JP3617661B2 - Method for controlling shaft seal steam temperature of steam turbine - Google Patents

Method for controlling shaft seal steam temperature of steam turbine Download PDF

Info

Publication number
JP3617661B2
JP3617661B2 JP19836696A JP19836696A JP3617661B2 JP 3617661 B2 JP3617661 B2 JP 3617661B2 JP 19836696 A JP19836696 A JP 19836696A JP 19836696 A JP19836696 A JP 19836696A JP 3617661 B2 JP3617661 B2 JP 3617661B2
Authority
JP
Japan
Prior art keywords
shaft seal
steam
temperature
turbine
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19836696A
Other languages
Japanese (ja)
Other versions
JPH1026004A (en
Inventor
美樹 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP19836696A priority Critical patent/JP3617661B2/en
Publication of JPH1026004A publication Critical patent/JPH1026004A/en
Application granted granted Critical
Publication of JP3617661B2 publication Critical patent/JP3617661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、蒸気タービンの軸封装置において、蒸気タービンの起動時に前記軸封装置の軸封部へ給気する軸封蒸気の温度の制御方法に関する。
【0002】
【従来の技術】
図3及び図4は、従来の蒸気タービンの軸封装置の軸封蒸気の温度の制御方法を示す説明図であり、図3は軸封装置の構成図、図4は蒸気タービンの軸封開始後の各構成部の特性変化を示すものである。
蒸気タービン(以下タービンと称する)のケーシングの高圧ケーシングから大気中へ高温の蒸気の漏洩、あるいは低圧ケーシングから空気が機内に流入するのを防止するために、ロータがケーシングを貫通する個所では軸封部を有する軸封装置が設けられている。この軸封装置の軸封部の構造は、ラビリンス形のパッキングからなっており、ロータに沿って流れる漏洩蒸気は、前記ラビリンスパッキングの連続的な絞り効果により最小限に制限される。しかしながら、このラビリンスパッキングからなる軸封部はロータに沿って多少の蒸気の流出あるいは空気の流入を防ぐことができないために軸封部に軸封蒸気を給気してシールドする構成からなる軸封装置を採用している。
【0003】
図3に示したタービン1の軸封装置2は、ケーシング3の高圧ケーシグ3a側及び低圧ケーシング3b側の高圧軸封部4a及び低圧軸封部4bらなる軸封部4と、この軸封部4に接続され軸封蒸気を給気する軸封蒸気供給装置5とからなっている。この軸封蒸気供給装置5は、タービン1に図示しないボイラーからの主蒸気を給気する給気弁6と、この給気弁6に連結された注水装置7と、この注水装置7に冷却水を給水する給水弁8と、前記注水装置7で冷却され前記軸封部4へ軸封蒸気ライン9を介して給気される軸封蒸気の温度を検出する温度検出器10とから構成され、前記の給水弁8の弁駆動部8aは、前記温度検出器10の検出信号により駆動して給水弁8の開度を制御し冷却水の注水量を増減して前記軸封部4の軸封蒸気の温度を所定の設定温度となるようにしている。
【0004】
さて、タービン1の起動時に先立って行われる前記した軸封装置4の機能を開始させる軸封開始時T(図4)には、まず図示しない復水器、又は冷却水槽等からの配水ラインに連結されている元弁11を開いて注水装置7に連結されている給水弁8に冷却水を流通した後に起動したボイラーからの主蒸気を給気弁6まで通気する。
その後、給気弁6を開き、注水装置7に給気した主蒸気の温度を前記温度検出器10にて検出しながら前記軸封蒸気ライン9を介して軸封部4へ給気される軸封蒸気の温度を、図4に示すように、タービン1の起動T後に常に約300℃の設定温度となるように給水弁8の弁駆動部8aを駆動制御して給水弁8の開度を調節し冷却水の注水量を増減しながら調節する。
【0005】
【発明が解決しようとする課題】
ところで、軸封開始後のボイラーの起動時には主蒸気の温度は300℃〜400℃程度であるが図4に示すようにタービン1の負荷の上昇とともに定格温度まで上昇していく。
一方、軸封部4の温度は、タービン1の冷機起動時には外気温度であるが前記した軸封開始後の主蒸気の給気以後はこの主蒸気の流入により徐々に加熱されていく。このために、前記したように、タービン1の起動時において軸封蒸気の温度が定格運転時の軸封部4の設定温度約300℃になるように注水装置7で温度制御して維持している。
したがって、上記したの軸封装置2における軸封蒸気の温度制御の方式では、軸封部4とこの軸封部4に供給される軸封蒸気との温度差、即ち、前記軸封部4と一体になっている外気温度のロータ12の部分及び高圧ケーシング3a,低圧ケーシング3bのケーシング3の部分と前記軸封蒸気との温度差が大きい状態でタービン1が起動することになる。
【0006】
通常は主蒸気に曝されるロータ12に比べて、外壁部が外気と接触しているケーシング3は軸封蒸気で暖まりにくいために、前記のケーシング3とロータ12との熱膨張に時間的な差が出ててきて、軸封部4を構成するラビリンスパッキング13の微小間隙を保持して互いに設置されているケーシング3側に突出したフィンとロータ12側に突出したフィンとの熱膨張の相違により両者が接触し、これが原因でタービンの振動等を引き起こす恐れがあるという問題があった。
【0007】
この発明の課題は、軸封部へ供給する軸封蒸気が主蒸気であり、この主蒸気を注水により温度制御してから前記軸封部に供給する軸封装置を有するタービンにおいて、ボイラの起動とともにタービンを冷機起動する場合に、軸封部へ供給される軸封蒸気と軸封部のロータ及びケーシングとの温度差を小さくして、軸封部が高い温度に曝されることによる熱膨張の時間差がでることによる軸封間隙を形成する軸封間の機械的接触を防止する軸封装置の軸封蒸気温度の制御方法を提供することにある。
【0008】
【課題を解決するための手段】
上記した課題を解決するために、この発明は、蒸気ボイラーの起動と共に蒸気タービンを冷機起動する際に、前記蒸気タービンの軸封部へボイラーからの主蒸気に注水装置により給水弁からの冷却水を注水して所定の設定温度にした軸封蒸気を供給する蒸気タービンの軸封装置において、軸封開始時の前記給水弁の最小開度時に、この給水弁から前記注水装置へ所定の注水量を供給するように設定しておき、蒸気タービンの起動時に軸封部に供給する軸封蒸気が蒸気タービンのケーシング及びロータの温度に近い温度となるように予め所定の注水量を前記給水弁から注水装置へ給水し、主蒸気温度の上昇により前記軸封蒸気が設定温度になったときに、前記注水装置への冷却水の注水量を制御して前記軸封蒸気の温度を設定温度に維持するようにする。
【0009】
これにより、タービンの起動初期においては、軸封部に供給される軸封蒸気と軸封部のケーシング及びロータとの温度差が小さくなり、その後主蒸気の温度上昇に合わせて、軸封蒸気及びタービン本体の温度も上昇していくので、軸封蒸気のケーシング及びロータとの温度差を最小に維持しながらタービンを起動させることが可能となり、両者に熱膨張,熱変形量の時間差がでるのを防止することができる。
【0010】
そして、軸封開始時の給水弁の最小開度時に、前記給水弁から注水装置へ所定の注水量を供給するように設定しておくことにより、軸封開始後のタービン起動時において常に軸封蒸気と軸封部との温度を近い状態としておくことができる。
【0011】
【発明の実施の形態】
以下この発明の実施の形態を図に基づいて説明する。
図1及び図2は、この発明の実施の形態からなるタービンの軸封装置の軸封蒸気温度の制御方法を示す説明図であり、図1は蒸気タービンの軸封開始後の各構成部の特性変化、図2は注水装置へ注水する給水弁の開度と注水量との関係を表す特性図である。
この実施の形態からなる軸封装置における軸封蒸気の温度制御は次のようにして行う。
まず、図1のタービン1の起動に先立って行う軸封部4への軸封開始時Tに、前記図3に示す冷却水の配水ラインに連結されている元弁11を開いて注水装置7に連結されている給水弁8まで冷却水を通水する。そして、前記軸封開始の指令と共に前記給水弁8の弁駆動部8aの駆動による給水弁8の最小開度が、前記したようにタービン1の起動時Tに軸封部4に給気する軸封蒸気が前記軸封部4,即ち、軸封部4のタービン1のケーシング3及びロータ12部分の温度に近い温度となるような最小の注水量Wを注水装置7に注水できるように設定しておく。
【0012】
上記した注水量が給水される注水装置を設置することにより、タービン1の起動初期には、軸封部4に供給される軸封蒸気温度がタービン1の定格運転時の設定温度以下となっているために注水量が前記した最小の値を保持していることになる。
【0013】
この状態で図1に示すように、主蒸気温度の上昇に合わせて、軸封蒸気およびタービン1の本体温度がそれぞれ上昇していくので、軸封蒸気と軸封部4,即ち軸封部4のタービン1のケーシング3及びロータ12の部分との温度差を最小に維持しつつタービン1を起動させることが可能となる。
そして、タービン1の負荷が定格点に近づき軸封蒸気温度が設定値に至った時刻T以後は、従来の軸封制御方式と同様にして、図3に示す軸封部4へ給気される軸封蒸気の温度を温度検出器10にて検出し、給水弁8の弁駆動部8aを制御して、注水装置7への注水量を増減させて軸封蒸気温度を設定温度に制御するようにする。
【0014】
【発明の効果】
以上のように、この発明において、タービンの起動時に軸封部に供給する軸封蒸気がタービンのケーシング及びロータの温度に近い温度となるように所定の冷却水の注水量を予め給水弁から注水装置へ給水するように、軸封開始時点での給水弁の最小開度時に前記した注水量を供給できるように前記給水弁の弁駆動部を設定しておくことにより、ボイラーの起動と共にタービンを冷機起動する場合に、軸封部へ給気される軸封蒸気と前記軸封部のケーシング及びロータとの温度差を小さくすることができ、これらの熱膨張差による軸封部の損傷を回避でき、タービンの起動及び運転時の振動の発生する恐れのない軸封装置を有する信頼性のあるタービンとすることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態からなるタービンの軸封装置の軸封開始後の各構成部の特性変化を示すものである。
【図2】注水装置へ注水する給水弁の開度と注水量との関係を表す特性図である。
【図3】タービンの軸封装置の構成図である。
【図4】従来の軸封装置の制御方法による軸封開始後の各構成部の特性変化である。
【符号の説明】
1 タービン
2 軸封装置
3 ケーシング
4 軸封部
5 軸封蒸気供給装置
6 給気弁
7 注水装置
8 給水弁
9 軸封蒸気ライン
11 元弁
12 ロータ
13 ラビリンスパッキング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the temperature of a shaft seal steam supplied to a shaft seal portion of the shaft seal device when the steam turbine is started in a shaft seal device of a steam turbine.
[0002]
[Prior art]
3 and 4 are explanatory views showing a method of controlling the temperature of the shaft seal steam of the conventional shaft seal device of the steam turbine, FIG. 3 is a configuration diagram of the shaft seal device, and FIG. 4 is a shaft seal start of the steam turbine. The characteristic change of each subsequent component is shown.
To prevent leakage of hot steam from the high-pressure casing of the casing of the steam turbine (hereinafter referred to as turbine) into the atmosphere or air from the low-pressure casing into the machine, a shaft seal is used where the rotor penetrates the casing. A shaft seal device having a portion is provided. The structure of the shaft seal portion of this shaft seal device consists of a labyrinth type packing, and the leaked steam flowing along the rotor is limited to the minimum by the continuous throttling effect of the labyrinth packing. However, since the shaft seal portion composed of the labyrinth packing cannot prevent some steam outflow or air inflow along the rotor, the shaft seal configured to supply shaft shield steam to the shaft seal portion and shield it. The device is adopted.
[0003]
The shaft seal device 2 of the turbine 1 shown in FIG. 3 includes a shaft seal portion 4 including a high pressure shaft seal portion 4a and a low pressure shaft seal portion 4b on the high pressure casing 3a side and the low pressure casing 3b side of the casing 3, and the shaft seal portion. 4 and a shaft seal steam supply device 5 for supplying shaft seal steam. The shaft seal steam supply device 5 includes an air supply valve 6 for supplying main steam from a boiler (not shown) to the turbine 1, a water injection device 7 connected to the air supply valve 6, and a cooling water to the water injection device 7. A water supply valve 8 for supplying water and a temperature detector 10 for detecting the temperature of the shaft seal steam cooled by the water injection device 7 and supplied to the shaft seal portion 4 via the shaft seal steam line 9; The valve drive unit 8 a of the water supply valve 8 is driven by a detection signal of the temperature detector 10 to control the opening of the water supply valve 8 to increase or decrease the amount of cooling water injected, thereby sealing the shaft seal 4. The temperature of the steam is set to a predetermined set temperature.
[0004]
Now, at the shaft sealing start time T 0 (FIG. 4) for starting the function of the shaft sealing device 4 performed prior to the start of the turbine 1, first, a water distribution line from a condenser, a cooling water tank or the like (not shown). The main steam from the boiler that has been started after the cooling water is passed through the water supply valve 8 connected to the water injection device 7 by opening the main valve 11 connected to the water injection device 7 is vented to the air supply valve 6.
Thereafter, the air supply valve 6 is opened, and the shaft supplied to the shaft seal portion 4 through the shaft seal steam line 9 while detecting the temperature of the main steam supplied to the water injection device 7 by the temperature detector 10. As shown in FIG. 4, the opening degree of the water supply valve 8 is controlled by driving the valve drive unit 8 a of the water supply valve 8 so that the temperature of the sealed steam always becomes a set temperature of about 300 ° C. after the start T 1 of the turbine 1. To adjust the amount of cooling water injected.
[0005]
[Problems to be solved by the invention]
By the way, when the boiler is started after the shaft seal is started, the temperature of the main steam is about 300 ° C. to 400 ° C., but increases to the rated temperature as the load of the turbine 1 increases as shown in FIG.
On the other hand, the temperature of the shaft seal portion 4 is the outside air temperature when the turbine 1 is cooled. After the main steam is supplied after the shaft seal starts, the shaft seal portion 4 is gradually heated by the inflow of the main steam. For this reason, as described above, the temperature of the shaft seal steam is controlled by the water injection device 7 so that the temperature of the shaft seal steam is about 300 ° C. during rated operation when the turbine 1 is started. Yes.
Therefore, in the above-described temperature control method of the shaft seal steam in the shaft seal device 2, the temperature difference between the shaft seal portion 4 and the shaft seal steam supplied to the shaft seal portion 4, that is, the shaft seal portion 4 and The turbine 1 is started in a state where there is a large temperature difference between the rotor 12 having the outside air temperature and the casing 3 portions of the high pressure casing 3a and the low pressure casing 3b and the shaft seal steam.
[0006]
Usually, the casing 3 whose outer wall portion is in contact with the outside air is less likely to be warmed by the shaft seal steam as compared with the rotor 12 exposed to the main steam, so that the thermal expansion between the casing 3 and the rotor 12 is time-consuming. The difference comes out, and the difference in thermal expansion between the fins projecting toward the casing 3 and the fins projecting toward the rotor 12 that are installed to hold the minute gap of the labyrinth packing 13 constituting the shaft seal portion 4 Due to this, there is a problem that they may come into contact with each other, which may cause vibration of the turbine.
[0007]
An object of the present invention is to start a boiler in a turbine having a shaft seal device in which the shaft seal steam supplied to the shaft seal portion is main steam and the temperature of the main steam is controlled by water injection and then supplied to the shaft seal portion. At the same time, when the turbine is cold-started, the temperature expansion between the shaft seal steam supplied to the shaft seal portion and the rotor and casing of the shaft seal portion is reduced, and the thermal expansion due to the shaft seal portion being exposed to a high temperature. It is an object of the present invention to provide a method for controlling the shaft seal steam temperature of a shaft seal device that prevents mechanical contact between shaft seals that form a shaft seal gap due to the time difference.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a cooling water from a water supply valve by a water injection device to a main steam from a boiler to a shaft seal portion of the steam turbine when the steam turbine is cold-started together with the activation of the steam boiler. In a shaft seal device of a steam turbine that supplies shaft-sealed steam having a predetermined set temperature by pouring water, a predetermined water injection amount from the water supply valve to the water injection device at the minimum opening of the water supply valve at the start of shaft sealing A predetermined amount of water injection from the water supply valve in advance so that the shaft seal steam supplied to the shaft seal at the start of the steam turbine is close to the temperature of the casing and rotor of the steam turbine. When water is supplied to the water injection device and the shaft seal steam reaches the set temperature due to the rise in main steam temperature, the amount of cooling water injected into the water injection device is controlled to maintain the temperature of the shaft seal steam at the set temperature. I will do it To.
[0009]
As a result, at the initial start of the turbine, the temperature difference between the shaft seal steam supplied to the shaft seal portion and the casing and rotor of the shaft seal portion becomes small, and then the shaft seal steam and the temperature increase of the main steam. Since the temperature of the turbine body also rises, it is possible to start the turbine while keeping the temperature difference between the shaft-sealed steam casing and the rotor to a minimum, and there is a time difference in the amount of thermal expansion and thermal deformation between the two. Can be prevented.
[0010]
By setting so that a predetermined water injection amount is supplied from the water supply valve to the water injection device at the minimum opening of the water supply valve at the start of shaft sealing, the shaft sealing is always performed when the turbine is started after the shaft sealing is started. The temperature of the steam and the shaft seal can be kept close.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 and 2 are explanatory views showing a method for controlling the shaft seal steam temperature of the turbine shaft seal device according to the embodiment of the present invention. FIG. 1 shows the components of the steam turbine after the shaft seal starts. FIG. 2 is a characteristic diagram showing the relationship between the opening of a water supply valve that injects water into the water injection device and the amount of water injection.
The temperature control of the shaft seal steam in the shaft seal device according to this embodiment is performed as follows.
First, the shaft sealing beginning T 0 to the shaft sealing portion 4 performed prior to the start of the turbine 1 of FIG. 1, water injection device opens the main valve 11 connected to the distribution line of the cooling water shown in FIG. 3 Cooling water is passed to the water supply valve 8 connected to 7. The minimum opening of the water supply valve 8 driven by the valve drive portion 8a of the water supply valve 8 together with instruction of the shaft sealing start to supply the shaft seal portion 4 to the startup T 1 of the turbine 1 as described above The water injection device 7 can be injected with a minimum water injection amount W 0 such that the shaft seal steam is close to the temperature of the casing 3 of the turbine 1 and the rotor 12 of the shaft seal portion 4. Set it.
[0012]
By installing a water injection device for supplying the above water injection amount, the shaft seal steam temperature supplied to the shaft seal portion 4 becomes equal to or lower than the set temperature during the rated operation of the turbine 1 at the initial start of the turbine 1. Therefore, the water injection amount holds the minimum value described above.
[0013]
In this state, as shown in FIG. 1, as the main steam temperature rises, the shaft seal steam and the main body temperature of the turbine 1 rise respectively. It is possible to start up the turbine 1 while keeping the temperature difference between the casing 3 and the rotor 12 of the turbine 1 at a minimum.
Then, time T 2, hereinafter the shaft sealing steam temperature approaches the rated point load of the turbine 1 reaches the set value, as in the conventional shaft sealing control scheme, is the air supply to the shaft seal section 4 shown in FIG. 3 The temperature of the shaft seal steam is detected by the temperature detector 10, and the valve drive unit 8a of the water supply valve 8 is controlled to increase or decrease the amount of water injected into the water injection device 7 to control the shaft seal steam temperature to the set temperature. Like that.
[0014]
【The invention's effect】
As described above, according to the present invention, a predetermined cooling water injection amount is previously injected from the water supply valve so that the shaft seal steam supplied to the shaft seal portion at the start of the turbine has a temperature close to the temperatures of the turbine casing and the rotor. By setting the valve drive unit of the water supply valve so that the amount of water injection can be supplied at the minimum opening of the water supply valve at the time of starting the shaft seal so as to supply water to the device, the turbine is started together with the start of the boiler. When starting cold, the temperature difference between the shaft seal steam supplied to the shaft seal and the casing and rotor of the shaft seal can be reduced, and damage to the shaft seal due to these thermal expansion differences can be avoided. In addition, the turbine can be a reliable turbine having a shaft seal device that is free from vibration during starting and operation of the turbine.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows changes in characteristics of components after a shaft seal of a turbine shaft seal device according to an embodiment of the present invention is started.
FIG. 2 is a characteristic diagram showing the relationship between the opening of a water supply valve that pours water into a water pouring device and the amount of water to be poured.
FIG. 3 is a configuration diagram of a shaft seal device of a turbine.
FIG. 4 is a characteristic change of each component after the start of shaft sealing by a conventional shaft sealing device control method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Turbine 2 Shaft seal device 3 Casing 4 Shaft seal part 5 Shaft seal steam supply device 6 Air supply valve 7 Water injection device 8 Water supply valve 9 Shaft seal steam line 11 Original valve 12 Rotor 13 Labyrinth packing

Claims (1)

蒸気ボイラーの起動と共に蒸気タービンを冷機起動する際に、前記蒸気タービンの軸封部へボイラーからの主蒸気に注水装置により給水弁からの冷却水を注水して所定の設定温度にした軸封蒸気を供給する蒸気タービンの軸封装置において、
軸封開始時の前記給水弁の最小開度時に、この給水弁から前記注水装置へ所定の注水量を供給するように設定しておき、蒸気タービンの起動時に軸封部に供給する軸封蒸気が蒸気タービンのケーシング及びロータの温度に近い温度となるように予め所定の注水量を前記給水弁から注水装置へ給水し、主蒸気温度の上昇により前記軸封蒸気が設定温度になったときに、前記注水装置への冷却水の注水量を制御して前記軸封蒸気の温度を設定温度に維持するようにしたことを特徴とする蒸気タービンの軸封蒸気温度の制御方法。
When the steam turbine is cold-started with the start of the steam boiler, the shaft-sealed steam that has been supplied with cooling water from the water supply valve to the main steam from the boiler to the shaft seal portion of the steam turbine by a water injection device to a predetermined set temperature. In the shaft seal device of the steam turbine that supplies
A shaft seal steam that is set so as to supply a predetermined amount of water injection from the water supply valve to the water injection device at the minimum opening of the water supply valve at the start of the shaft seal, and is supplied to the shaft seal portion when the steam turbine is started. when There the water is supplied in advance predetermined injection amount such that the temperature close to the temperature of the casing and the rotor of the steam turbine to the water injection device from the water supply valve, the shaft sealing steam reaches the set temperature by increasing the main steam temperature A method for controlling the shaft seal steam temperature of a steam turbine, wherein the temperature of the shaft seal steam is maintained at a set temperature by controlling the amount of cooling water injected into the water injection device.
JP19836696A 1996-07-09 1996-07-09 Method for controlling shaft seal steam temperature of steam turbine Expired - Lifetime JP3617661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19836696A JP3617661B2 (en) 1996-07-09 1996-07-09 Method for controlling shaft seal steam temperature of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19836696A JP3617661B2 (en) 1996-07-09 1996-07-09 Method for controlling shaft seal steam temperature of steam turbine

Publications (2)

Publication Number Publication Date
JPH1026004A JPH1026004A (en) 1998-01-27
JP3617661B2 true JP3617661B2 (en) 2005-02-09

Family

ID=16389917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19836696A Expired - Lifetime JP3617661B2 (en) 1996-07-09 1996-07-09 Method for controlling shaft seal steam temperature of steam turbine

Country Status (1)

Country Link
JP (1) JP3617661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8356974B2 (en) 2008-07-11 2013-01-22 Kabushiki Kaisha Toshiba Steam turbine and method of cooling steam turbine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112780368B (en) * 2021-01-15 2022-10-21 华电电力科学研究院有限公司 Main steam temperature control system of steam turbine generator set and control method thereof
CN113404556B (en) * 2021-06-18 2023-02-03 东方电气集团东方汽轮机有限公司 Steam turbine low pressure bearing seal cooling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799214A (en) * 1980-12-12 1982-06-19 Hitachi Ltd Temperature control apparatus for gland seal vapor in steam turbine
JPS5993903A (en) * 1982-11-22 1984-05-30 Hitachi Ltd Turbine gland steam attemperator for steam power plant
JPS6172802A (en) * 1984-09-18 1986-04-14 Fuji Electric Co Ltd Condensing turbine shaft sealing equipment
JP2812751B2 (en) * 1989-12-05 1998-10-22 株式会社日立製作所 Steam turbine equipment and its steam supply method
JPH0666106A (en) * 1992-08-19 1994-03-08 Fuji Electric Co Ltd Shaft seal steam temperature control device for steam turbine
JPH06185303A (en) * 1992-12-15 1994-07-05 Fuji Electric Co Ltd Rubbing preventive device of gland packing of steam turbine
JPH08270403A (en) * 1995-03-29 1996-10-15 Mitsubishi Heavy Ind Ltd Seal steam feeder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8356974B2 (en) 2008-07-11 2013-01-22 Kabushiki Kaisha Toshiba Steam turbine and method of cooling steam turbine

Also Published As

Publication number Publication date
JPH1026004A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
US5667358A (en) Method for reducing steady state rotor blade tip clearance in a land-based gas turbine to improve efficiency
JPH0678724B2 (en) Cooling method and cooling device for steam turbine in single-shaft combined plant
JP3617661B2 (en) Method for controlling shaft seal steam temperature of steam turbine
JP4229579B2 (en) Combined cycle power plant and method for supplying steam for heating and cooling combined cycle power plant
JP2633720B2 (en) Pre-warming method for steam turbine
US4468167A (en) Method of operating water-turbine or pump water-turbine
JP3959172B2 (en) Steam turbine control method
JP3731058B2 (en) Steam turbine control method and apparatus
JPS60261931A (en) Water cooled turbo-supercharger
JPH06185303A (en) Rubbing preventive device of gland packing of steam turbine
JPH09280005A (en) Shaft sealing device of steam turbine
JP2953794B2 (en) Steam control valve chest warming method
JPS5846645B2 (en) Turbine warm-up method and device
JP3100301B2 (en) Steam turbine vane
JPS5867906A (en) Method for controlling thermal stress of a rotor
JPS60184909A (en) Auxiliary steam temperature decrease controller
JP2011001935A (en) Sealing steam supply system and control method
JP2001073801A (en) Cooling steam control method for gas turbine combustor
JPH04298602A (en) Steam turbine starting equipment
JPS6053604A (en) Operation control system for mixed pressure steam turbine
JPS62159704A (en) Warming up method of steam turbine
JPH11351149A (en) Shaft seal device for pump
JPH061041B2 (en) Turbin control valve warm-up control method
SU924415A1 (en) Method for starting-up power production unit
JPH03290001A (en) Steam turbine warming up device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term