JP3618959B2 - Lactic acid polymer biaxially stretched film - Google Patents

Lactic acid polymer biaxially stretched film Download PDF

Info

Publication number
JP3618959B2
JP3618959B2 JP12677797A JP12677797A JP3618959B2 JP 3618959 B2 JP3618959 B2 JP 3618959B2 JP 12677797 A JP12677797 A JP 12677797A JP 12677797 A JP12677797 A JP 12677797A JP 3618959 B2 JP3618959 B2 JP 3618959B2
Authority
JP
Japan
Prior art keywords
lactic acid
film
biaxially stretched
acid
stretched film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12677797A
Other languages
Japanese (ja)
Other versions
JPH10315318A (en
Inventor
小林  直樹
修平 井門
▲あきら▼ 河野
孝行 黒木
匡隆 岩田
浩孝 鰐部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP12677797A priority Critical patent/JP3618959B2/en
Publication of JPH10315318A publication Critical patent/JPH10315318A/en
Application granted granted Critical
Publication of JP3618959B2 publication Critical patent/JP3618959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、乳酸系ポリマー二軸延伸フィルムに関する。詳しくは、生分解性、加水分解性を有する乳酸系ポリマーからなり、無色透明性に優れ、且つ、表裏の熱収縮率の差が少ない乳酸系ポリマー二軸延伸フィルムに関する。用途として、特に、オーバーヘッドプロジェクタ用シートとして適する乳酸系ポリマー二軸延伸フィルムに関する。
【0002】
【従来の技術】
従来、透明性が良好で高い光の透過率が要求される分野にポリエチレンテレフタレートフィルム等の透明ポリエステルフィルムが使用されてきた。しかし、これらの従来から使用されているプラスチック性透明フィルムは、自然環境下で分解しないか、または分解速度が極めて低いため、使用後放置されたり土中に埋設処理された場合、半永久的に地上や地中に残存することになる。また、海洋投棄された場合は、景観を損なったり、海洋生物の生活環境を破壊したりする。さらに、焼却処理した場合、その高い燃焼熱によって焼却炉の劣化を促進するなど、消費の拡大と共に廃棄物処理が社会問題となっている。
【0003】
これらの問題を生じない分解性ポリマーを透明フィルムとして用いるための研究開発が多数行われてきた。その中で、乳酸系ポリマーは、高い透明性を有し、またいわゆる生分解性を持つことで広く知られており、カビ等の発生がなく透明性も維持されることから、さまざまな用途での利用が期待されている。例えば、乳酸系ポリマーフィルムを農業用フィルムとして使用する例が特開平7−177826号公報に開示されている。
【0004】
透明性プラスチックフィルムは表面にカラー印刷を必要とする用途が多く、そのインクの発色を考慮した場合、高い透明性と無着色性が要求される。通常、乳酸系ポリマーを合成する際に使用したモノマーの純度、乳酸系ポリマーの成形加工条件等によって、得られる乳酸系ポリマー二軸延伸フィルムの透明性や無着色性が影響を受ける。また、乳酸系ポリマー二軸延伸フィルムは、ガラス転移温度以上の高温で常用された場合、その表裏両面の熱収縮率に差があると、加熱された際に容易に熱変形を起こす。
【0005】
【発明が解決しようとする課題】
本発明は、上記問題を解決し、優れた透明性、無着色性を有し、且つ、フィルムの表裏両面の熱収縮率の差の少ない乳酸系ポリマー二軸延伸フィルムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、沸点が乳酸のそれより低い成分の含有量が少ない、乳酸またはラクチドから得られた乳酸系ポリマーを原料とし二軸延伸フィルムを成形し、且つ、緊張下で熱固定した後、特定の条件下で冷却操作を実施して得られた二軸延伸フィルムが、黄色度と霞度が低く、且つ、フィルムの表裏両面の熱収縮率の差が少ないことを見出し、本発明を完成するに至った。
【0007】
即ち、本発明により、黄色度が1.5〜3、霞度が5%以下、フィルムの表裏両面の熱収縮率の比が0.8〜1.2である、厚み0.01〜1mmの乳酸系ポリマー二軸延伸フィルムが提供される。
【0008】
本発明の乳酸系ポリマー二軸延伸フィルムの特徴は、黄色度、霞度(ヘイズ)、及び、フィルムの表裏両面の熱収縮率の比が特定の範囲に限定されていることにある。すなわち、透明性及び無着色性に優れ、熱変形の少ない二軸延伸フィルムである。耐衝撃性、伸び率等の一般的機械的特性、自然環境下における加水分解性、酵素分解性等については、従来の乳酸系ポリマーフィルムと同等の特性を有するものである。
【0009】
従って、例えば、オーバーヘッドプロジェクタ用シートの如く、優れた透明性、無着色性及び非熱変形性が要求される資材として極めて好適に用いることができる。本発明の乳酸系ポリマー二軸延伸フィルムは、不純物の含有量が少ない乳酸を用いて合成された乳酸系ポリマーを成形原料とし二軸延伸フィルムを成形し、且つ、緊張下で熱固定した後、特定の条件下で冷却操作を実施することにより製造される。
【0010】
尚、本発明において、黄色度、霞度、及びフィルムの表裏両面の熱収縮率の比は、後述する実施例に記載した方法により測定した値を意味する。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明における乳酸系ポリマーとは、乳酸単位を含む脂肪族ポリエステルであり、具体的には、(1)ポリ乳酸及び乳酸と他のヒドロキシカルボン酸とのコポリマー、(2)多官能多糖類及び乳酸単位を含む脂肪族ポリエステル、(3)脂肪族多価カルボン酸単位、脂肪族多価アルコール単位及び乳酸単位を含む脂肪族ポリエステル、及び、(4)これらの混合物である。以下、これらを総称して乳酸系ポリマーという。
【0012】
乳酸にはL−体とD−体とが存在するが、本発明において単に乳酸という場合は、特にことわりがない場合は、L−体とD−体との両者を指すこととする。また、ポリマーの分子量は特にことわりのない場合は重量平均分子量のことを指すものとする。
【0013】
本発明に用いるポリ乳酸としては、構成単位がL−乳酸のみからなるポリ(L−乳酸)、D−乳酸のみからなるポリ(D−乳酸)、およびL−乳酸単位とD−乳酸単位とが種々の割合で存在するポリ(DL−乳酸)のいずれもが使用できる。
【0014】
乳酸−他のヒドロキシカルボン酸コポリマーのヒドロキシカルボン酸としては、例えば、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸等が挙げられる。
【0015】
本発明に用いるポリ乳酸の製造方法として、L−乳酸、D−乳酸、または、DL−乳酸を直接脱水重縮合する方法、これら各乳酸の環状2量体であるラクチドを開環重合する方法等が挙げられる。開環重合は、高級アルコール、ヒドロキシカルボン酸等の水酸基を有する化合物の存在下で行ってもよい。何れの方法によって製造されたものでもよい。
【0016】
乳酸−他のヒドロキシカルボン酸コポリマーの製造方法として、上記各乳酸と上記ヒドロキシカルボン酸を脱水重縮合する方法、上記各乳酸の環状2量体であるラクチドと上記ヒドロキシカルボン酸の環状体を開環共重合する方法等が挙げられる。何れの方法によって製造されたものでもよい。共重合体に含まれる乳酸単位の量は少なくとも40モル%であることが好ましい。
【0017】
多官能多糖類及び乳酸単位を含む脂肪族ポリエステルの製造に用いる多官能多糖類としては、例えば、セルロース、硝酸セルロース、酢酸セルロース、メチルセルロース、エチルセルロース、セルロイド、ビスコースレーヨン、再生セルロース、セロハン、キュプラ、銅アンモニアレーヨン、キュプロファン、ベンベルグ、ヘミセルロース、デンプン、アミロペクチン、デキストリン、デキストラン、グリコーゲン、ペクチン、キチン、キトサン、アラビアガム、グァーガム、ローカストビーンガム、アカシアガム等及びこれらの混合物及びこれらの誘導体が挙げられる。これらの内で特に酢酸セルロース、エチルセルロースが好ましい。
【0018】
多官能多糖類及び乳酸単位を含む脂肪族ポリエステルの製造方法として、上記多官能多糖類と上記ポリ乳酸、乳酸−他のヒドロキシカルボン酸コポリマー等を反応する方法、上記多官能多糖類と上記各乳酸、環状エステル類等を反応する方法等が挙げられる。何れの方法によって製造されたものでもよい。該脂肪族ポリエステルに含まれる乳酸単位の量は少なくとも50重量%であることが好ましい。
【0019】
脂肪族多価カルボン酸単位、脂肪族多価アルコール単位及び乳酸単位を含む脂肪族ポリエステルの製造に用いる脂肪族多価カルボン酸としては、例えば、シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカンニ酸、ドデカンニ酸等及びこれらの無水物が挙げられる。これらは、酸無水物であっても、酸無水物との混合物であってもよい。
【0020】
また、脂肪族多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、テトラメチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。
【0021】
脂肪族多価カルボン酸単位、脂肪族多価アルコール単位及び乳酸単位を含む脂肪族ポリエステルの製造方法として、上記脂肪族多価カルボン酸及び上記脂肪族多価アルコールと、上記ポリ乳酸、乳酸−他のヒドロキシカルボン酸コポリマー等を反応する方法、上記脂肪族多価カルボン酸及び上記脂肪族多価アルコールと、上記各乳酸、環状エステル類等を反応する方法等が挙げられる。何れの方法によって製造されたものでもよい。該脂肪族ポリエステルに含まれる乳酸単位の量は少なくとも50モル%であることが好ましい。
【0022】
乳酸系ポリマーの分子量は、フィルムの加工性、得られるフィルムの強度および分解性に影響を及ぼす。分子量が低いと得られるフィルムの強度が低下し、使用する際に張力で破断することがある。また、分解速度が速くなる。逆に高いと加工性が低下し、フィルム製膜が困難となる。かかる点を考慮すると、本発明に使用する乳酸系ポリマーの分子量は、約1万〜約100万程度の範囲が好ましい。さらに好ましい範囲は10万〜30万である。
【0023】
本発明の乳酸系ポリマー二軸延伸フィルムを製造する際には、上記乳酸系ポリマーの内、純度の高いポリマーが用いられる。一般に、乳酸はデンプンを醗酵後、精製することにより高純度のものが製造され市販されている。しかし、この方法で得られる乳酸中には、主としてメタノール、エタノール、酢酸、ピルビン酸、フマル酸、乳酸メチル及び乳酸ブチル等の不純物が含まれている(以下、これらを単に不純物という)。本発明における乳酸系ポリマーの原料モノマーに対する上記不純物の含有量は合計0.3モル%以下、好ましくは0.1モル%以下、さらに好ましくは0.05モル%以下である。
【0024】
乳酸に含まれる不純物を除去する方法として、例えば、特開平7−2985公報に記載されている方法が挙げられる。その概要は、乳酸に10重量%程度の水を含ませ、それをDien−Starkトラップを備えた反応器に装入して、減圧下で加熱還流する。水層を逐次抜き出すことによって水と共に低沸点化合物を系外に除去する。加熱還流中の試料をときどき採取して、ガスクロマトグラフ等で不純物の量を定量し、0.3モル%以下であることを確認する。
【0025】
本発明の乳酸系ポリマー二軸延伸フィルムに対して、その押出成形時の安定性や、ハンドリングを容易にするために原料ペレット中に滑剤を含ませることができる。ここで用いる滑剤は、例えば、流動パラフィン、マイクロクリスタリンワックス、天然パラフィン、合成パラフィン、ポリエチレン等の脂肪族炭化水素系滑剤、ステアリン酸、ラウリン酸、ヒドロキシステアリン酸、硬化ひまし油等の脂肪酸系滑剤、ステアリン酸アマイド、オレイン酸アマイド、エルカ酸アマイド、ラウリン酸アマイド、パルミチン酸アマイド、ベヘニン酸アマイド、リシノール酸アマイド、オキシステアリン酸アマイド、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスオレイン酸アマイド、エチレンビスベヘニン酸アマイド、エチレンビスラウリン酸アマイド等の脂肪酸アマイド系滑剤、
ステアリン酸鉛、ステアリン酸カルシウム、ヒドロキシステアリン酸カルシウム等の炭素数12〜30の脂肪酸金属塩である金属石鹸系滑剤、グリセリン脂肪酸エステル、ヒドロキシステアリン酸トリグリセリド、ソルビタン脂肪酸エステル等の多価アルコールの脂肪酸(部分)エステル系滑剤、ステアリン酸ブチルエステル、モンタンワックス等の長鎖エステルワックス等の脂肪酸エステル系滑剤、またはこれらを複合した複合滑剤等が挙げられる。これらの内、脂肪酸系滑剤、脂肪酸アマイド系滑剤及び脂肪酸エステル系滑剤が好ましい。
【0026】
滑剤の使用量は、乳酸系ポリマー100重量部に対して0.1〜2重量部である。添加量が0.1重量部未満の場合は、滑剤によって期待される滑性効果が発現されず、2重量部を超えるとフィルムの成形性が低下し、さらに得られるフィルムの平板性、透明性等が低下する。
【0027】
本発明の乳酸系ポリマー二軸延伸フィルムには、主成分である乳酸系ポリマーに、滑剤の他に、本発明の目的を損なわない範囲において、紫外線吸収剤、光安定剤、アンチブロッキング剤、可塑剤、酸化防止剤、熱安定剤、充填剤、着色防止剤、顔料等の他の添加剤を含有させてもよい。
【0028】
次いで、本発明の乳酸系ポリマー二軸延伸フィルムの製造方法の例について説明する。乳酸系ポリマーに、必要に応じて滑剤、紫外線吸収剤、光安定剤、アンチブロッキング剤、可塑剤、酸化防止剤、熱安定剤、充填剤、着色防止剤、顔料等の他の添加剤を配合した後、Tダイによる溶融押出法により製膜し、ロール延伸によって流れ方向に延伸後、テンター延伸によって横方向に延伸し、延伸後緊張下で熱処理することにより形成する。
【0029】
乳酸系ポリマーに滑剤等を添加、混合する方法としては、リボンブレンダー、ヘンシェルミキサー等の配合機、混合機を用いる方法、乳酸系ポリマーをクロロホルム等の溶媒に溶解するか、または乳酸系ポリマーを100〜280℃に加熱溶融させたところに、所定量の滑剤等を添加、混合する方法が挙げられる。
【0030】
上記各種の添加剤を含む乳酸系ポリマー組成物の溶融押出温度は、好ましくは100〜280℃の範囲、より好ましくは130〜250℃の範囲である。成形温度が低いと成形安定性が得難く、また過負荷に陥り易い。逆に高いと乳酸系ポリマーが分解することがあり、分子量低下、強度低下、着色等が起こすので好ましくない。
【0031】
本発明の乳酸系ポリマー二軸延伸フィルムは、流れ方向(機械方向)および幅方向(機械方向と直交する方向)の二軸方向にそれぞれ1.3〜6倍延伸することにより得られる。延伸倍率が1.3倍未満であると充分に満足し得る強度を有するフィルムが得難く、また6倍を超えると延伸時にフィルムが破れ好ましくない。延伸温度は、用いる乳酸系ポリマーのガラス転移点(Tg)〜(Tg+50)℃の範囲が好ましい。さらに好ましくはTg〜(Tg+30)℃の範囲である。延伸温度がTg未満では延伸が困難であり、(Tg+50)℃を超えると延伸による強度向上が認められない。耐熱性を増すために延伸後、緊張下で(Tg+10)℃以上、融点未満の温度で熱処理を行なう。熱処理時間は通常1秒〜30分間である。
【0032】
熱処理後の冷却温度は、熱処理温度やフィルム厚みによって異なるが、通常、−40℃〜(Tg−10)℃の温度範囲において空冷する。好ましくは、0〜40℃である。この際、フィルムの表面と裏面を冷却する空気等の冷却媒体の温度差が、得られる二軸延伸フィルムの非熱変形性に影響を及ぼす。冷却気体の温度差が大き過ぎると、得られる二軸延伸フィルムの表裏両面の熱収縮率の差が大きくなり、加熱時にフィルムが歪み、ソリが生じ易くなり、変形が大きくなる。かかる点を考慮すると、フィルムの表面と裏面を冷却する空気等の冷却媒体の温度差は小さい方が好ましいが、本発明の目的を達成するためには、該温度差を5℃以内に調整することが重要である。
【0033】
上記のようにして製造される、本発明の乳酸系ポリマー二軸延伸フィルムは、透明性、無着色性が優れる。透明性は、霞度で表わすと5%以下である。そのため、例えば、オーバーヘッドプロジェクタ用シートとして使用した場合、これの透過光による投影画面は、視認できる程度に充分に明るい。優れた透明性は、上記条件下で二軸延伸及び熱処理することによって達成できる。延伸倍率が1.3倍未満、あるいは熱処理温度がTg未満であると、例えば、オーバーヘッドプロジェクタ投影装置上で使用中に白化し、ヘイズが5%を超え好ましくない。
【0034】
無着色性も優れており、黄色度(Y.I.)で表わすと3以下である。そのため、本発明の乳酸系ポリマー二軸延伸フィルムの表面に印刷を施した場合、発色が鮮やかである。オーバーヘッドプロジェクタ用シートとして好適である。
【0035】
また、本発明の乳酸系ポリマー二軸延伸フィルムは、高温における熱変形が少ない。具体的には、100℃におけるフィルムの表面の熱収縮率とフィルムの裏面の熱収縮率との比が0.8〜1.2の範囲にある。すなわち、100℃程度の加熱した際の変形が極めて小さい。そのため、例えば、オーバーヘッドプロジェクタ用シート等として使用した場合、投影中に熱変形が生じることがない。この熱収縮率の比の範囲を達成するためには、上記条件で熱処理後の冷却操作を実施することが重要である。
【0036】
本発明の乳酸系ポリマー二軸延伸フィルムへの印刷性、接着性を改善するため、少なくとも片面にコロナ放電処理、紫外線照射処理、プラズマ処理、アンダーコート処理等を施して、表面を改質してもよい。
【0037】
本発明の乳酸系ポリマー二軸延伸フィルムの厚みは特に制限はないが、通常、0.01〜1mmである。用途によって適宜選定される。例えば、オーバーヘッドプロジェクタ用シートとして利用し得る。その際の厚みは、好ましくは0.05〜0.3mmである。
【0038】
【実施例】
以下、実施例を示して本発明についてさらに詳細に説明する。なお、この実施例で用いた試験方法は、以下の通りである。
(1)熱収縮率
幅20mm長さ150mmの試験片を作成する。試験片の長辺がフィルムの流れ方向となるものとフィルムの幅方向となるものを各々5枚作成する。各試験片の中央部両面に100mmの距離をおいて標点を付ける。温度100±3℃に保持された恒温箱中に試験片の長辺が鉛直方向となるように吊るして、2時間加熱した後取り出し、室温に30分間放置してから上面と下面の各標点間距離を測定して次の式により算出し、その上面と下面の各平均値を求める。ここでいう上面下面とは横延伸機(テンター)中における上面下面である。
熱収縮率(%)=100×(L1−L2)/L1
ここで、L1:加熱前の標点間距離(mm)、L2:加熱後の標点間距離(mm)
【0039】
(2)テンター内冷却温度測定(℃)
テンター内の横延伸熱処理後の冷却過程において、フィルム上面と下面から各3cmの距離に温度計をフィルムの中心線に沿って設置し、それぞれの温度を記録した。
【0040】
(3)黄色度(Y.I.値)
JIS−K7105に準拠した方法で測定した。その際透過法を用い、測定機はスガ試験機(株)製、形式:SMカラーコンピューターを使用した。
【0041】
(4)霞度(HAZE、%)
厚み0.1mmの各試料を作成し、それを空気オーブン中で100℃において1時間加熱処理した後、ASTM D1003に規定された方法に従って測定した。測定機は、(株)東洋精機製作所製、直読式ヘイズメータNo.206を使用した。
【0042】
(5)オーバーヘッドプロジェクタ用紙としての評価
得られたフィルムをA4サイズにカットし、その片面全面(マージン上下左右各30mm)にレーザープリンタ〔キャノン(株)製、LASERSHOT、A−405Jr.〕によって12ポイントのゴシック体文字を印刷し、それをランプ点灯後1時間経過したオーバーヘッドプロジェクタ装置〔プラス(株)製、CX−500〕上において暗所で2m離れたスクリーンに投影し、20分後に文字が判読できるかどうか評価した。評価人の視力;1.5、スクリーンと評価人の距離:2.5m.評価基準は以下の通り。○:文字がすべて判読できた。△:半分以上判読できた。×:半分以上判読できなかった。
【0043】
調製例1
Dien−Starkトラップを設置した100リットル反応器に、90モル%L−乳酸(不純物の含有量0.5モル%)10kgを150℃/50mmHgで3時間撹拌しながら水を留出させた後、錫末6.2gを加え、150℃/30mmHgでさらに2時間撹拌してオリゴマー化した。このオリゴマーに錫末28.8gとジフェニルエーテル21.1kgを加え、150℃/35mmHg共沸脱水反応を行い留出した水と溶媒を水分離機で分離して水層を逐次抜き出し、溶媒のみを反応器に戻した。2時間後(この時点で不純物の含有量は0.05モル%であった)、反応器に戻す有機溶媒を4.6kgモレキュラーシーブ3Aを充填したカラムに通してから反応器に戻るようにして、150℃/35mmHgで反応を行いポリスチレン換算重量平均分子量12万のポリ乳酸溶液を得た。この溶液に脱水したジフェニルエーテル44kgを加え希釈した後40℃まで冷却して、析出した結晶を濾過し、10kgのn−ヘキサンで3回洗浄して60℃/50mmHgで乾燥した。この粉末を0.5N−塩酸12kgとエタノール12kgを加え、35℃で1時間撹拌した後濾過し、60℃/50mmHgで乾燥して、平均粒径30μmのポリ乳酸粉末6.1kg(収率85%)を得た。このポリマーのポリスチレン換算重量平均分子量は約12万であった。以下、ポリマーAという。
【0044】
調製例2
留出管を設置した100リットル反応器に、90モル%L−乳酸(不純物の含有量0.5モル%)10kgを150℃/50mmHgで3時間撹拌しながら水を留出させた後、錫末6.2gを加え、150℃/30mmHgでさらに2時間撹拌してオリゴマー化した。このオリゴマーに錫末28.8gとジフェニルエーテル21.1kgを加え、150℃/35mmHg共沸脱水反応を行い留出した溶媒を4.6kgモレキュラーシーブ3Aを充填したカラムに通して反応器に戻した。2時間後(この時点で不純物の含有量は0.35モル%であった)、150℃/35mmHgで反応を行いポリスチレン換算重量平均分子量10万のポリ乳酸溶液を得た。この溶液に脱水したジフェニルエーテル44kgを加え希釈した後40℃まで冷却して、析出した結晶を濾過し、10kgのn−ヘキサンで3回洗浄して60℃/50mmHgで乾燥した。この粉末を0.5N−塩酸12kgとエタノール12kgを加え、35℃で1時間撹拌した後濾過し、60℃/50mmHgで乾燥して、平均粒径30μmのポリ乳酸粉末5.7kg(収率80%)を得た。このポリマーのポリスチレン換算重量平均分 子量は10万であった。以下、ポリマーBという。
【0045】
実施例1
調整例1で得られたポリマーA100重量部に対し、滑剤〔ヘキストジャパン(株)製、ホスタルブ−WE4〕0.3重量部、アンチブロッキング剤〔日本アエロジル(株)製、アエロジル200〕0.2重量部を含むペレットを、180℃においてTダイが装着された押出機を用いて混練、溶融して押出し、厚さ800μmの未延伸フィルムを得た。この未延伸フィルムを60℃に加熱した後、長さ方向にロール法によって3倍延伸した後、70℃に加熱して横方向にテンターを用いて3倍延伸を行ない、引き続き緊張下で145℃において2分間熱処理した後、30℃の空気を用いてフィルム上面及び下面を冷却して平均厚み0.1mmの二軸延伸フィルムを得た。
延伸倍率、フィルム上面下面冷却用空気温度とその差、得られたフィルムの熱収縮率及びその比、黄色度、霞度を上記方法により測定し、その結果とオーバーヘッドプロジェクタ用紙としての評価を〔表1〕に示す。
【0046】
実施例2
ポリマーA90重量%と分子量約100,000のポリブチレンサクシネート10重量%を反応させたコポリマー(以下、ポリマーCという)100重量部に対し、滑剤〔日本化成(株)製、ダイヤミッド200〕1.0重量部及びアンチブロッキング剤〔日本アエロジル(株)製、アエロジル200〕0.5重量部を含むペレットを、180℃においてTダイが装着された押出機を用いて混練、溶融して押出し、厚さ800μmの未延伸フィルムを得た。この未延伸フィルムを40℃に加熱した後、長さ方向にロール法によって3倍延伸した後、50℃に加熱して横方向にテンターを用いて3倍延伸を行ない、引き続き緊張下で120℃において2分間熱処理し、25℃の空気でフィルム上下面を冷却して平均厚み0.1mmの二軸延伸フィルムを得た。評価結果を〔表1〕に示す。
【0047】
実施例3
実施例1における2軸延伸フィルムの熱処理後のフィルム上面と下面の冷却空気の温度を〔表1〕に示したように変更した以外、実施例1と同様にして平均厚み0.1mmの二軸延伸フィルムを得た。その評価結果を〔表1〕に示す。
【0048】
実施例4
実施例1における2軸延伸フィルムの熱処理後のフィルム上面と下面の冷却空気の温度を〔表1〕に示したように変更した以外、実施例1と同様にして平均厚み0.1mmの二軸延伸フィルムを得た。その評価結果を〔表1〕に示す。
【0049】
実施例5
ポリマーA100重量部に対し、滑剤〔ヘキストジャパン(株)製、ホスタルブ−WE4〕0.3重量部、アンチブロッキング剤〔日本アエロジル(株)製、アエロジル200〕0.2重量部を含むペレットを、180℃においてTダイが装着された押出機を用いて混練、溶融して押出し、厚さ400μmの未延伸フィルムを得た。この未延伸フィルムを60℃に加熱した後、長さ方向にロール法によって1.4倍延伸した後、70℃に加熱して横方向にテンターを用いて3倍延伸を行ない、引き続き緊張下で145℃において2分間熱処理し、30℃の空気を用いてフィルムの上下面を冷却して平均厚み0.1mmの二軸延伸フィルムを得た。得られたフィルムの評価を〔表1〕に示す。
【0050】
実施例6
実施例1におけるフィルムの2軸延伸倍率を〔表1〕に示したように変更した以外、実施例1と同様にして平均厚み0.05mmの二軸延伸フィルムを得た。その評価結果を〔表1〕に示す。
【0051】
比較例1〜2
フィルムの冷却条件を〔表1〕に示したように変更した以外は、実施例1と同様にして平均厚み0.1mmの二軸延伸フィルムを得た。評価結果を〔表1〕に示す。
【0052】
比較例3
ポリマーA100重量部に対し、滑剤〔ヘキストジャパン(株)製、ホスタルブ−WE4〕0.3重量部、アンチブロッキング剤〔日本アエロジル(株)製、アエロジル200〕0.2重量部を含むペレットを、180℃においてTダイが装着された押出機を用いて混練、溶融して押出し、厚さ400μmの未延伸フィルムを得た。この未延伸フィルムを60℃に加熱した後、長さ方向にロール法によって1.2倍延伸した後、70℃に加熱して横方向にテンターを用いて2倍延伸を行ない、引き続き緊張下で145℃において2分間熱処理し、30℃の空気を用いてフィルムの上下面を冷却して平均厚み0.2mmの二軸延伸フィルムを得た。得られたフィルムの評価を〔表1〕に示す。
【0053】
比較例4
フィルムの二軸延伸条件を〔表1〕に示したように変更した以外は実施例1と同様にして二軸延伸フィルムを作成しようとした結果を〔表1〕に示す。
【0054】
比較例5
ポリマーBを使った以外は実施例1と同様にして平均厚み0.1mmの二軸延伸フィルムを得た。評価結果を〔表1〕に示す。
【0055】
【表1】

Figure 0003618959
【0056】
【発明の効果】
本発明の乳酸系ポリマー二軸延伸フィルムは、優れた透明性、無着色性を有し、かつ、フィルムの表裏両面の熱収縮率の比が小さいことに特徴がある。従って、本発明の乳酸系ポリマー二軸延伸フィルムは、耐衝撃性、伸び率等の一般的機械的特性、自然環境下における加水分解性、酵素分解性等については、従来の乳酸系ポリマーフィルムと同等の特性を有し、特に、熱変形量の小さなフィルムである。また、使用後廃棄されても廃棄物として自然環境下に蓄積することがない。従って、例えば、オーバーヘッドプロジェクタ用フィルムとして極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lactic acid polymer biaxially stretched film. More specifically, the present invention relates to a lactic acid polymer biaxially stretched film comprising a lactic acid polymer having biodegradability and hydrolyzability, excellent in colorless transparency, and having a small difference in heat shrinkage between the front and back surfaces. In particular, the present invention relates to a lactic acid-based polymer biaxially stretched film suitable as an overhead projector sheet.
[0002]
[Prior art]
Conventionally, a transparent polyester film such as a polyethylene terephthalate film has been used in fields where transparency is good and high light transmittance is required. However, these conventionally used plastic transparent films do not decompose in the natural environment or have a very low decomposition rate, so if they are left after use or buried in the soil, they are semi-permanently grounded. Or will remain in the ground. Moreover, when it is dumped into the ocean, the scenery is damaged and the living environment of marine life is destroyed. Furthermore, in the case of incineration treatment, waste treatment becomes a social problem along with the expansion of consumption, such as promoting the deterioration of the incinerator due to its high combustion heat.
[0003]
Many researches and developments have been made to use degradable polymers that do not cause these problems as transparent films. Among them, lactic acid-based polymers are widely known for their high transparency and so-called biodegradability, and since they do not generate mold and maintain transparency, they can be used in various applications. Is expected to be used. For example, an example in which a lactic acid polymer film is used as an agricultural film is disclosed in JP-A-7-177826.
[0004]
The transparent plastic film has many uses that require color printing on the surface, and high transparency and no coloration are required in consideration of the color of the ink. Usually, the transparency and non-coloration of the lactic acid polymer biaxially stretched film are affected by the purity of the monomer used when synthesizing the lactic acid polymer, the molding process conditions of the lactic acid polymer, and the like. In addition, when a lactic acid polymer biaxially stretched film is regularly used at a temperature higher than the glass transition temperature, if there is a difference in thermal shrinkage between the front and back surfaces, it easily undergoes thermal deformation when heated.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems, and to provide a lactic acid polymer biaxially stretched film having excellent transparency and non-coloring properties, and having a small difference in thermal shrinkage between the front and back surfaces of the film. To do.
[0006]
[Means for Solving the Problems]
As a result of diligent study, the inventors of the present invention formed a biaxially stretched film from a lactic acid-based polymer obtained from lactic acid or lactide having a low content of components having a boiling point lower than that of lactic acid, and under tension. The biaxially stretched film obtained by carrying out the cooling operation under specific conditions after heat-fixing at a low temperature and a low degree of yellowness, and that there is little difference in the thermal shrinkage between the front and back sides of the film The headline and the present invention were completed.
[0007]
That is, according to the present invention, the yellowness is 1.5-3, There is provided a lactic acid polymer biaxially stretched film having a thickness of 0.01 to 1 mm, having a degree of hardness of 5% or less and a ratio of heat shrinkage ratios of the front and back surfaces of the film of 0.8 to 1.2.
[0008]
The feature of the lactic acid-based polymer biaxially stretched film of the present invention is that the ratio of yellowness, haze (haze), and heat shrinkage ratio between the front and back surfaces of the film is limited to a specific range. That is, it is a biaxially stretched film that is excellent in transparency and non-coloring properties and has little thermal deformation. General mechanical characteristics such as impact resistance and elongation, hydrolyzability under natural environment, enzymatic degradability, and the like have characteristics equivalent to those of conventional lactic acid polymer films.
[0009]
Therefore, it can be used very suitably as a material that requires excellent transparency, non-coloring property and non-thermal deformation property, such as an overhead projector sheet. The lactic acid-based polymer biaxially stretched film of the present invention is formed by forming a biaxially stretched film using a lactic acid-based polymer synthesized using lactic acid having a low content of impurities as a molding raw material, and heat-setting under tension. Manufactured by performing a cooling operation under specific conditions.
[0010]
In the present invention, the ratio of the yellowness, the haze, and the heat shrinkage ratio between the front and back surfaces of the film means a value measured by the method described in Examples described later.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The lactic acid-based polymer in the present invention is an aliphatic polyester containing a lactic acid unit. Specifically, (1) a polylactic acid and a copolymer of lactic acid and another hydroxycarboxylic acid, (2) a polyfunctional polysaccharide and lactic acid. An aliphatic polyester containing units, (3) an aliphatic polyester containing an aliphatic polycarboxylic acid unit, an aliphatic polyhydric alcohol unit and a lactic acid unit, and (4) a mixture thereof. Hereinafter, these are collectively referred to as a lactic acid polymer.
[0012]
Lactic acid has an L-form and a D-form, but in the present invention, the term lactic acid refers to both the L-form and the D-form unless otherwise specified. Further, the molecular weight of the polymer refers to the weight average molecular weight unless otherwise specified.
[0013]
The polylactic acid used in the present invention includes poly (L-lactic acid) whose structural unit is composed only of L-lactic acid, poly (D-lactic acid) composed of only D-lactic acid, and L-lactic acid units and D-lactic acid units. Any of poly (DL-lactic acid) present in various proportions can be used.
[0014]
Examples of the hydroxycarboxylic acid of the lactic acid-other hydroxycarboxylic acid copolymer include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid and the like. It is done.
[0015]
Examples of the method for producing polylactic acid used in the present invention include a method in which L-lactic acid, D-lactic acid, or DL-lactic acid is directly subjected to dehydration polycondensation, a method in which lactide that is a cyclic dimer of these lactic acids is subjected to ring-opening polymerization, and the like. Is mentioned. The ring-opening polymerization may be performed in the presence of a compound having a hydroxyl group such as a higher alcohol or a hydroxycarboxylic acid. It may be produced by any method.
[0016]
As a method for producing lactic acid-other hydroxycarboxylic acid copolymer, dehydration polycondensation of each lactic acid and the hydroxycarboxylic acid, lactide which is a cyclic dimer of each lactic acid, and a ring of the hydroxycarboxylic acid are opened. Examples include a copolymerization method. It may be produced by any method. The amount of lactic acid units contained in the copolymer is preferably at least 40 mol%.
[0017]
Examples of the polyfunctional polysaccharide and the polyfunctional polysaccharide used for the production of the aliphatic polyester containing a lactic acid unit include cellulose, cellulose nitrate, cellulose acetate, methyl cellulose, ethyl cellulose, celluloid, viscose rayon, regenerated cellulose, cellophane, cupra, Examples include copper ammonia rayon, cuprophane, bemberg, hemicellulose, starch, amylopectin, dextrin, dextran, glycogen, pectin, chitin, chitosan, gum arabic, guar gum, locust bean gum, acacia gum and mixtures thereof and derivatives thereof. . Of these, cellulose acetate and ethyl cellulose are particularly preferred.
[0018]
As a method for producing an aliphatic polyester containing a polyfunctional polysaccharide and a lactic acid unit, a method of reacting the polyfunctional polysaccharide with the polylactic acid, lactic acid-other hydroxycarboxylic acid copolymer, etc., the polyfunctional polysaccharide and each lactic acid And a method of reacting cyclic esters and the like. It may be produced by any method. The amount of lactic acid units contained in the aliphatic polyester is preferably at least 50% by weight.
[0019]
Examples of the aliphatic polycarboxylic acid used for the production of the aliphatic polyester containing an aliphatic polycarboxylic acid unit, an aliphatic polyhydric alcohol unit and a lactic acid unit include oxalic acid, succinic acid, malonic acid, glutaric acid, adipine Examples include acids, pimelic acid, suberic acid, azelaic acid, undecanoic acid, dodecanoic acid and the like, and anhydrides thereof. These may be an acid anhydride or a mixture with an acid anhydride.
[0020]
Examples of the aliphatic polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and 3-methyl-1,5- Pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, tetramethylene glycol, 1,4-cyclohexanedimethanol and the like can be mentioned.
[0021]
As a method for producing an aliphatic polyester containing an aliphatic polycarboxylic acid unit, an aliphatic polyhydric alcohol unit, and a lactic acid unit, the aliphatic polycarboxylic acid and the aliphatic polyhydric alcohol, and the polylactic acid, lactic acid, etc. And a method of reacting the above-mentioned aliphatic polycarboxylic acid and the above-mentioned aliphatic polyhydric alcohol with each of the above lactic acid and cyclic esters. It may be produced by any method. The amount of lactic acid units contained in the aliphatic polyester is preferably at least 50 mol%.
[0022]
The molecular weight of the lactic acid-based polymer affects the processability of the film, the strength and degradability of the resulting film. When the molecular weight is low, the strength of the obtained film is lowered, and it may break due to tension when used. In addition, the decomposition speed is increased. On the other hand, if it is high, the processability is lowered and film formation becomes difficult. Considering this point, the molecular weight of the lactic acid polymer used in the present invention is preferably in the range of about 10,000 to about 1,000,000. A more preferable range is 100,000 to 300,000.
[0023]
When producing the lactic acid polymer biaxially stretched film of the present invention, a polymer having a high purity is used among the lactic acid polymers. In general, high-purity lactic acid is commercially available by purifying starch after fermentation. However, the lactic acid obtained by this method mainly contains impurities such as methanol, ethanol, acetic acid, pyruvic acid, fumaric acid, methyl lactate and butyl lactate (hereinafter these are simply referred to as impurities). In the present invention, the total content of the impurities with respect to the raw material monomer of the lactic acid polymer is 0.3 mol% or less, preferably 0.1 mol% or less, more preferably 0.05 mol% or less.
[0024]
Examples of a method for removing impurities contained in lactic acid include a method described in JP-A-7-2985. The outline is that about 10% by weight of water is contained in lactic acid, charged in a reactor equipped with a Dien-Stark trap, and heated to reflux under reduced pressure. The low boiling point compound is removed from the system together with water by sequentially extracting the aqueous layer. Samples being heated and refluxed are collected from time to time, and the amount of impurities is quantified with a gas chromatograph or the like, and confirmed to be 0.3 mol% or less.
[0025]
For the lactic acid-based polymer biaxially stretched film of the present invention, a lubricant can be included in the raw material pellets in order to facilitate stability during extrusion and handling. Examples of the lubricant used here include aliphatic hydrocarbon lubricants such as liquid paraffin, microcrystalline wax, natural paraffin, synthetic paraffin, polyethylene, stearic acid, lauric acid, hydroxystearic acid, fatty acid lubricants such as hardened castor oil, stearin Acid amide, oleic acid amide, erucic acid amide, lauric acid amide, palmitic acid amide, behenic acid amide, ricinoleic acid amide, oxystearic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide, Fatty acid amide-based lubricants such as ethylene bisbehenic acid amide and ethylene bislauric acid amide,
Fatty acids (partial) of polyhydric alcohols such as metal soap-based lubricants such as lead stearate, calcium stearate, hydroxy stearate, etc., metal soaps, glycerin fatty acid esters, hydroxystearic acid triglycerides, sorbitan fatty acid esters Examples include ester-based lubricants, fatty acid ester-based lubricants such as long-chain ester waxes such as butyl stearate and montan wax, and composite lubricants obtained by combining these. Of these, fatty acid lubricants, fatty acid amide lubricants and fatty acid ester lubricants are preferred.
[0026]
The usage-amount of a lubricant is 0.1-2 weight part with respect to 100 weight part of lactic acid-type polymers. When the addition amount is less than 0.1 parts by weight, the slippery effect expected by the lubricant is not expressed, and when it exceeds 2 parts by weight, the formability of the film is lowered, and the flatness and transparency of the resulting film are further reduced. Etc. decreases.
[0027]
The lactic acid-based polymer biaxially stretched film of the present invention includes, in addition to a lactic acid-based polymer as a main component, an ultraviolet absorber, a light stabilizer, an anti-blocking agent, a plasticizer, as long as the purpose of the present invention is not impaired. You may contain other additives, such as an agent, antioxidant, a heat stabilizer, a filler, a coloring inhibitor, and a pigment.
[0028]
Subsequently, the example of the manufacturing method of the lactic acid-type polymer biaxially stretched film of this invention is demonstrated. If necessary, other additives such as lubricants, UV absorbers, light stabilizers, anti-blocking agents, plasticizers, antioxidants, heat stabilizers, fillers, anti-coloring agents, and pigments are added to lactic acid polymers. Then, a film is formed by a melt extrusion method using a T-die, stretched in the flow direction by roll stretching, stretched in the transverse direction by tenter stretching, and heat-treated under tension after stretching.
[0029]
As a method of adding and mixing a lubricant or the like to a lactic acid-based polymer, a blender such as a ribbon blender or a Henschel mixer, a method using a mixer, a lactic acid-based polymer dissolved in a solvent such as chloroform, or a lactic acid-based polymer 100 A method of adding and mixing a predetermined amount of a lubricant or the like when heated and melted at ˜280 ° C. can be mentioned.
[0030]
The melt extrusion temperature of the lactic acid-based polymer composition containing the various additives is preferably in the range of 100 to 280 ° C, more preferably in the range of 130 to 250 ° C. If the molding temperature is low, molding stability is difficult to obtain, and overload tends to occur. On the other hand, if it is high, the lactic acid polymer may be decomposed, which is not preferable because molecular weight reduction, strength reduction, coloring, and the like occur.
[0031]
The lactic acid polymer biaxially stretched film of the present invention is obtained by stretching 1.3 to 6 times in the biaxial direction of the flow direction (machine direction) and the width direction (direction perpendicular to the machine direction). When the draw ratio is less than 1.3 times, it is difficult to obtain a film having a sufficiently satisfactory strength, and when it exceeds 6 times, the film is not preferred because it is broken at the time of drawing. The stretching temperature is preferably in the range of the glass transition point (Tg) to (Tg + 50) ° C. of the lactic acid-based polymer used. More preferably, it is the range of Tg- (Tg + 30) degreeC. If the stretching temperature is less than Tg, stretching is difficult, and if it exceeds (Tg + 50) ° C., strength improvement due to stretching is not recognized. In order to increase heat resistance, after stretching, heat treatment is performed under tension at a temperature of (Tg + 10) ° C. or higher and lower than the melting point. The heat treatment time is usually 1 second to 30 minutes.
[0032]
The cooling temperature after the heat treatment varies depending on the heat treatment temperature and the film thickness, but is usually air-cooled in a temperature range of −40 ° C. to (Tg−10) ° C. Preferably, it is 0-40 degreeC. Under the present circumstances, the temperature difference of cooling media, such as the air which cools the surface of a film, and a back surface, affects the non-thermal deformability of the obtained biaxially stretched film. If the temperature difference of the cooling gas is too large, the difference in heat shrinkage between the front and back surfaces of the obtained biaxially stretched film becomes large, and the film is easily distorted and warped during heating, resulting in large deformation. Considering such points, it is preferable that the temperature difference between the cooling medium such as air for cooling the front and back surfaces of the film is small. However, in order to achieve the object of the present invention, the temperature difference is adjusted within 5 ° C. This is very important.
[0033]
The lactic acid polymer biaxially stretched film of the present invention produced as described above is excellent in transparency and non-coloring property. Transparency is 5% or less in terms of brightness. Therefore, for example, when used as a sheet for an overhead projector, the projection screen using the transmitted light is sufficiently bright to be visible. Excellent transparency can be achieved by biaxial stretching and heat treatment under the above conditions. When the draw ratio is less than 1.3 times or the heat treatment temperature is less than Tg, for example, whitening occurs during use on an overhead projector, and the haze exceeds 5%.
[0034]
The non-coloring property is also excellent, and it is 3 or less in terms of yellowness (YI). Therefore, when printing is performed on the surface of the lactic acid polymer biaxially stretched film of the present invention, the color development is vivid. It is suitable as an overhead projector sheet.
[0035]
Moreover, the lactic acid-type polymer biaxially stretched film of this invention has few thermal deformations at high temperature. Specifically, the ratio of the heat shrinkage rate on the surface of the film to the heat shrinkage rate on the back surface of the film at 100 ° C. is in the range of 0.8 to 1.2. That is, the deformation when heated to about 100 ° C. is extremely small. Therefore, for example, when used as an overhead projector sheet or the like, thermal deformation does not occur during projection. In order to achieve this thermal shrinkage ratio range, it is important to perform a cooling operation after the heat treatment under the above conditions.
[0036]
In order to improve the printability and adhesion to the lactic acid-based polymer biaxially stretched film of the present invention, at least one surface is subjected to corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, undercoat treatment, etc., and the surface is modified. Also good.
[0037]
The thickness of the lactic acid polymer biaxially stretched film of the present invention is not particularly limited, but is usually 0.01 to 1 mm. It is appropriately selected depending on the application. For example, it can be used as an overhead projector sheet. The thickness at that time is preferably 0.05 to 0.3 mm.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The test method used in this example is as follows.
(1) Thermal contraction rate
A test piece having a width of 20 mm and a length of 150 mm is prepared. Five pieces each having the long side of the test piece in the direction of the film flow and the width direction of the film are prepared. Marks are placed at a distance of 100 mm on both sides of the center of each test piece. The test piece is suspended in a constant temperature box maintained at a temperature of 100 ± 3 ° C so that the long side of the test piece is in the vertical direction, heated for 2 hours, taken out, left at room temperature for 30 minutes, and then marked on the upper and lower surfaces. The distance between them is measured and calculated by the following formula, and the average value of the upper and lower surfaces is obtained. The upper and lower surfaces referred to here are the upper and lower surfaces in a transverse stretching machine (tenter).
Thermal contraction rate (%) = 100 × (L1-L2) / L1
Here, L1: distance between gauge points before heating (mm), L2: distance between gauge points after heating (mm)
[0039]
(2) Measurement of cooling temperature in the tenter (℃)
In the cooling process after the transverse stretching heat treatment in the tenter, a thermometer was installed along the center line of the film at a distance of 3 cm from the upper and lower surfaces of the film, and the respective temperatures were recorded.
[0040]
(3) Yellowness (YI value)
It measured by the method based on JIS-K7105. At that time, a transmission method was used, and a measuring machine manufactured by Suga Test Instruments Co., Ltd., type: SM color computer was used.
[0041]
(4) Degree (HAZE,%)
Each sample having a thickness of 0.1 mm was prepared, heat-treated in an air oven at 100 ° C. for 1 hour, and then measured according to a method defined in ASTM D1003. The measuring machine is manufactured by Toyo Seiki Seisakusho Co., Ltd. 206 was used.
[0042]
(5) Evaluation as overhead projector paper
The obtained film was cut into A4 size, and a laser printer (manufactured by Canon Inc., LASERSHOT, A-405Jr. ] To print 12-point Gothic characters and project them onto a screen 2 meters away in the dark on an overhead projector device [CX-500, manufactured by Plus Co., Ltd.] after 1 hour has passed since the lamp was lit. It was evaluated whether the characters could be read later. Evaluator's visual acuity; 1.5, distance between screen and evaluator: 2.5 m. The evaluation criteria are as follows. ○: All characters were readable. Δ: More than half of reading was possible. X: More than half could not be read.
[0043]
Preparation Example 1
After distilling water in a 100 liter reactor equipped with a Dien-Stark trap while stirring 10 kg of 90 mol% L-lactic acid (impurity content 0.5 mol%) at 150 ° C./50 mmHg for 3 hours, 6.2 g of tin powder was added, and the mixture was further oligomerized by stirring at 150 ° C./30 mmHg for 2 hours. To this oligomer, 28.8 g of tin powder and 21.1 kg of diphenyl ether were added, 150 ° C / 35 mmHg azeotropic dehydration reaction was carried out, the distilled water and the solvent were separated by a water separator, and the aqueous layer was sequentially extracted to react only with the solvent. Returned to the vessel. After 2 hours (the impurity content was 0.05 mol% at this point), the organic solvent to be returned to the reactor was passed through a column packed with 4.6 kg molecular sieve 3A and then returned to the reactor. The reaction was carried out at 150 ° C./35 mmHg to obtain a polylactic acid solution having a polystyrene equivalent weight average molecular weight of 120,000. The solution was diluted with 44 kg of dehydrated diphenyl ether, cooled to 40 ° C., and the precipitated crystals were filtered, washed with 10 kg of n-hexane three times, and dried at 60 ° C./50 mmHg. This powder was added with 12 kg of 0.5N hydrochloric acid and 12 kg of ethanol, stirred for 1 hour at 35 ° C., filtered, dried at 60 ° C./50 mmHg, and 6.1 kg of polylactic acid powder having an average particle size of 30 μm (yield: 85 %). The polystyrene equivalent weight average molecular weight of this polymer was about 120,000. Hereinafter referred to as polymer A.
[0044]
Preparation Example 2
After distilling water into a 100 liter reactor equipped with a distillation pipe while stirring 10 kg of 90 mol% L-lactic acid (impurity content 0.5 mol%) at 150 ° C./50 mmHg for 3 hours, 6.2 g of the powder was added, and the mixture was further oligomerized by stirring at 150 ° C./30 mmHg for 2 hours. To this oligomer, 28.8 g of tin powder and 21.1 kg of diphenyl ether were added, 150 ° C./35 mmHg azeotropic dehydration reaction was performed, and the distilled solvent was passed through a column packed with 4.6 kg molecular sieve 3A and returned to the reactor. After 2 hours (the impurity content was 0.35 mol% at this point), the reaction was performed at 150 ° C./35 mmHg to obtain a polylactic acid solution having a polystyrene-equivalent weight average molecular weight of 100,000. The solution was diluted with 44 kg of dehydrated diphenyl ether, cooled to 40 ° C., and the precipitated crystals were filtered, washed with 10 kg of n-hexane three times, and dried at 60 ° C./50 mmHg. This powder was added with 12 kg of 0.5N hydrochloric acid and 12 kg of ethanol, stirred at 35 ° C. for 1 hour, filtered, dried at 60 ° C./50 mmHg, and 5.7 kg of polylactic acid powder having an average particle size of 30 μm (yield: 80 %). The weight average molecular weight of this polymer in terms of polystyrene was 100,000. Hereinafter referred to as polymer B.
[0045]
Example 1
For 100 parts by weight of the polymer A obtained in Preparation Example 1, 0.3 parts by weight of a lubricant (Hoechst Japan Co., Ltd., Hostalbu-WE4), an anti-blocking agent (Nippon Aerosil Co., Ltd., Aerosil 200) 0.2 The pellet containing parts by weight was kneaded, melted and extruded using an extruder equipped with a T die at 180 ° C. to obtain an unstretched film having a thickness of 800 μm. This unstretched film was heated to 60 ° C., then stretched 3 times in the length direction by a roll method, then heated to 70 ° C. and stretched 3 times using a tenter in the transverse direction, and then 145 ° C. under tension. After heat treatment for 2 minutes, the upper and lower surfaces of the film were cooled using air at 30 ° C. to obtain a biaxially stretched film having an average thickness of 0.1 mm.
The stretching ratio, the air temperature for cooling the upper and lower surfaces of the film and its difference, the thermal shrinkage rate and ratio of the obtained film, the yellowness, and the brightness were measured by the above methods, and the results were evaluated as overhead projector paper. 1].
[0046]
Example 2
100 parts by weight of a copolymer obtained by reacting 90% by weight of polymer A and 10% by weight of polybutylene succinate having a molecular weight of about 100,000 (hereinafter referred to as polymer C), a lubricant [Nippon Kasei Co., Ltd., Diamond 200] 1 Pellets containing 0.0 parts by weight and 0.5 parts by weight of an anti-blocking agent (Nippon Aerosil Co., Ltd., Aerosil 200) were kneaded, melted and extruded using an extruder equipped with a T-die at 180 ° C. An unstretched film having a thickness of 800 μm was obtained. After heating this unstretched film to 40 ° C., it was stretched 3 times by the roll method in the length direction, then heated to 50 ° C. and stretched 3 times using a tenter in the transverse direction, and subsequently 120 ° C. under tension. Was heat treated for 2 minutes, and the upper and lower surfaces of the film were cooled with air at 25 ° C. to obtain a biaxially stretched film having an average thickness of 0.1 mm. The evaluation results are shown in [Table 1].
[0047]
Example 3
Biaxial with an average thickness of 0.1 mm as in Example 1 except that the temperature of the cooling air on the upper and lower surfaces of the biaxially stretched film in Example 1 after heat treatment was changed as shown in [Table 1]. A stretched film was obtained. The evaluation results are shown in [Table 1].
[0048]
Example 4
Biaxial with an average thickness of 0.1 mm as in Example 1 except that the temperature of the cooling air on the upper and lower surfaces of the biaxially stretched film in Example 1 after heat treatment was changed as shown in [Table 1]. A stretched film was obtained. The evaluation results are shown in [Table 1].
[0049]
Example 5
For 100 parts by weight of polymer A, pellets containing 0.3 parts by weight of a lubricant (Hoechst Japan Co., Ltd., Hostalbu-WE4) and 0.2 parts by weight of an anti-blocking agent (Nippon Aerosil Co., Ltd., Aerosil 200), Using an extruder equipped with a T-die at 180 ° C., the mixture was kneaded, melted and extruded to obtain an unstretched film having a thickness of 400 μm. After heating this unstretched film to 60 ° C., it was stretched 1.4 times in the length direction by a roll method, then heated to 70 ° C. and stretched 3 times using a tenter in the transverse direction. It heat-processed for 2 minutes at 145 degreeC, the upper and lower surfaces of the film were cooled using 30 degreeC air, and the biaxially stretched film with an average thickness of 0.1 mm was obtained. The evaluation of the obtained film is shown in [Table 1].
[0050]
Example 6
A biaxially stretched film having an average thickness of 0.05 mm was obtained in the same manner as in Example 1 except that the biaxial stretching ratio of the film in Example 1 was changed as shown in [Table 1]. The evaluation results are shown in [Table 1].
[0051]
Comparative Examples 1-2
A biaxially stretched film having an average thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the cooling conditions for the film were changed as shown in [Table 1]. The evaluation results are shown in [Table 1].
[0052]
Comparative Example 3
For 100 parts by weight of polymer A, pellets containing 0.3 parts by weight of a lubricant (Hoechst Japan Co., Ltd., Hostalbu-WE4) and 0.2 parts by weight of an anti-blocking agent (Nippon Aerosil Co., Ltd., Aerosil 200), Using an extruder equipped with a T-die at 180 ° C., the mixture was kneaded, melted and extruded to obtain an unstretched film having a thickness of 400 μm. This unstretched film was heated to 60 ° C., stretched 1.2 times in the length direction by a roll method, then heated to 70 ° C. and stretched twice using a tenter in the transverse direction, and then under tension. It heat-processed for 2 minutes at 145 degreeC, the upper and lower surfaces of the film were cooled using 30 degreeC air, and the biaxially stretched film with an average thickness of 0.2 mm was obtained. The evaluation of the obtained film is shown in [Table 1].
[0053]
Comparative Example 4
Table 1 shows the results of attempts to produce a biaxially stretched film in the same manner as in Example 1 except that the biaxial stretching conditions of the film were changed as shown in [Table 1].
[0054]
Comparative Example 5
A biaxially stretched film having an average thickness of 0.1 mm was obtained in the same manner as in Example 1 except that the polymer B was used. The evaluation results are shown in [Table 1].
[0055]
[Table 1]
Figure 0003618959
[0056]
【The invention's effect】
The lactic acid-based polymer biaxially stretched film of the present invention is characterized by having excellent transparency and non-coloring property, and having a small ratio of thermal shrinkage between the front and back surfaces of the film. Therefore, the lactic acid-based polymer biaxially stretched film of the present invention has a general mechanical property such as impact resistance and elongation, hydrolyzability in a natural environment, enzymatic degradability, etc. It is a film having the same characteristics and having a small amount of thermal deformation. Moreover, even if discarded after use, it does not accumulate in the natural environment as waste. Therefore, for example, it is extremely useful as a film for an overhead projector.

Claims (3)

黄色度が1.5〜3、霞度が5%以下、フィルムの表裏両面の熱収縮率の比が0.8〜1.2である、厚み0.01〜1mmの乳酸系ポリマー二軸延伸フィルム。Biaxial stretching of lactic acid-based polymer having a thickness of 0.01 to 1 mm , having a yellowness of 1.5 to 3, a haze of 5% or less, and a ratio of heat shrinkage ratios of the front and back surfaces of the film of 0.8 to 1.2 the film. 乳酸系ポリマー二軸延伸フィルムが、厚み0.05〜0.3mmのオーバーヘッドプロジェクタ用シートである請求項1記載の乳酸系ポリマー二軸延伸フィルム。The lactic acid polymer biaxially stretched film according to claim 1, wherein the lactic acid polymer biaxially stretched film is a sheet for overhead projector having a thickness of 0.05 to 0.3 mm. 乳酸系ポリマー二軸延伸フィルムが、メタノール、エタノール、酢酸、ピルビン酸、フマル酸、乳酸メチル及び乳酸ブチルからなる群より選ばれた少なくとも一種の不純物の総含有量が0.3モル%以下であるモノマーから得られた乳酸系ポリマーのフィルムを流れ方向及び幅方向にそれぞれ1.3〜6倍二軸延伸し、緊張下、〔ガラス転移温度(Tg)+10〕℃以上、融点未満の温度範囲において熱処理した後、−40℃〜(Tg−10)℃の温度範囲において、温度差が5℃以内の気体媒体を用いて、フィルムの表裏両面をそれぞれ冷却して得られた請求項1または2記載の乳酸系ポリマー二軸延伸フィルム。The lactic acid polymer biaxially stretched film has a total content of at least one impurity selected from the group consisting of methanol, ethanol, acetic acid, pyruvic acid, fumaric acid, methyl lactate and butyl lactate of 0.3 mol% or less. A lactic acid polymer film obtained from a monomer is biaxially stretched 1.3 to 6 times in the flow direction and the width direction, respectively, and under tension, in a temperature range of [glass transition temperature (Tg) +10] ° C. or higher and lower than the melting point 3. The film obtained by cooling both the front and back surfaces of the film using a gaseous medium having a temperature difference of 5 ° C. or less in a temperature range of −40 ° C. to (Tg−10) ° C. after the heat treatment. Lactic acid polymer biaxially stretched film.
JP12677797A 1997-05-16 1997-05-16 Lactic acid polymer biaxially stretched film Expired - Lifetime JP3618959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12677797A JP3618959B2 (en) 1997-05-16 1997-05-16 Lactic acid polymer biaxially stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12677797A JP3618959B2 (en) 1997-05-16 1997-05-16 Lactic acid polymer biaxially stretched film

Publications (2)

Publication Number Publication Date
JPH10315318A JPH10315318A (en) 1998-12-02
JP3618959B2 true JP3618959B2 (en) 2005-02-09

Family

ID=14943684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12677797A Expired - Lifetime JP3618959B2 (en) 1997-05-16 1997-05-16 Lactic acid polymer biaxially stretched film

Country Status (1)

Country Link
JP (1) JP3618959B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644885B2 (en) * 1999-02-25 2011-03-09 東洋紡績株式会社 Aliphatic polyester film
ATE484377T1 (en) 2001-07-19 2010-10-15 Toyo Seikan Kaisha Ltd MOLDED BODY OBTAINED BY STRETCHING AND HEAT FIXING AND PRODUCTION METHOD THEREOF
JP4636173B2 (en) * 2008-12-22 2011-02-23 東洋紡績株式会社 Method for producing polylactic acid biaxially stretched film
JP7310417B2 (en) * 2019-07-31 2023-07-19 日本ゼオン株式会社 Method for manufacturing resin film

Also Published As

Publication number Publication date
JPH10315318A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US6136905A (en) L-lactic acid polymer composition, molded product and film
US7879440B2 (en) Matte film
US7820276B2 (en) Matte film or sheet
JP5239336B2 (en) Polyether-polylactic acid composition and polylactic acid film containing the same
JP2005501927A (en) Processing of polyhydroxyalkanoates using nucleating agents and plasticizers
JP2009138085A (en) Polylactic acid-based film
JP4928157B2 (en) Polylactic acid resin composition and molded article
JP2002327107A (en) Polylactic acid-based film and method for producing the same
JP2000273207A (en) Polylactic acid-based film and its production
JP3862557B2 (en) Transparent impact-resistant polylactic acid-based stretched film or sheet and method for producing the same
JP2011089084A (en) Polylactic acid-based resin composition and molding formed of the same
JP3618959B2 (en) Lactic acid polymer biaxially stretched film
JP2009072113A (en) Agricultural mulching film
JP3472644B2 (en) L-lactic acid polymer composition, molded product and film
JP5332552B2 (en) Chip-like product made of polylactic acid resin composition
JP2005263931A (en) Inorganic filler-loaded matte film
JP3430125B2 (en) Aliphatic polyester composition for masterbatch and method for producing aliphatic polyester film using the composition
JP5034786B2 (en) Easy degradable film
JP2004131726A (en) Biodegradable matte film
JP2004090522A (en) Polylactic acid resin film and polylactic acid resin fusion-cut sealing bag
JP2005139280A (en) Polyester resin composition and film
JP2005015606A (en) Polyester-based resin composition and molding thereof
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article
JP3490241B2 (en) Degradable films or sheets, molded articles made of these, and methods for decomposing them
JP4102216B2 (en) Biaxially stretched biodegradable polyester film and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term