する必要が有るため、従来の薄膜評価装置では高精度な測定が困難である。
また、図8に示すように、試料5とX線検出器11の間に分光結晶9を配置した薄膜評価装置もある。この場合、分光素子9が試料5の下流にあるため、入射X線と2軸回転台7の回転中心の位置合わせ、試料の軸立ての作業が不要となり、各波長間の入射角のずれは無い。
【0007】
図9は、この装置を用いて試料のX線反射率を繰り返し測定した場合の再現性を示す。CoKβの測定結果13とCuKβの測定結果14を同じ図上に示してある。図9の縦軸は反射率の対数である。横軸の表記中、λは波長、θは入射角、Aはオングストロームである。図示されたX線反射率のプロファイル24〜37は、反射率測定のため試料にX線が照射されていた時間が異なる。反射率測定のために試料にX線が照射されていた積算時間は、プロファイル24が0時間、プロファイル25が4時間、プロファイル26が8時間、プロファイル27が10時間、プロファイル28が12時間、プロファイル29が16時間、プロファイル30が20時間、プロファイル31が24時間、プロファイル32が28時間、プロファイル33が32時間、プロファイル34が34時間、プロファイル35が36時間、プロファイル36が38時間、プロファイル37が40時間である(図は照射時間毎に測定結果を縦方向にずらして表示してある)。
【0008】
図9の横軸の範囲が0.15〜0.25の範囲でX線の照射時間が増加するに従って、X線反射率のプロファイル中に最初無かった振動構造が見えるようになってくる。このように、X線の照射時間とともに、X線反射率のプロファイルが変化している。従って、この従来方法でも薄膜の膜厚を高精度で計測するのは困難である。
【0009】
以上述べたように、従来の薄膜評価装置では、複数の波長を用いて高精度にX線反射率を測定することは困難である。本発明は、このような従来技術の問題点に鑑み、X線の試料への入射角を変化させることなく波長を切り替え可能でかつ、X線の照射時間とともにX線反射率のプロファイルが変化することのない、高精度な薄膜評価が可能な薄膜評価装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
X線の照射時間とともにX線反射率のプロファイルが変化するのは、薄膜試料がX線照射によりダメージを受けるためと考えられる。そこで、X線の試料への入射角を変化させることなく波長を切り替え可能で、試料へのX線照射ダメージが小さいX線照射方法、X線源、試料、分光素子等の配置について検討し、本発明に至った。
【0011】
すなわち、本発明による薄膜評価装置は、2以上の特性X線を発生するX線源と、θ軸と2θ軸が同軸配置された2軸回転台と、2軸回転台のθ軸に配置された試料支持台と、X線源と試料支持台の間に配置された全反射X線反射鏡と、2軸回転台の2θ軸とともに回転可能な分光素子及びX線検出器と、2軸回転台及び分光素子を駆動制御する制御部とを備え、全反射X線反射鏡によって反射されたX線源からのX線を試料台に保持された薄膜試料に入射させ、薄膜試料で反射されたX線を分光素子によって分光したのちX線検出器で検出し、薄膜試料のX線反射強度をX線源の2以上の特性X線の波長で測定することを特徴とする。
【0012】
また、本発明による薄膜評価装置は、2以上の特性X線を発生するX線源と、θ軸と2θ軸が同軸配置された2軸回転台と、2軸回転台のθ軸に配置された試料支持台と、X線源と試料支持台の間に配置された2以上の特性X線の反射角度が同角度である多層膜X線反射鏡と、2軸回転台の2θ軸とともに回転可能な分光素子及びX線検出器と、2軸回転台及び分光素子を駆動制御する制御部とを備え、多層膜X線反射鏡によって反射されたX線源からのX線を試料台に保持された薄膜試料に入射させ、薄膜試料で反射されたX線を分光素子によって分光したのちX線検出器で検出し、薄膜試料のX線反射強度をX線源の2以上の特性X線の波長で測定することを特徴とする。
【0013】
本発明の薄膜評価装置の制御部は、2軸回転台を駆動制御することによって設定されるX線の薄膜試料への入射角度θ、薄膜試料からの散乱角度2θの各測定点で、薄膜試料からのX線反射強度をX線源の2以上の特性X線の波長に切り替えて測定するように分光素子を駆動制御することができる。あるいは、本発明の薄膜評価装置の制御部は、X線源の1つの特性X線による薄膜試料の反射X線強度の入射角依存性を測定した後、X線源の他の特性X線による薄膜試料の反射X線強度の入射角依存性を測定するように、分光素子と2軸回転台を駆動制御することができる。
【0014】
本発明による薄膜評価装置は、X線源と試料の間に配置した全反射X線反射鏡あるいは2以上の特性X線の反射角度が同角度である多層膜X線反射鏡を用いて、試料にダメージを与える高エネルギーのX線を除去している。これにより試料ダメージのない複数の特性X線を含んだ入射X線が得られる。この入射X線を試料に照射し、試料からの反射X線強度を試料とX線検出器の間に配置した分光素子で分光して複数の特性X線の波長で測定することで、波長を切り替えても、X線と2軸回転台の回転中心の位置合わせ、試料の軸立ての作業が不要となり、波長毎に入射角が変化することがなくなる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
〔実施の形態1〕
図1は、本発明による薄膜評価装置の一例を示す装置構成図である。X線源1で発生したX線を、スリット2で幅100μm、高さ10mmの短冊状に成形し、全反射X線反射鏡3に照射する。全反射X線反射鏡3には、表面を平滑に磨いたガラス板を用いた。X線の全反射X線反射鏡3への入射角を0.15゜程度にすることにより、波長がCuKβ以上の長波長の特性X線は全反射されるが、薄膜試料にダメージを与える高エネルギーのX線は全反射X線反射鏡3を透過あるいは全反射X線反射鏡3に吸収される。
【0016】
図2に、全反射X線反射鏡3への入射前後におけるX線の波長分布を示す。図2の上方に示したのは全反射X線反射鏡3への入射前のX線の波長分布、下方に示したのは全反射X線反射鏡3によって全反射されたX線の波長分布である。図2の上下に示したX線波長分布を比較すると、全反射X線反射鏡3で全反射されたX線には、X線源1で発生した高エネルギーのX線が含まれていないことが分かる。
【0017】
図1に戻り、全反射X線反射鏡3で全反射されたX線を、スリット4で幅100μm、高さ5mmに成形し、薄膜試料5に入射する。薄膜試料5で反射されたX線は分光素子9に入射して分光され、スリット10で受光範囲を制限されて、X線検出器11で受光される。薄膜試料5はZステージ付き試料支持台6に固定され、2軸回転台7のθ軸上に配置されている。また、同軸の2θ軸は、2θアーム8上に配置した分光素子9とX線検出器11を動かす軸となっている。2軸回転台7の各軸とZステージ付き試料支持台6のZ軸、分光素子9の駆動軸(図示せず)はパルスモータで駆動されており、その制御はドライバー/コントローラ38を介してコンピュータ39で行っている。またX線検出器11で計測したX線強度は、チャンネルアナライザ(図示せず)を経由してコンピュータ39に取り込み、その結果をCRT40に表示する構成になっている。
【0018】
この薄膜評価装置は、コンピュータ39の制御により、2軸回転台7の各軸を駆動して全反射X線反射鏡3で反射されたX線の薄膜試料5への入射角度をθ、薄膜試料5からの散乱角度を2θに設定した各測定点において、分光素子9をX線源1の2つ以上の特性X線の波長に切り替え制御して複数の波長におけるX線強度を測定することができる。あるいは、コンピュータ39の制御により、X線源1の1つの特性X線がX線検出器11で検出されるように分光素子9を調整して薄膜試料5で反射されたX線強度の入射角依存性を測定した後、X線源1の別の特性X線がX線検出器11で検出されるように分光素子9を調整し直して薄膜試料5からの反射X線強度の入射角依存性を測定することを繰り返すことで、複数の特性X線の波長でX線強度測定を行うこともできる。
【0019】
図1の装置により、X線源にCuとCoの複合ターゲットを用い、CoKβ及びCuKβを用いて、薄膜試料へのX線照射の影響を調べた結果を示すのが図3である。図3には、CoKβの測定結果13とCuKβの測定結果14を合わせて示した。なお、図3は照射時間毎に測定結果を縦方向にずらして表示してある。
X線照射時間を0時間(図3中のプロファイル15)、4時間(プロファイル16)、8時間(プロファイル17)、12時間(プロファイル18)、16時間(プロファイル19)、20時間(プロファイル20)、26時間(プロファイル21)、28時間(プロファイル22)と増やしても、どちらの波長とも反射率の入射角依存性に変化がないことがわかる。図9との実験条件の違いは、全反射X線反射鏡3の有無である。
【0020】
次に、測定結果を解析することにより、それぞれの波長での入射角ずれ量を求めた。その結果を表1に示す。また比較のため、図7に示した従来の薄膜評価装置を用いて、CuKβとCoKβの各波長での反射率を測定し、解析結果から入射角のずれ量を求めた。この結果も表1に示す。2波長以上の反射率の解析では横軸を入射角ではなく、散乱ベクトルの大きさで表示する。散乱ベクトルの大きさ(q)は、X線の入射角をθ、X線の波長λとすると、q=(4π/λ)sinθの式で計算した。表1の入射角のずれ量は、散乱ベクトルの大きさ(q)で示してある。表1の2波長間の差の欄には、CuKβの入射角のずれ量からCoKβの入射角のずれ量を引いた値を示した。表中の数値の単位は1/Åである。従来技術では、波長を切り替えたときの入射角のずれ量(2波長間の差)は、入射角でおおよそ0.001゜相当する。本発明の装置による2波長間の入射角の差は0゜であった。
以上述べたように、本発明によると、薄膜試料に対するX線照射ダメージの無い、高精度な多波長X線反射率測定を行うことのできる薄膜評価装置が得られる。
【0021】
〔実施の形態2〕
図4は、本発明による薄膜検査装置の別の一例を示す装置構成図である。図4において、図1と同じ機能部分には図1と同じ符号を付して示した。本実施の形態では、X線反射鏡として、WとCを組み合わせた多層膜X線反射鏡12を用いた。多層膜X線反射鏡12としては他にMo−Siを組み合わせた物を検討した。ここでは、WとCを組み合わせた多層膜X線反射鏡12を中心に説明する。
【0022】
図5は、多層膜X線反射鏡の断面模式図である。多層膜X線反射鏡12は、重元素(W)と軽元素(C)の膜の膜厚と繰り返し回数で反射するX線の波長と反射率、回折の半値幅が決まる。本実施の形態の多層膜X線反射鏡は、最初にCuKαが約4゜に回折されるWとCの膜厚を計算し、Si基板上にWとCの膜を計算された膜厚だけ成膜する作業を30回繰り返し、W/Cの膜の組み合わせを30層成膜した。次に、CuKβが約4゜で回折されるように計算で求めたWとCの膜厚の組み合わせを30層分、先に作成した多層膜の上に成膜した。これにより、CuKαが下の30層の多層膜で4゜に反射され、上の30層の多層膜でCuKβが4゜に反射される多層膜X線反射鏡12ができた。
【0023】
実施の形態1と同様に、X線源1で発生したX線を、スリット2で100μm、高さ10mmの短冊状に成形し、多層膜X線反射鏡12に照射する。X線の多層膜X線反射鏡12への入射角を4゜程度にすることにより、散乱角8゜の所にCuKβとCuKαの2つの波長のX線が反射される。反射されたX線をスリット4で幅100μm、高さ5mmに成形し、薄膜試料5に入射する。薄膜試料5は、Zステージ付き試料支持台6に固定され、2軸回転台7のθ軸上に配置されている。また同軸の2θ軸は、2θアーム8上に配置した分光素子9とX線検出器11を動かす軸となっている。2軸回転台7の各軸とZステージ付き試料支持台6のZ軸、分光素子9の駆動軸(図示せず)はパルスモータで駆動されており、その制御はドライバー/コントローラ38を介してコンピュータ39で行っている。また、X線検出器11で計測したX線強度はチャンネルアナライザ(図示せず)を経由してコンピュータ39に取り込み、その結果をCRT40に表示する構成になっている。
【0024】
この薄膜評価装置は、コンピュータ39の制御により、2軸回転台7の各軸を駆動して多層膜X線反射鏡12で反射されたX線の薄膜試料5への入射角度をθ、薄膜試料5からの散乱角度を2θに設定した各測定点において、分光素子9をX線源1の2つ以上の特性X線の波長に切り替え制御して複数の波長におけるX線強度を測定することができる。あるいは、コンピュータ39の制御により、X線源1の1つの特性X線がX線検出器11で検出されるように分光素子9を調整して薄膜試料5で反射されたX線強度の入射角依存性を測定した後、X線源1の別の特性X線がX線検出器11で検出されるように分光素子9を調整し直して薄膜試料5からの反射X線強度の入射角依存性を測定することを繰り返すことで、複数の特性X線の波長でX線強度測定を行うこともできる。
【0025】
図6は、図4に示す装置を用いてX線照射の影響を調べた結果である。X線源にはCuとCoの複合ターゲットを用い、CuKβ及びCuKαを用いて調べた結果が図6である。図6には、CuKβの測定結果14とCuKαの測定結果23を合わせて示した(図6も、照射時間毎に測定結果を縦方向にずらして表示してある)。X線照射時間が0時間(プロファイル15)、4時間(プロファイル16)、8時間(プロファイル17)、12時間(プロファイル18)、16時間(プロファイル19)、20時間(プロファイル20)、26時間(プロファイル21)、28時間(プロファイル22)と増やしても、どちらの波長とも反射率の入射角依存性に変化がないことがわかる。
【0026】
次に、測定結果を解析することによりそれぞれの波長での入射角ずれ量を求めた。その結果を表1に示す。また実施の形態1と同様、比較のため、図7に示した従来技術の薄膜評価装置を用いて、CuKβとCuKαの各波長での反射率を測定し、解析結果から入射角のずれ量を求めた。この結果も表1に示す。2波長以上の反射率の解析では横軸を入射角ではなく、散乱ベクトルの大きさで表示する。散乱ベクトルの大きさ(q)はX線の入射角をθ、X線の波長λとすると、q=(4π/λ)sinθの式で計算した。表1の入射角のずれ量は散乱ベクトルの大きさ(q)で示してある。表1の2波長間の差の欄にはCuKβの入射角のずれ量からCoKβの入射角のずれ量を引いた値を示した。表中の数値の単位は1/Åである。従来技術では、波長を切り替えたときの入射角のずれ量(2波長間の差)は入射角でおおよそ0.0015゜相当する。本発明を用いた場合の2波長間の入射角の差は0゜であった。
以上述べたように、本発明を用いれば、X線照射ダメージの無い、高精度な多波長X線反射率測定ができる薄膜評価装置を得ることができる。
【0027】
【表1】

Figure 0003619391
【0028】
【発明の効果】
本発明によれば、X線源と薄膜試料の間に配置した全反射X線反射鏡あるいは多層膜X線反射鏡を用いて、薄膜試料にダメージを与える高エネルギーのX線を除去し、薄膜試料ダメージのない複数の特性X線を含んだ入射X線が得られる。この入射X線を用い、薄膜試料からの反射又は回折X線強度を薄膜試料とX線検出器の間に配置した分光素子で複数の特性X線の波長で測定することで、波長を切り替えても、入射角が変化しない、しかも薄膜試料へのX線照射ダメージの無い薄膜評価装置が得られる。
【図面の簡単な説明】
【図1】本発明による薄膜検査装置の一例の構成図。
【図2】全反射X線反射鏡への入射前後におけるX線の波長分布を示す図。
【図3】薄膜試料へのX線照射の影響を示す図。
【図4】本発明による薄膜検査装置の別の例の構成図。
【図5】多層膜X線反射鏡の断面模式図。
【図6】薄膜試料へのX線照射の影響を示す図。
【図7】従来の薄膜検査装置の一例の概念図。
【図8】従来の薄膜検査装置の他の例の概念図。
【図9】従来技術で発生するX線照射ダメージを説明する図。
【符号の説明】
1…X線源、2…スリット、3…X線全反射鏡、4…スリット、5…薄膜試料、6…Zステージ付き試料支持台、7…2軸回転台、8…2θアーム、9…分光素子、10…スリット、11…X線検出器、12…多層膜X線反射鏡、13…CoKβの測定結果、14…CuKβの測定結果、38…ドライバー/コントローラー、39…コンピューター、40…CRT[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film evaluation apparatus that measures the X-ray reflectivity of a thin film sample at two or more wavelengths.
[0002]
[Prior art]
A conceptual diagram of a thin film evaluation apparatus using a conventional X-ray reflectivity method is shown in FIG. The thin film sample 5 is fixed to a sample support 6 with a Z stage, and is arranged on the θ axis of the biaxial rotating table 7. The coaxial 2θ axis is an axis for moving the spectroscopic element 9 and the X-ray detector 11 arranged on the 2θ arm 8. X-rays generated by the X-ray source 1 are shaped by the slit 2 and are monochromatized by the spectroscopic element 9. The monochromatic X-ray is shaped by the slit 4 and incident on the thin film sample 5. The X-ray reflected by the thin film sample 5 is limited in the light receiving range by the slit 10, and the reflection intensity is measured by the X-ray detector 11. Was. The profile of the measured X-ray reflectivity was calculated by using Parratt [Phys. Rev. , 95 (1954) 359] and Nevot et al [Rev. Phys. Appl. , 15 (1980) 761], Sinha et al. [Phys. Rev. B, 38 (1988) 2297], the film thickness, density, and interface width (roughness) of the thin film stack can be obtained by analysis according to the theoretical formula of the reflectance studied by B, 38 (1988) 2297].
[0003]
Japanese Patent Laid-Open No. 61-112950 discloses that a measurement sample is placed in the order of a spectral crystal, a total reflection mirror, and an X-ray detector on the optical path of X-rays generated by an X-ray source. An X-ray diffraction method is described in which the harmonics of the diffracted X-rays of the spectral crystal are removed by being placed between the radiation source and the spectral crystal or between the spectral crystal and the total reflection mirror.
By the way, with recent miniaturization and miniaturization of semiconductor devices and magnetic head elements, the thin films constituting the elements have become extremely thin and multi-layered, and it has become difficult to analyze with the conventional X-ray reflectivity method. Therefore, an X-ray reflectivity method using anomalous dispersion has been studied. This method is a technique for improving the measurement accuracy by utilizing the fact that the atomic scattering factor (f) with respect to the X-ray of the element changes greatly at the wavelength near the absorption edge of the element. However, even with this method, analysis becomes difficult as the number of thin film layers increases.
[0004]
The X-ray reflectivity method is a method for obtaining information on a thin film from incident angle dependence of the X-ray intensity reflected by the thin film (surface) when X-rays are incident on the surface of the sample. In order to measure the intensity of reflected X-rays while sequentially changing the incident angle in the range of 0.1 ° to 2 ° with respect to the sample surface, control of the incident angle of the X-rays on the sample surface provides measurement accuracy, reproducibility, and analysis. The accuracy is greatly affected.
[0005]
[Problems to be solved by the invention]
The work of making the sample surface parallel to the X-ray (hereinafter referred to as pivoting work) is as follows: (1) Move the sample so as to block the X-ray so that the intensity of the incident X-ray is 50% of the original (translation). And (2) rotating the sample about an axis perpendicular to the scattering plane composed of the incident X-ray and the normal of the sample surface, and adjusting the angle to maximize the incident X-ray intensity, Is 50% of the initial value, and the sample is adjusted so that the strength decreases when the sample is rotated. This method is called the half method, but the accuracy of the parallelism between the X-ray and the sample surface is as low as about 0.1 °. After the splitting, the incident angle / scattering angle is moved to the total reflection angle, and the translation angle and the incident angle of the sample are adjusted so that the reflected X-ray intensity is maximized. Can be erected with accuracy. Awaji et al. [Japanese Patent Laid-Open No. 7-260712] proposes a method of measuring the total reflection angle while rotating the sample and setting the angle so that the angle does not change with the rotation of the sample. Awaji et al. Use this method to set the shaft with an accuracy of 0.005 °.
[0006]
The conventional thin film evaluation apparatus has a spectroscopic element 9 upstream of the sample 5 as shown in FIG. For this reason, every time the wavelength is switched, it is necessary to align the incident X-rays with the rotation center of the two-axis rotary table 7, determine the origin of 2θ, and set up the sample. Even if these operations are performed carefully, it is extremely difficult to reproduce the X-ray incident angle on the sample with an accuracy of 0.005 °. Moreover, the newly determined incident angle does not match the incident angle at the previous wavelength. In measurement using a plurality of wavelengths, it is necessary to determine the amount of incident angle deviation between each wavelength to be 0.0005 ° or less. Therefore, it is difficult to perform highly accurate measurement with a conventional thin film evaluation apparatus.
In addition, as shown in FIG. 8, there is a thin film evaluation apparatus in which a spectral crystal 9 is disposed between the sample 5 and the X-ray detector 11. In this case, since the spectroscopic element 9 is downstream of the sample 5, it is not necessary to align the incident X-ray with the rotation center of the biaxial rotating table 7, and to perform the sample pivoting operation. No.
[0007]
FIG. 9 shows reproducibility when the X-ray reflectance of the sample is repeatedly measured using this apparatus. The measurement result 13 of CoKβ and the measurement result 14 of CuKβ are shown on the same figure. The vertical axis in FIG. 9 is the logarithm of reflectance. In the notation on the horizontal axis, λ is the wavelength, θ is the incident angle, and A is angstrom. The X-ray reflectivity profiles 24 to 37 shown in the figure are different from each other in the time when the sample was irradiated with X-rays for the reflectance measurement. The accumulated time during which the sample was irradiated with X-rays for reflectance measurement was as follows: profile 24 was 0 hour, profile 25 was 4 hours, profile 26 was 8 hours, profile 27 was 10 hours, profile 28 was 12 hours, profile 29 for 16 hours, Profile 30 for 20 hours, Profile 31 for 24 hours, Profile 32 for 28 hours, Profile 33 for 32 hours, Profile 34 for 34 hours, Profile 35 for 36 hours, Profile 36 for 38 hours, Profile 37 for 40 hours (the figure shows the measurement result shifted in the vertical direction for each irradiation time).
[0008]
As the X-ray irradiation time increases in the range of the horizontal axis in FIG. 9 in the range of 0.15 to 0.25, a vibration structure that is not present in the X-ray reflectivity profile becomes visible. Thus, the X-ray reflectivity profile changes with the X-ray irradiation time. Therefore, it is difficult to measure the thickness of the thin film with high accuracy even by this conventional method.
[0009]
As described above, with the conventional thin film evaluation apparatus, it is difficult to measure the X-ray reflectivity with high accuracy using a plurality of wavelengths. In the present invention, in view of such problems of the prior art, the wavelength can be switched without changing the incident angle of the X-ray to the sample, and the X-ray reflectance profile changes with the X-ray irradiation time. An object of the present invention is to provide a thin film evaluation apparatus capable of highly accurate thin film evaluation.
[0010]
[Means for Solving the Problems]
The X-ray reflectance profile changes with the X-ray irradiation time because the thin film sample is damaged by the X-ray irradiation. Therefore, the wavelength can be switched without changing the incident angle of the X-ray to the sample, and the arrangement of the X-ray irradiation method, the X-ray source, the sample, the spectroscopic element, etc. with a small X-ray irradiation damage to the sample is examined. The present invention has been reached.
[0011]
That is, the thin film evaluation apparatus according to the present invention is arranged on an X-ray source that generates two or more characteristic X-rays, a two-axis rotary table in which the θ axis and the 2θ axis are coaxially arranged, and the θ axis of the two-axis rotary table. Sample support table, a total reflection X-ray reflector disposed between the X-ray source and the sample support table, a spectroscopic element and an X-ray detector that can rotate with the 2θ axis of the two-axis rotary table, and two-axis rotation And a control unit for driving and controlling the spectroscopic element, the X-ray from the X-ray source reflected by the total reflection X-ray reflecting mirror is incident on the thin film sample held on the sample stage, and is reflected by the thin film sample X-rays are separated by a spectroscopic element and then detected by an X-ray detector, and the X-ray reflection intensity of the thin film sample is measured at two or more characteristic X-ray wavelengths of the X-ray source.
[0012]
The thin film evaluation apparatus according to the present invention is disposed on an X-ray source that generates two or more characteristic X-rays, a two-axis rotary table in which the θ axis and the 2θ axis are coaxially arranged, and the θ axis of the two-axis rotary table. Rotating together with the sample support table, the multilayer X-ray reflector having the same reflection angle of two or more characteristic X-rays arranged between the X-ray source and the sample support table and the 2θ axis of the two-axis rotary table A spectroscopic element and X-ray detector, a two-axis rotary table, and a control unit that drives and controls the spectroscopic element are provided, and the X-ray from the X-ray source reflected by the multilayer X-ray reflecting mirror is held on the sample stage. The X-ray reflected by the thin film sample is dispersed by a spectroscopic element and detected by an X-ray detector, and the X-ray reflection intensity of the thin film sample is measured by two or more characteristic X-rays of the X-ray source. It is measured by wavelength.
[0013]
The control unit of the thin film evaluation apparatus of the present invention is a thin film sample at each measurement point of the incident angle θ of X-rays to the thin film sample and the scattering angle 2θ from the thin film sample set by driving and controlling the biaxial rotating table. The spectroscopic element can be driven and controlled so that the X-ray reflection intensity from the X-ray source is switched to two or more characteristic X-ray wavelengths of the X-ray source. Alternatively, the control unit of the thin film evaluation apparatus of the present invention measures the incident angle dependence of the reflected X-ray intensity of the thin film sample by one characteristic X-ray of the X-ray source, and then uses another characteristic X-ray of the X-ray source. The spectroscopic element and the biaxial rotating table can be driven and controlled so as to measure the incident angle dependence of the reflected X-ray intensity of the thin film sample.
[0014]
A thin film evaluation apparatus according to the present invention uses a total reflection X-ray reflection mirror disposed between an X-ray source and a sample or a multilayer X-ray reflection mirror in which two or more characteristic X-rays have the same reflection angle. High-energy X-rays that cause damage are removed. Thereby, incident X-rays including a plurality of characteristic X-rays without sample damage are obtained. By irradiating the sample with this incident X-ray, the reflected X-ray intensity from the sample is dispersed with a spectroscopic element disposed between the sample and the X-ray detector, and measured at a plurality of characteristic X-ray wavelengths. Even if the switching is performed, it is not necessary to align the X-ray and the rotation center of the two-axis rotary table and to set the sample, and the incident angle does not change for each wavelength.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[Embodiment 1]
FIG. 1 is an apparatus configuration diagram showing an example of a thin film evaluation apparatus according to the present invention. X-rays generated by the X-ray source 1 are formed into a strip shape having a width of 100 μm and a height of 10 mm by the slit 2 and irradiated to the total reflection X-ray reflecting mirror 3. As the total reflection X-ray reflecting mirror 3, a glass plate whose surface was polished smoothly was used. By setting the incident angle of the X-ray to the total reflection X-ray reflecting mirror 3 to about 0.15 °, characteristic X-rays having a long wavelength of CuKβ or more are totally reflected, but the damage to the thin film sample is high. The energy X-rays are transmitted through the total reflection X-ray reflection mirror 3 or absorbed by the total reflection X-ray reflection mirror 3.
[0016]
FIG. 2 shows the wavelength distribution of X-rays before and after incidence on the total reflection X-ray reflecting mirror 3. The upper part of FIG. 2 shows the wavelength distribution of the X-rays before entering the total reflection X-ray reflection mirror 3, and the lower part shows the wavelength distribution of the X-rays totally reflected by the total reflection X-ray reflection mirror 3. It is. Comparing the X-ray wavelength distributions shown in the upper and lower parts of FIG. 2, the X-rays totally reflected by the total reflection X-ray reflecting mirror 3 do not contain high-energy X-rays generated by the X-ray source 1. I understand.
[0017]
Returning to FIG. 1, the X-rays totally reflected by the total reflection X-ray reflecting mirror 3 are formed into a width of 100 μm and a height of 5 mm by the slit 4 and enter the thin film sample 5. The X-ray reflected by the thin film sample 5 enters the spectroscopic element 9 and is dispersed, and the light receiving range is limited by the slit 10 and is received by the X-ray detector 11. The thin film sample 5 is fixed to a sample support 6 with a Z stage, and is arranged on the θ axis of the biaxial rotating table 7. The coaxial 2θ axis is an axis for moving the spectroscopic element 9 and the X-ray detector 11 arranged on the 2θ arm 8. Each axis of the biaxial rotating table 7, the Z axis of the sample support 6 with a Z stage, and the drive shaft (not shown) of the spectroscopic element 9 are driven by a pulse motor, and the control is performed via a driver / controller 38. This is done by computer 39. The X-ray intensity measured by the X-ray detector 11 is taken into the computer 39 via a channel analyzer (not shown), and the result is displayed on the CRT 40.
[0018]
In this thin film evaluation apparatus, under the control of the computer 39, each axis of the biaxial rotary table 7 is driven and the incident angle of the X-rays reflected by the total reflection X-ray reflecting mirror 3 on the thin film sample 5 is set to θ. The X-ray intensity at a plurality of wavelengths can be measured by switching the spectral element 9 to two or more characteristic X-ray wavelengths of the X-ray source 1 at each measurement point where the scattering angle from 5 is set to 2θ. it can. Alternatively, the incident angle of the X-ray intensity reflected by the thin film sample 5 by adjusting the spectroscopic element 9 so that one characteristic X-ray of the X-ray source 1 is detected by the X-ray detector 11 under the control of the computer 39. After measuring the dependency, the spectroscopic element 9 is readjusted so that another characteristic X-ray of the X-ray source 1 is detected by the X-ray detector 11, and the incident X-ray intensity of the reflected X-ray intensity from the thin film sample 5 is adjusted. By repeating the measurement of the X-ray intensity, the X-ray intensity can be measured at a plurality of characteristic X-ray wavelengths.
[0019]
FIG. 3 shows the result of investigating the influence of X-ray irradiation on a thin film sample using the composite target of Cu and Co as the X-ray source and CoKβ and CuKβ. In FIG. 3, the measurement result 13 of CoKβ and the measurement result 14 of CuKβ are shown together. In FIG. 3, the measurement results are displayed while being shifted in the vertical direction for each irradiation time.
X-ray irradiation time is 0 hour (profile 15 in FIG. 3), 4 hours (profile 16), 8 hours (profile 17), 12 hours (profile 18), 16 hours (profile 19), 20 hours (profile 20). It can be seen that there is no change in the incident angle dependence of the reflectance at any wavelength even when the time is increased to 26 hours (profile 21) and 28 hours (profile 22). The difference in experimental conditions from FIG. 9 is the presence or absence of the total reflection X-ray reflecting mirror 3.
[0020]
Next, by analyzing the measurement results, the amount of incident angle deviation at each wavelength was determined. The results are shown in Table 1. For comparison, the reflectance at each wavelength of CuKβ and CoKβ was measured using the conventional thin film evaluation apparatus shown in FIG. 7, and the amount of deviation of the incident angle was obtained from the analysis result. The results are also shown in Table 1. In the analysis of the reflectance of two or more wavelengths, the horizontal axis is displayed not by the incident angle but by the size of the scattering vector. The magnitude (q) of the scattering vector was calculated by the equation q = (4π / λ) sin θ where the incident angle of X-ray is θ and the wavelength of X-ray is λ. The incident angle deviation in Table 1 is indicated by the magnitude (q) of the scattering vector. In the column of the difference between the two wavelengths in Table 1, a value obtained by subtracting the deviation amount of the incident angle of CoKβ from the deviation amount of the incident angle of CuKβ is shown. The unit of numerical values in the table is 1 / Å. In the prior art, the incident angle shift amount (difference between two wavelengths) when the wavelength is switched corresponds to approximately 0.001 ° in terms of the incident angle. The difference in incident angle between the two wavelengths with the apparatus of the present invention was 0 °.
As described above, according to the present invention, a thin film evaluation apparatus capable of performing highly accurate multi-wavelength X-ray reflectivity measurement without X-ray irradiation damage to a thin film sample is obtained.
[0021]
[Embodiment 2]
FIG. 4 is an apparatus configuration diagram showing another example of the thin film inspection apparatus according to the present invention. 4, the same functional parts as those in FIG. 1 are denoted by the same reference numerals as those in FIG. In the present embodiment, a multilayer X-ray reflector 12 combining W and C is used as the X-ray reflector. As the multilayer film X-ray reflecting mirror 12, a combination of Mo-Si was examined. Here, the multilayer X-ray reflecting mirror 12 combining W and C will be mainly described.
[0022]
FIG. 5 is a schematic cross-sectional view of a multilayer X-ray reflecting mirror. The multilayer X-ray reflecting mirror 12 determines the wavelength of X-rays reflected by the film thickness of the heavy element (W) and light element (C) films, the number of repetitions, the reflectance, and the half width of diffraction. In the multilayer X-ray reflecting mirror of the present embodiment, first, the film thickness of W and C at which CuKα is diffracted by about 4 ° is calculated, and the film of W and C is calculated on the Si substrate by the calculated film thickness. The film forming operation was repeated 30 times to form 30 layers of W / C film combinations. Next, 30 combinations of W and C film thicknesses obtained by calculation so that CuKβ was diffracted at about 4 ° were formed on the previously prepared multilayer film. As a result, the multilayer X-ray reflecting mirror 12 in which CuKα is reflected by 4 ° by the lower 30-layer multilayer film and CuKβ is reflected by 4 ° by the upper 30-layer multilayer film is formed.
[0023]
Similar to the first embodiment, X-rays generated by the X-ray source 1 are formed into a strip shape of 100 μm and a height of 10 mm by the slit 2 and irradiated to the multilayer X-ray reflecting mirror 12. By setting the incident angle of the X-rays to the multilayer X-ray reflecting mirror 12 to about 4 °, X-rays having two wavelengths of CuKβ and CuKα are reflected at a scattering angle of 8 °. The reflected X-ray is shaped into a width of 100 μm and a height of 5 mm by the slit 4 and enters the thin film sample 5. The thin film sample 5 is fixed to a sample support base 6 with a Z stage, and is disposed on the θ axis of the biaxial rotating base 7. The coaxial 2θ axis is an axis for moving the spectroscopic element 9 and the X-ray detector 11 arranged on the 2θ arm 8. Each axis of the biaxial rotating table 7, the Z axis of the sample support 6 with a Z stage, and the drive shaft (not shown) of the spectroscopic element 9 are driven by a pulse motor, and the control is performed via a driver / controller 38. This is done by computer 39. The X-ray intensity measured by the X-ray detector 11 is taken into the computer 39 via a channel analyzer (not shown) and the result is displayed on the CRT 40.
[0024]
In this thin film evaluation apparatus, under the control of the computer 39, each axis of the biaxial rotary table 7 is driven and the incident angle of the X-rays reflected by the multilayer X-ray reflecting mirror 12 on the thin film sample 5 is θ, and the thin film sample The X-ray intensity at a plurality of wavelengths can be measured by switching the spectral element 9 to two or more characteristic X-ray wavelengths of the X-ray source 1 at each measurement point where the scattering angle from 5 is set to 2θ. it can. Alternatively, the incident angle of the X-ray intensity reflected by the thin film sample 5 by adjusting the spectroscopic element 9 so that one characteristic X-ray of the X-ray source 1 is detected by the X-ray detector 11 under the control of the computer 39. After measuring the dependency, the spectroscopic element 9 is readjusted so that another characteristic X-ray of the X-ray source 1 is detected by the X-ray detector 11, and the incident X-ray intensity of the reflected X-ray intensity from the thin film sample 5 is adjusted. By repeating the measurement of the X-ray intensity, the X-ray intensity can be measured at a plurality of characteristic X-ray wavelengths.
[0025]
FIG. 6 shows the results of examining the influence of X-ray irradiation using the apparatus shown in FIG. FIG. 6 shows the result of investigation using CuKβ and CuKα using a composite target of Cu and Co as the X-ray source. FIG. 6 shows the measurement result 14 of CuKβ and the measurement result 23 of CuKα together (FIG. 6 also shows the measurement result shifted in the vertical direction for each irradiation time). X-ray irradiation time is 0 hour (profile 15), 4 hours (profile 16), 8 hours (profile 17), 12 hours (profile 18), 16 hours (profile 19), 20 hours (profile 20), 26 hours ( It can be seen that there is no change in the incident angle dependence of the reflectivity for both wavelengths even when the profile 21) and 28 hours (profile 22) are increased.
[0026]
Next, the incident angle deviation amount at each wavelength was obtained by analyzing the measurement result. The results are shown in Table 1. Similarly to the first embodiment, for comparison, the reflectance at each wavelength of CuKβ and CuKα is measured using the conventional thin film evaluation apparatus shown in FIG. Asked. The results are also shown in Table 1. In the analysis of the reflectance of two or more wavelengths, the horizontal axis is displayed not by the incident angle but by the size of the scattering vector. The magnitude (q) of the scattering vector was calculated by the equation q = (4π / λ) sin θ, where θ is the incident angle of X-rays and X is the wavelength λ. The amount of deviation of the incident angle in Table 1 is indicated by the magnitude (q) of the scattering vector. The column of the difference between the two wavelengths in Table 1 shows a value obtained by subtracting the deviation amount of the CoKβ incident angle from the deviation amount of the incident angle of CuKβ. The unit of numerical values in the table is 1 / Å. In the prior art, the incident angle shift amount (difference between two wavelengths) when the wavelength is switched corresponds to approximately 0.0015 ° in terms of the incident angle. The difference in incident angle between the two wavelengths when using the present invention was 0 °.
As described above, by using the present invention, it is possible to obtain a thin film evaluation apparatus capable of highly accurate multi-wavelength X-ray reflectivity measurement without X-ray irradiation damage.
[0027]
[Table 1]
Figure 0003619391
[0028]
【The invention's effect】
According to the present invention, high-energy X-rays that damage a thin film sample are removed using a total reflection X-ray reflecting mirror or a multilayer X-ray reflecting mirror disposed between the X-ray source and the thin film sample, and the thin film Incident X-rays including a plurality of characteristic X-rays without sample damage can be obtained. Using this incident X-ray, the reflection or diffracted X-ray intensity from the thin film sample is measured at a plurality of characteristic X-ray wavelengths with a spectroscopic element arranged between the thin film sample and the X-ray detector, thereby switching the wavelength. However, a thin film evaluation apparatus in which the incident angle does not change and there is no X-ray irradiation damage to the thin film sample can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an example of a thin film inspection apparatus according to the present invention.
FIG. 2 is a view showing the wavelength distribution of X-rays before and after incidence on a total reflection X-ray reflecting mirror.
FIG. 3 is a diagram showing the influence of X-ray irradiation on a thin film sample.
FIG. 4 is a configuration diagram of another example of a thin film inspection apparatus according to the present invention.
FIG. 5 is a schematic sectional view of a multilayer X-ray reflecting mirror.
FIG. 6 is a diagram showing the influence of X-ray irradiation on a thin film sample.
FIG. 7 is a conceptual diagram of an example of a conventional thin film inspection apparatus.
FIG. 8 is a conceptual diagram of another example of a conventional thin film inspection apparatus.
FIG. 9 is a diagram for explaining X-ray irradiation damage that occurs in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... X-ray source, 2 ... Slit, 3 ... X-ray total reflection mirror, 4 ... Slit, 5 ... Thin film sample, 6 ... Sample support stand with Z stage, 7 ... Two-axis rotary table, 8 ... 2 (theta) arm, 9 ... Spectroscopic element, 10 ... slit, 11 ... X-ray detector, 12 ... multilayer X-ray reflector, 13 ... CoKβ measurement result, 14 ... CuKβ measurement result, 38 ... driver / controller, 39 ... computer, 40 ... CRT

Claims (4)

2以上の特性X線を発生するX線源と、θ軸と2θ軸が同軸配置された2軸回転台と、前記2軸回転台のθ軸に配置された試料支持台と、前記X線源と前記試料支持台の間に配置された全反射X線反射鏡と、前記2軸回転台の2θ軸とともに回転可能な分光素子及びX線検出器と、前記2軸回転台及び前記分光素子を駆動制御する制御部とを備え、
前記全反射X線反射鏡によって反射された前記X線源からのX線を前記試料台に保持された薄膜試料に入射させ、薄膜試料で反射されたX線を前記分光素子によって分光したのち前記X線検出器で検出し、薄膜試料のX線反射強度を前記X線源の2以上の特性X線の波長で測定することを特徴とする薄膜評価装置。
An X-ray source that generates two or more characteristic X-rays, a two-axis rotary base in which the θ-axis and the 2θ-axis are coaxially arranged, a sample support base arranged on the θ-axis of the two-axis rotary base, and the X-ray A total reflection X-ray reflecting mirror disposed between a source and the sample support, a spectroscopic element and an X-ray detector which can be rotated together with the 2θ axis of the biaxial rotary table, the biaxial rotary table and the spectroscopic element And a control unit for controlling the drive,
The X-ray from the X-ray source reflected by the total reflection X-ray reflecting mirror is incident on a thin film sample held on the sample stage, and the X-ray reflected by the thin film sample is spectrally separated by the spectroscopic element. A thin film evaluation apparatus characterized by detecting with an X-ray detector and measuring the X-ray reflection intensity of a thin film sample at two or more characteristic X-ray wavelengths of the X-ray source.
2以上の特性X線を発生するX線源と、θ軸と2θ軸が同軸配置された2軸回転台と、前記2軸回転台のθ軸に配置された試料支持台と、前記X線源と前記試料支持台の間に配置された2以上の特性X線の反射角度が同角度である多層膜X線反射鏡と、前記2軸回転台の2θ軸とともに回転可能な分光素子及びX線検出器と、前記2軸回転台及び前記分光素子を駆動制御する制御部とを備え、
前記多層膜X線反射鏡によって反射された前記X線源からのX線を前記試料台に保持された薄膜試料に入射させ、薄膜試料で反射されたX線を前記分光素子によって分光したのち前記X線検出器で検出し、薄膜試料のX線反射強度を前記X線源の2以上の特性X線の波長で測定することを特徴とする薄膜評価装置。
An X-ray source that generates two or more characteristic X-rays, a two-axis rotary base in which the θ-axis and the 2θ-axis are coaxially arranged, a sample support base arranged on the θ-axis of the two-axis rotary base, and the X-ray A multilayer X-ray reflector having a reflection angle of two or more characteristic X-rays disposed between a source and the sample support, the spectroscopic element rotatable with the 2θ axis of the two-axis rotary table, and an X-ray A line detector, and a control unit that drives and controls the two-axis rotary table and the spectroscopic element,
X-rays from the X-ray source reflected by the multilayer X-ray reflecting mirror are made incident on a thin film sample held on the sample stage, and the X-rays reflected by the thin film sample are spectrally separated by the spectroscopic element. A thin film evaluation apparatus characterized by detecting with an X-ray detector and measuring the X-ray reflection intensity of a thin film sample at two or more characteristic X-ray wavelengths of the X-ray source.
請求項1又は2記載の薄膜評価装置において、前記制御部は、前記2軸回転台を駆動制御することによって設定されるX線の薄膜試料への入射角度θ、薄膜試料からの散乱角度2θの各測定点で、薄膜試料からのX線反射強度を前記X線源の2以上の特性X線の波長に切り替えて測定するように前記分光素子を駆動制御することを特徴とする薄膜評価装置。3. The thin film evaluation apparatus according to claim 1, wherein the control unit includes an incident angle θ of an X-ray set to the thin film sample and a scattering angle 2θ from the thin film sample set by driving and controlling the two-axis rotary table. A thin-film evaluation apparatus that drives and controls the spectroscopic element so as to switch and measure the X-ray reflection intensity from the thin-film sample at two or more characteristic X-ray wavelengths of the X-ray source at each measurement point. 請求項1又は2記載の薄膜評価装置において、前記制御部は、前記X線源の1つの特性X線による薄膜試料の反射X線強度の入射角依存性を測定した後、前記X線源の他の特性X線による薄膜試料の反射X線強度の入射角依存性を測定するように、前記分光素子と前記2軸回転台を駆動制御することを特徴とする薄膜評価装置。3. The thin film evaluation apparatus according to claim 1, wherein the control unit measures the incident angle dependence of the reflected X-ray intensity of the thin film sample by one characteristic X-ray of the X-ray source, and then determines the X-ray source. A thin-film evaluation apparatus that drives and controls the spectroscopic element and the biaxial rotating table so as to measure the incident angle dependence of the reflected X-ray intensity of a thin-film sample by other characteristic X-rays.
JP14973599A 1999-05-28 1999-05-28 Thin film evaluation equipment Expired - Fee Related JP3619391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14973599A JP3619391B2 (en) 1999-05-28 1999-05-28 Thin film evaluation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14973599A JP3619391B2 (en) 1999-05-28 1999-05-28 Thin film evaluation equipment

Publications (2)

Publication Number Publication Date
JP2000338060A JP2000338060A (en) 2000-12-08
JP3619391B2 true JP3619391B2 (en) 2005-02-09

Family

ID=15481675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14973599A Expired - Fee Related JP3619391B2 (en) 1999-05-28 1999-05-28 Thin film evaluation equipment

Country Status (1)

Country Link
JP (1) JP3619391B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121133A (en) * 2001-10-17 2003-04-23 Acbtec:Kk Method and apparatus for formation of multilayer thin film
US10753890B2 (en) * 2017-03-09 2020-08-25 Malvern Panalytical B.V. High resolution X-ray diffraction method and apparatus
JP6937025B2 (en) * 2018-03-20 2021-09-22 株式会社リガク X-ray diffractometer

Also Published As

Publication number Publication date
JP2000338060A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
EP1247069B1 (en) Optical method for the determination of grain orientation in films
US6895075B2 (en) X-ray reflectometry with small-angle scattering measurement
TWI414752B (en) Method for analysis of a sample
JPH11304728A (en) X-ray measuring device
Spesivtsev et al. Development of methods and instruments for optical ellipsometry at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences
JPH06504843A (en) Automatic optical inspection method and device
Rehanek et al. The hard x-ray photon single-shot spectrometer of SwissFEL—initial characterization
Kulow et al. A new experimental setup for time-and laterally-resolved X-ray absorption fine structure spectroscopy in a ‘single shot’
JP3619391B2 (en) Thin film evaluation equipment
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
JPH05322804A (en) Method and device for measuring reflected profile of x ray
JP3968350B2 (en) X-ray diffraction apparatus and method
EP2080982A1 (en) Measurement method of layer thickness for thin film stacks
JP2630249B2 (en) Total reflection X-ray fluorescence analyzer
JP4367820B2 (en) X-ray reflectivity measuring device
US20050041250A1 (en) Scatterometry to simultaneously measure critical dimensions and film properties
JP2006133000A (en) Minute-part layered structure inspection device
US20230010806A1 (en) Spectroscopic ellipsometry system for thin film imaging
JP2921597B2 (en) Total reflection spectrum measurement device
JPH10282022A (en) Fluorescent x-ray analysis method and apparatus
JP2000009666A (en) X-ray analyzer
JP2006105748A (en) Analyzing method accompanied by incidence of beam
JPH09318565A (en) X-ray analyzing method and apparatus therefor
JPH1183766A (en) X-ray reflectivity measurement device
Alshehabi et al. Multilayer nano-thickness measurement by a portable low-power Bremsstrahlung X-ray reflectometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees