JP3618557B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP3618557B2
JP3618557B2 JP25264398A JP25264398A JP3618557B2 JP 3618557 B2 JP3618557 B2 JP 3618557B2 JP 25264398 A JP25264398 A JP 25264398A JP 25264398 A JP25264398 A JP 25264398A JP 3618557 B2 JP3618557 B2 JP 3618557B2
Authority
JP
Japan
Prior art keywords
group
lens
positive
negative
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25264398A
Other languages
Japanese (ja)
Other versions
JPH11174330A (en
Inventor
勉 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2320262A external-priority patent/JP2859734B2/en
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP25264398A priority Critical patent/JP3618557B2/en
Publication of JPH11174330A publication Critical patent/JPH11174330A/en
Application granted granted Critical
Publication of JP3618557B2 publication Critical patent/JP3618557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【産業上の利用分野】
本発明は主としてビデオカメラ用のズームレンズに関し、特に、レンズ枚数の少ない小型のズームレンズであって、変倍比が6〜8程度のズームレンズに関する。
【0002】
【従来の技術】
近年、ビデオカメラの小型化、低価格化が急速に進んでいる。これに合わせて、ビデオカメラ用ズームレンズに関しても小型化、低コスト化が望まれている。
【0003】
従来、ビデオカメラ用の6倍以上の変倍比を持つズームレンズとしては、物体側から順に、正、負、負、正の4群構成で、ズーミング中レンズ全長は一定で、第2群で変倍を行い、第3群で像位置補正を行うというものが最も多かった。
【0004】
しかしながら、レンズに対する小型化の要求から、ビデオカメラ用レンズにおいても、レンズ全長がズーミング中変化し、一般に広角端で全長が最も短かくなるタイプのズームレンズが、特公昭61−55653号、特開昭58−179809 号、特開昭60−14212号で提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらのズームレンズは13〜15枚のレンズで構成されている。ビデオカメラ等の小型の撮像素子を用いたカメラのレンズでは、レンズ枚数が多いということは、それだけのレンズを配置する空間を確保しなければならず、小型化への障害となる。この傾向は撮像素子が小さくなる程顕著となる。
【0006】
本発明はこのような状況に鑑みてなされたものであり、その目的は、レンズ枚数の少ない小型のズームレンズであって、変倍比が6〜8倍程度のズームレンズを提供することである。
【0007】
【課題を解決するための手段】
本発明のズームレンズは、物体側から順に、正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、及び、正の屈折力の第4群からなり、広角側から望遠側ヘズーミングする際、第1群及び第3群は光軸上を物体側へ単調に移動し、第2群は固定で、第4群は変倍による像位置の変動及び物体距離の変化による像位置の変動を調節するために光軸上を移動するズームレンズであって、第3群は、物体側から順に、1枚以上の正レンズと像側に強い凹面を向けた1枚の負レンズで構成され、第4群は、1枚の正レンズのみあるいは正レンズと負レンズの2枚で構成され、第3群又は第4群は、少なくとも1つのレンズが光軸から離れるにしたがって正の屈折力が弱くなる非球面レンズを少なくとも1つ有し、且つ下記の条件(3)、(4)、(5)を満足することを特徴とするものである。
(3)0.4<(r 3F +r 3R )/(r 3F −r 3R )<2.7
(4)0.2<r 3R /(n 3R −1)(f ・f 1/2 <1.0
(5)0.4<r 4F /(n 4F −1)(f ・f 1/2 <2.0
ただし、r 3F 、r 3R は、それぞれ第3群中の負レンズの物体側及び像側の面の曲率半径、n 3R は、第3群中の負レンズの屈折率、n 4F は、第4群の最も物体側のレンズの屈折率、f は、広角端における全系の焦点距離、f は、望遠端における全系の焦点距離である。
【0008】
【作用】
以上のような本発明のズームレンズのズーム及びフォーカスタイプにおいては、広角端で全長が最短となり、レンズの小型化に有利であると共に、第4群がフォーカシング作用を持つために、前玉の小型化及びレンズ系全系の小型化に有利である。
【0009】
さらなるレンズの小型化及び低コスト化のためには、効果の少ないレンズを極力排除して、必要最少限のレンズ枚数で構成することが望ましい。このためには、主に結像作用を有する第3群、第4群の構成に最も工夫を要する。本発明のズームレンズにおいては、第3群の最も物体側のレンズに正の屈折力を持たせ、その最も像側のレンズに負の屈折力を持たせることで、第3群の主点位置をできるだけ物体側へ配置している。さらに、第4群でフォーカシングを行うために、第1〜3群でほぼアフォーカルな系を構成しており、第2群かろの発散光束に対し第3群の物体側の1枚以上の正レンズで平行光束を経て収斂光束にし、第3群の像側の負レンズで再びほぼ平行光束として第4群へ射出している。つまり、第3群は、発散光束を平行光束に変換する「エレクター」の作用及び望遠アフォーカルコンバーターの作用を兼ねている。第3群で光束を十分に絞ってから、はぼアフィーカルに射出させ、第4群には軸上光束が低くなった状態で入射するため、第4群を小型、簡単化できる。具体的には、第4群は1枚の正レンズで構成することが可能である。望遠側の倍率色収差をより良好に補正するために、負レンズを加えて構成してもよい。さらに、球面収差、コマ収差の補正のために、第3群あるいは第4群中に光軸から離れるにしたがって正の屈折力が減少する非球面を持ったレンズを配置している。
【0010】
本発明の目的は、以上により達成することが可能であるが、さらに、以下の条件を満足するように構成している。
(3)0 4<(r 3F +r 3R )/(r 3F −r 3R )<2
ただし、r 3F、r3Rは、それぞれ第3群中の負レンズの物体側及び像側の面の曲率半径である。
【0013】
条件式(3)は第3群中の負レンズの形状を規定したものであり、レンズの小型化と収差補正に関する条件である。条件式(3)の下限を越えると、球面収差が補正不足になると共に、内向性コマ収差が大きくなり過ぎ、また、小型化に不利である。逆に、条件式(3)の上限を超えると、球面収差が補正過剰となると共に、外向性のコマ収差が大きくなり過ぎ、好ましくない。
【0014】
さらに、収差補正に関し、以下の条件(4)、(5)を満足するように構成している。
(4)0. 2<r3R/(n3R− 1)(f1/2 <1. 0
(5)0. 4<r4F/(n4F− 1)(f1/2 <2. 0
ただし、r3Rは、第3群中の負レンズの像側の面の曲率半径、n3Rは、第3群中の負レンズの屈折率、r4Fは、第4群の最も物体側の面の曲率半径、n4Fは、第4群の最も物体側のレンズの屈折率、f は、広角端における全系の焦点距離、f は、望遠端における全系の焦点距離である。
【0015】
条件式(4)は条件式(3)に関連し、第3群中の負レンズについて規定したものであり、条件式の範囲を越えると、特にコマ収差の発生が大きくなり過ぎ、好ましくない。
【0016】
条件式(5)は第4群での収差補正に関し、主に軸外の収差、特にコマ収差、非点収差の補正に関する。条件式(5)の下限を超えると、内向性のコマ収差が大きくなると共に、サジタル、メリジオナル像面ともマイナス側に倒れ、上限を越えると、逆に外向性のコマ収差が大きくなると共に、サジタル、メリジオナル像面ともプラス側に倒れ、何れも好ましくない。
【0019】
さらに、全系の最も物体側のレンズの径(前玉径)の小型化及び収差補正のために、第1群と第3群を一体で光軸上を移動するようにすることもできる。
また、変倍による色収差の変動を補正するためには、第1群中に少なくとも1枚の負レンズ、第2群中に少なくとも1枚の正レンズを含むようにすることが好ましい。
【0020】
さらに、本発明のレンズでは、第2群がマイナス1倍を含む範囲で変倍を行っているため、変倍の効率が高く、高変倍に有利である。
また、第1群と第3群が一体で光軸上を移動するように構成すると、鏡枠構成を簡素化できる利点がある。
【0021】
なお、第3群、第4群の非球面レンズの代わりに、不均質媒体を用いたレンズ、フレネルレンズ、ホログラフィック光学素子等を用いても、同様の効果を得ることができる。
【0022】
【実施例】
次に、本発明のズームレンズの実施例1〜6について説明する。各実施例のレンズデータは後に示すが、実施例1〜6の広角端(W)、標準状態(S)、望遠端(T)におけるレンズ断面を、それぞれ図1から図6に示す。これらの中、実施例4〜6においては、第1群Iと第3群IIIが一体で移動する。第1群Iは、何れの実施例においても、負メニスカスレンズと両凸正レンズの貼り合わせレンズと、正メニスカスレンズの3枚からなり、第2群IIは、負レンズ(実施例1)又は負メニスカスレンズ(実施例2〜6)と、両凹負レンズと正メニスカスレンズの貼り合わせレンズの3枚からなり、第3群IIIは、実施例1、4は、両凸正レンズと、両凸正レンズと両凹負レンズの貼り合わせレンズの3枚からなり、実施例2、6は、2枚の正レンズと、負メニスカスレンズの3枚からなり、実施例3は、1枚の正レンズと、負メニスカスレンズの2枚からなり、実施例5は、2枚の両凸正レンズと、1枚の正メニスカスレンズと、両凹負レンズの4枚からなる。第4群IVは、実施例1、3〜5は、1枚の両凸正レンズからなり、実施例2は、両凸正レンズと負メニスカスレンズの貼り合わせレンズからなり、実施例6は、負メニスカスレンズと両凸正レンズの2枚からなる。また、絞りは、何れの実施例においても、第3群IIIの物体側に一体に配置され、この群と共に光軸上を移動する。以上の通りであるので、総レンズ枚数は、実施例1、4は10枚、実施例2、5、6は11杖、実施例3は9枚である。非球面については、実施例1〜4は、第3群IIIの最も物体側の面と第4群IVの最も物体例の面の2面に用いており、実施例5においては、第4群IVの最も物体側の面1面にのみ用いており、実施例6は、第3群IIIの最も物体側の面1面にのみ用いている。
【0023】
なお、以下において、記号は、上記の外、fは全系の焦点距離、FNOはFナンバ− 、ωは半画角、r、r…は各レンズ面の曲率半径、d、d…は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数であり、また、非球面形状は、光軸方向をx、光軸に直交する方向をyとした時、次の式で表される。
x=(y/r)/[1+{1−P(y/r)}1/2 ]+A+A+A
ただし、rは近軸曲率半径、Pは円錐係数、A、A、Aは非球面係数である。

Figure 0003618557
Figure 0003618557
【0024】
【表1】
Figure 0003618557
【0025】
Figure 0003618557
Figure 0003618557
Figure 0003618557
【0026】
【表2】
Figure 0003618557
【0027】
Figure 0003618557
Figure 0003618557
【0028】
【表3】
Figure 0003618557
【0029】
Figure 0003618557
Figure 0003618557
Figure 0003618557
【0030】
【表4】
Figure 0003618557
【0031】
Figure 0003618557
Figure 0003618557
Figure 0003618557
【0032】
【表5】
Figure 0003618557
【0033】
Figure 0003618557
Figure 0003618557
Figure 0003618557
【0034】
【表6】
Figure 0003618557
【0035】
Figure 0003618557
以上の実施例1から6の広角端、標準状態及び、望遠端における収差図をそれぞれ第7図から第12図に示す。また、実施例6の広角端、標準状態、及び、望遠端において、それぞれ第1レンズ面からの物体距離が近距離の−100mm(結像倍率−0.056)、−500mm(結像倍率−0.0361 )、−500mm(結像倍率−0.0796 )における収差図を第13図にあわせて示す。
【0036】
上記各実施例の前記した条件式(1)、(3)〜(5)に対応する値、及び、β4S(条件式(2))、β4W、β4T(条件式(6))の値を次の表7に示す。
【0037】
【表7】
Figure 0003618557
【0038】
【発明の効果】
以上述べたように、本発明によれば、変倍比が6〜8倍程度で、レンズ枚数が9〜11枚程度と少ない小型の主としてビデオカメラ用のズームレンズンズを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係るズームレンズの断面図。
【図2】本発明の実施例2に係るズームレンズの断面図。
【図3】本発明の実施例3に係るズームレンズの断面図。
【図4】本発明の実施例4に係るズームレンズの断面図。
【図5】本発明の実施例5に係るズームレンズの断面図。
【図6】本発明の実施例6に係るズームレンズの断面図。
【図7】実施例1の収差図。
【図8】実施例2の収差図。
【図9】実施例3の収差図。
【図10】実施例4の収差図。
【図11】実施例5の収差図。
【図12】実施例6の収差図。
【図13】実施例6の近距離物体距離における収差図。[0001]
[Industrial application fields]
The present invention mainly relates to a zoom lens for a video camera, and more particularly to a zoom lens having a small number of lenses and having a zoom ratio of about 6 to 8.
[0002]
[Prior art]
In recent years, video cameras have been rapidly reduced in size and price. In accordance with this, it is desired to reduce the size and cost of a zoom lens for a video camera.
[0003]
Conventionally, a zoom lens having a zoom ratio of 6 times or more for a video camera has four groups of positive, negative, negative, and positive in order from the object side, and the total lens length during zooming is constant. Most often, zooming was performed and image position correction was performed in the third lens group.
[0004]
However, due to the demand for miniaturization of lenses, zoom lenses of the type in which the overall length of a video camera lens also changes during zooming, and the overall length is generally the shortest at the wide-angle end, are disclosed in Japanese Patent Publication No. 61-55653. This is proposed in Japanese Patent Laid-Open No. 58-179809 and Japanese Patent Laid-Open No. 60-14212.
[0005]
[Problems to be solved by the invention]
However, these zoom lenses are composed of 13 to 15 lenses. In a camera lens using a small image pickup device such as a video camera, a large number of lenses means that a space for arranging such lenses must be secured, which is an obstacle to miniaturization. This tendency becomes more prominent as the image sensor becomes smaller.
[0006]
The present invention has been made in view of such circumstances, and an object thereof is to provide a zoom lens having a small number of lenses and a zoom ratio of about 6 to 8 times. .
[0007]
[Means for Solving the Problems]
The zoom lens of the present invention includes, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. Therefore, when performing the zooming from the wide-angle side to the telephoto side, the first group and the third group move monotonously on the optical axis to the object side, the second group is fixed, and the fourth group is a variation in image position due to zooming. A zoom lens that moves on the optical axis to adjust fluctuations in image position due to changes in object distance. The third lens unit has one or more positive lenses and a strong concave surface facing the image side in order from the object side. The fourth group is composed of only one positive lens or two positive lenses and a negative lens. In the third group or the fourth group, at least one lens has an optical axis. at least one having an aspherical lens in which a positive refractive power becomes weaker as the distance from, and the following conditions (3), 4) and it is characterized by satisfying the (5).
(3) 0.4 <(r 3F + r 3R ) / (r 3F −r 3R ) <2.7
(4) 0.2 <r 3R / (n 3R −1) (f W · f T ) 1/2 <1.0
(5) 0.4 <r 4F / (n 4F −1) (f W · f T ) 1/2 <2.0
Where r 3F and r 3R are the curvature radii of the object-side and image-side surfaces of the negative lens in the third group , n 3R is the refractive index of the negative lens in the third group, and n 4F is the fourth The refractive index of the lens closest to the object side in the group, f W is the focal length of the entire system at the wide-angle end, and f T is the focal length of the entire system at the telephoto end.
[0008]
[Action]
In the zoom and focus types of the zoom lens of the present invention as described above, the total length is shortest at the wide-angle end, which is advantageous for miniaturization of the lens, and the fourth lens group has a focusing action. This is advantageous for reducing the size of the entire lens system.
[0009]
In order to further reduce the size and cost of the lens, it is desirable to eliminate the lens with less effect as much as possible and to configure the lens with the minimum number of necessary lenses. For this purpose, it is most necessary to devise the configurations of the third group and the fourth group that mainly have an imaging function. In the zoom lens according to the present invention, the most object side lens of the third group has a positive refractive power, and the most image side lens has a negative refractive power, so that the principal point position of the third group can be obtained. Is placed as close to the object as possible. Further, in order to perform focusing in the fourth group, the first to third groups constitute a substantially afocal system, and one or more positive lenses on the object side of the third group with respect to the divergent light beam from the second group. The parallel light beam is converted into a convergent light beam by the lens, and the light is again emitted as a substantially parallel light beam to the fourth group by the negative lens on the third group image side. In other words, the third group also serves as an “Elector” function that converts a divergent light beam into a parallel light beam and a telephoto afocal converter. The light beam is sufficiently narrowed down in the third group, and then the light beam is emitted in an affirmative manner, and enters the fourth group in a state where the axial light beam is lowered. Therefore, the fourth group can be reduced in size and simplified. Specifically, the fourth group can be composed of one positive lens. In order to better correct the lateral chromatic aberration on the telephoto side, a negative lens may be added. Further, in order to correct spherical aberration and coma aberration, a lens having an aspheric surface in which the positive refractive power decreases as the distance from the optical axis increases in the third group or the fourth group.
[0010]
The object of the present invention can be achieved as described above, and is further configured to satisfy the following conditions .
(3) 0 . 4 <(r 3F + r 3R ) / (r 3F −r 3R ) <2 . 7
Here, r 3F and r 3R are the radii of curvature of the object side and image side surfaces of the negative lens in the third lens group, respectively.
[0013]
Conditional expression (3) defines the shape of the negative lens in the third lens group, and is a condition relating to lens size reduction and aberration correction. If the lower limit of conditional expression (3) is exceeded, spherical aberration becomes insufficiently corrected, inward coma becomes too large, and it is disadvantageous for miniaturization. Conversely, when the upper limit of conditional expression (3) is exceeded, spherical aberration becomes overcorrected and outward coma becomes too large, which is not preferable.
[0014]
Further, the aberration correction is configured to satisfy the following conditions (4) and (5) .
(4) 0. 2 <r 3R / (n 3R −1) ( fw f T ) 1/2 <1. 0
(5) 0. 4 <r 4F / (n 4F −1) ( fw f T ) 1/2 <2. 0
Where r 3R is the radius of curvature of the image side surface of the negative lens in the third group, n 3R is the refractive index of the negative lens in the third group, and r 4F is the most object side surface of the fourth group. , N 4F is the refractive index of the lens on the most object side in the fourth group, f w is the focal length of the entire system at the wide angle end, and f T is the focal length of the entire system at the telephoto end.
[0015]
Conditional expression (4) relates to conditional expression (3) and is defined for the negative lens in the third lens group. If the range of the conditional expression is exceeded, the occurrence of coma becomes particularly large, which is not preferable.
[0016]
Conditional expression (5) relates to aberration correction in the fourth group, and mainly relates to correction of off-axis aberrations, particularly coma and astigmatism. When the lower limit of conditional expression (5) is exceeded, inward coma increases, and both sagittal and meridional image surfaces fall to the negative side. When the upper limit is exceeded, outward coma increases and sagittal Both of the meridional image planes fall to the plus side, which is not preferable.
[0019]
Furthermore, the first group and the third group can be moved together on the optical axis in order to reduce the diameter (front lens diameter) of the lens on the most object side in the entire system and correct the aberration.
In order to correct the variation in chromatic aberration due to zooming, it is preferable to include at least one negative lens in the first group and at least one positive lens in the second group.
[0020]
Furthermore, in the lens of the present invention, since the second group performs zooming in a range including minus one, zooming efficiency is high, which is advantageous for high zooming.
Further, if the first group and the third group are configured to move together on the optical axis, there is an advantage that the configuration of the lens frame can be simplified.
[0021]
The same effect can be obtained by using a lens using a heterogeneous medium, a Fresnel lens, a holographic optical element or the like instead of the aspherical lens of the third group and the fourth group.
[0022]
【Example】
Next, Examples 1 to 6 of the zoom lens according to the present invention will be described. Lens data of each example will be described later, and FIGS. 1 to 6 show lens cross sections at the wide-angle end (W), the standard state (S), and the telephoto end (T) of Examples 1 to 6, respectively. Among these, in Examples 4 to 6, the first group I and the third group III move together. In any embodiment, the first group I includes three lenses, a negative meniscus lens and a biconvex positive lens, and a positive meniscus lens. The second group II includes a negative lens (Example 1) or It consists of three lenses, a negative meniscus lens (Examples 2 to 6), and a cemented lens of a biconcave negative lens and a positive meniscus lens. The lens is composed of a cemented lens of a convex positive lens and a biconcave negative lens. Examples 2 and 6 are composed of two positive lenses and three negative meniscus lenses. Example 3 is a single positive lens. The fifth embodiment is composed of two biconvex positive lenses, one positive meniscus lens, and four biconcave negative lenses. In the fourth group IV, Examples 1 and 3 to 5 include one biconvex positive lens, Example 2 includes a cemented lens of a biconvex positive lens and a negative meniscus lens, and Example 6 includes It consists of two lenses, a negative meniscus lens and a biconvex positive lens. In any embodiment, the diaphragm is integrally disposed on the object side of the third group III, and moves on the optical axis together with this group. As described above, the total number of lenses is 10 in the first and fourth embodiments, 11 canes in the second, fifth and sixth embodiments, and nine in the third embodiment. As for the aspherical surface, Examples 1 to 4 are used for two surfaces, the most object side surface of the third lens group III and the surface of the most object example of the fourth lens group IV. It is used only for one surface on the most object side of IV, and Example 6 is used only for one surface on the most object side of the third group III.
[0023]
In the following, symbols are the above, f is the focal length of the entire system, F NO is the F number, ω is the half angle of view, r 1 , r 2 ... Are the radii of curvature of the lens surfaces, d 1 , d 2 ... is the distance between the lens surfaces, n d1 , n d2 ... is the refractive index of the d-line of each lens, ν d1 , ν d2 ... is the Abbe number of each lens. When the axial direction is x and the direction orthogonal to the optical axis is y, it is expressed by the following equation.
x = (y 2 / r) / [1+ {1-P (y 2 / r 2)} 1/2] + A 4 y 4 + A 6 y 6 + A 8 y 8
Here, r is a paraxial radius of curvature, P is a conical coefficient, and A 4 , A 6 and A 8 are aspherical coefficients.
Figure 0003618557
Figure 0003618557
[0024]
[Table 1]
Figure 0003618557
[0025]
Figure 0003618557
Figure 0003618557
Figure 0003618557
[0026]
[Table 2]
Figure 0003618557
[0027]
Figure 0003618557
Figure 0003618557
[0028]
[Table 3]
Figure 0003618557
[0029]
Figure 0003618557
Figure 0003618557
Figure 0003618557
[0030]
[Table 4]
Figure 0003618557
[0031]
Figure 0003618557
Figure 0003618557
Figure 0003618557
[0032]
[Table 5]
Figure 0003618557
[0033]
Figure 0003618557
Figure 0003618557
Figure 0003618557
[0034]
[Table 6]
Figure 0003618557
[0035]
Figure 0003618557
Aberration diagrams at the wide-angle end, the standard state, and the telephoto end of Examples 1 to 6 are shown in FIGS. 7 to 12, respectively. Further, at the wide-angle end, the standard state, and the telephoto end of Example 6, the object distance from the first lens surface is -100 mm (imaging magnification-0.056) and -500 mm (imaging magnification- Aberration diagrams at 0.0361) and −500 mm (imaging magnification −0.0796) are also shown in FIG.
[0036]
The values corresponding to the conditional expressions (1) and (3) to (5) in the above embodiments, and β 4S (conditional expression (2)), β 4W , β 4T (conditional expression (6)) The values are shown in Table 7 below.
[0037]
[Table 7]
Figure 0003618557
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a small zoom lens mainly for a video camera having a zoom ratio of about 6 to 8 times and a small number of lenses of about 9 to 11.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a zoom lens according to Embodiment 1 of the present invention.
FIG. 2 is a sectional view of a zoom lens according to Example 2 of the present invention.
FIG. 3 is a sectional view of a zoom lens according to Example 3 of the present invention.
FIG. 4 is a sectional view of a zoom lens according to Example 4 of the present invention.
FIG. 5 is a sectional view of a zoom lens according to Example 5 of the present invention.
FIG. 6 is a sectional view of a zoom lens according to Example 6 of the present invention.
7 is an aberration diagram of Example 1. FIG.
FIG. 8 is an aberration diagram of Example 2.
FIG. 9 is an aberration diagram of Example 3.
10 is an aberration diagram of Example 4. FIG.
FIG. 11 is an aberration diagram of Example 5.
FIG. 12 is an aberration diagram of Example 6.
FIG. 13 is an aberration diagram for Example 6 at a close object distance.

Claims (5)

物体側から順に、正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、及び、正の屈折力の第4群からなり、広角側から望遠側へズーミングする際、第1群及び第3群は光軸上を物体側へ単調に移動し、第2群は固定で、第4群は変倍による像位置の変動及び物体距離の変化による像位置の変動を調節するために光軸上を移動するズームレンズであって、第3群は、物体側から順に、1枚以上の正レンズと像側に強い凹面を向けた1枚の負レンズで構成され、第4群は、1枚の正レンズのみあるいは正レンズと負レンズの2枚で構成され、第3群又は第4群は、球面収差の補正のために、光軸から離れるにしたがって正の屈折力が弱くなる非球面レンズを少なくとも1つ有し、且つ下記の条件(3)、(4)、(5)を満足することを特徴とするズームレンズ。
(3)0.4<(r 3F +r 3R )/(r 3F −r 3R )<2.7
(4)0.2<r 3R /(n 3R −1)(f ・f 1/2 <1.0
(5)0.4<r 4F /(n 4F −1)(f ・f 1/2 <2.0
ただし、r 3F 、r 3R は、それぞれ第3群中の負レンズの物体側及び像側の面の曲率半径、n 3R は、第3群中の負レンズの屈折率、n 4F は、第4群の最も物体側のレンズの屈折率、f は、広角端における全系の焦点距離、f は、望遠端における全系の焦点距離である。
In order from the object side, the first group of positive refractive power, the second group of negative refractive power, the third group of positive refractive power, and the fourth group of positive refractive power, from the wide angle side to the telephoto side When performing zooming, the first group and the third group move monotonously on the optical axis toward the object side, the second group is fixed, and the fourth group is an image due to a change in image position due to zooming and a change in object distance. A zoom lens that moves on the optical axis in order to adjust a change in position, and the third group includes one or more positive lenses and one negative lens with a strong concave surface facing the image side in order from the object side The fourth group is composed of only one positive lens or two lenses, a positive lens and a negative lens. The third group or the fourth group is separated from the optical axis for correction of spherical aberration. Thus an aspherical lens in which a positive refractive power becomes weaker at least one organic and the following conditions (3), thereby satisfying the expression (4), (5) The zoom lens according to claim and.
(3) 0.4 <(r 3F + r 3R ) / (r 3F −r 3R ) <2.7
(4) 0.2 <r 3R / (n 3R −1) (f W · f T ) 1/2 <1.0
(5) 0.4 <r 4F / (n 4F −1) (f W · f T ) 1/2 <2.0
Where r 3F and r 3R are the curvature radii of the object-side and image-side surfaces of the negative lens in the third group , n 3R is the refractive index of the negative lens in the third group, and n 4F is the fourth The refractive index of the lens closest to the object side in the group, f W is the focal length of the entire system at the wide-angle end, and f T is the focal length of the entire system at the telephoto end.
第3群は、物体側から順に、正レンズ、正レンズ、正レンズ、負レンズの4枚のレンズから構成されていることを特徴とする請求項1に記載のズームレンズ。2. The zoom lens according to claim 1, wherein the third group includes four lenses in order from the object side: a positive lens, a positive lens, a positive lens, and a negative lens. 第3群は、物体側から順に、正レンズ、正レンズ、負レンズの3枚のレンズで構成され、第4群は1枚の正レンズからなることを特徴とする請求項1又は2に記載のズームレンズ。3. The third group is composed of three lenses of a positive lens, a positive lens, and a negative lens in order from the object side, and the fourth group is composed of one positive lens. 4. Zoom lens. 絞りが第3群の物体側に配置され、第3群と共に光軸上を移動することを特徴とする請求項1から3の何れか1項記載のズームレンズ。4. The zoom lens according to claim 1, wherein the stop is disposed on the object side of the third group and moves on the optical axis together with the third group. 5. 第1群と第3群が一体で移動することを特徴とする請求項1から4の何れか1項記載のズームレンズ。The zoom lens according to claim 1, wherein the first group and the third group move together.
JP25264398A 1990-11-22 1998-09-07 Zoom lens Expired - Fee Related JP3618557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25264398A JP3618557B2 (en) 1990-11-22 1998-09-07 Zoom lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2320262A JP2859734B2 (en) 1990-11-22 1990-11-22 Zoom lens
JP25264398A JP3618557B2 (en) 1990-11-22 1998-09-07 Zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2320262A Division JP2859734B2 (en) 1990-11-22 1990-11-22 Zoom lens

Publications (2)

Publication Number Publication Date
JPH11174330A JPH11174330A (en) 1999-07-02
JP3618557B2 true JP3618557B2 (en) 2005-02-09

Family

ID=34276936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25264398A Expired - Fee Related JP3618557B2 (en) 1990-11-22 1998-09-07 Zoom lens

Country Status (1)

Country Link
JP (1) JP3618557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362486B2 (en) 2004-09-29 2008-04-22 Ricoh Company, Ltd. Optical scanning device with at least one resin lens for controlling a beam waist position shift
US7580623B2 (en) 2004-07-26 2009-08-25 Ricoh Company, Ltd. Lens barrel, camera, and mobile information terminal
US8537478B2 (en) 2004-07-26 2013-09-17 Ricoh Company, Ltd. Lens barrel, camera and mobile information terminal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664727B2 (en) * 2005-04-28 2011-04-06 株式会社リコー Zoom lens and information device
JP2007057931A (en) * 2005-08-25 2007-03-08 Konica Minolta Photo Imaging Inc Imaging optical system and imaging apparatus
JP4533437B2 (en) * 2008-02-26 2010-09-01 キヤノン株式会社 Zoom lens
CN113484998B (en) * 2021-06-30 2023-03-24 江西晶浩光学有限公司 Optical system, image capturing module with same and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580623B2 (en) 2004-07-26 2009-08-25 Ricoh Company, Ltd. Lens barrel, camera, and mobile information terminal
US8000042B2 (en) 2004-07-26 2011-08-16 Ricoh Company, Ltd. Lens barrel, camera and mobile information terminal
US8537478B2 (en) 2004-07-26 2013-09-17 Ricoh Company, Ltd. Lens barrel, camera and mobile information terminal
US7362486B2 (en) 2004-09-29 2008-04-22 Ricoh Company, Ltd. Optical scanning device with at least one resin lens for controlling a beam waist position shift

Also Published As

Publication number Publication date
JPH11174330A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP4776948B2 (en) Variable magnification optical system
JP3822268B2 (en) Zoom lens
JP2628633B2 (en) Compact zoom lens
JPH1039210A (en) Zoom lens
JPH05173071A (en) Wide angle zoom lens
JP4147786B2 (en) Zoom lens
JP3668365B2 (en) Zoom lens
JPH10213745A (en) Zoom lens
JP3231355B2 (en) Small zoom lens
JP2859734B2 (en) Zoom lens
JP3698134B2 (en) Zoom lens
JP4624744B2 (en) Wide angle zoom lens
JP3445359B2 (en) Zoom lens
JP2543780B2 (en) Zoom lenses
JP3435364B2 (en) Zoom lens system
JP3733355B2 (en) Zoom lens
JP2005037935A (en) Compact lightweight zoom lens
JPH11352402A (en) Zoom lens
JP3618557B2 (en) Zoom lens
US5815322A (en) Zoom lens system having high zoom ratio
JP3029148B2 (en) Rear focus zoom lens
JP4770007B2 (en) Zoom lens
JP3044757B2 (en) Zoom lens
JP2513481B2 (en) Zoom lens
JP2000305014A (en) Zoom lens and video camera using the zoom lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees