JP3617236B2 - Leak current detection method and leak current detection apparatus - Google Patents

Leak current detection method and leak current detection apparatus Download PDF

Info

Publication number
JP3617236B2
JP3617236B2 JP04371097A JP4371097A JP3617236B2 JP 3617236 B2 JP3617236 B2 JP 3617236B2 JP 04371097 A JP04371097 A JP 04371097A JP 4371097 A JP4371097 A JP 4371097A JP 3617236 B2 JP3617236 B2 JP 3617236B2
Authority
JP
Japan
Prior art keywords
chip
liquid crystal
phase transition
high temperature
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04371097A
Other languages
Japanese (ja)
Other versions
JPH10239404A (en
Inventor
巧 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP04371097A priority Critical patent/JP3617236B2/en
Publication of JPH10239404A publication Critical patent/JPH10239404A/en
Application granted granted Critical
Publication of JP3617236B2 publication Critical patent/JP3617236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回路チップ,例えば半導体装置内でリーク電流を発生させる欠陥を検出し,その位置を特定するリーク検出方法及びその方法を使用するに適したリーク検出装置に関する。
【0002】
半導体装置の故障の一つに,正常よりもリーク電流が増加する欠陥を伴うものがある。かかる故障を解析するために,チップ内のリーク位置を的確に検出する必要がある。さらに,微細かつ消費電力の少ない素子から構成される半導体装置では僅かなリーク電流が故障の原因となるため,微量のリーク電流をも検出できる高精度のリーク検出が要求される。このため,リーク電流の微小な増加を検出しかつリークの位置を正確に特定できるリーク検出方法及びリーク検出装置が要望されている。
【0003】
【従来の技術】
従来,回路チップのリーク検出方法として,液晶の相転移を利用する方法が広く用いられている。この方法では,回路チップ,例えば半導体チップ上に液晶を塗布して回路を動作させる。このとき,チップ内にリーク電流を伴う欠陥が存在すると,リーク電流による発熱により局部的に液晶温度が上昇してリーク位置近傍に液晶の相転移領域が形成される。この相転移領域を検出し,位置を特定することで,その位置をリーク位置として特定することができる。
【0004】
かかる上述した従来の液晶の相転移を利用するリーク検出方法では,リーク電流の検出感度を高めるために,チップ上に塗布された液晶の温度を相転移温度の直下に精密に保持する必要がある。この液晶の保持温度が低いと微量のリーク電流に起因する微量の温度上昇を検出することができず,検出感度が劣化する。また,保持温度のチップ面内分布又は時間的変動があると,場所又は時間により検出感度が変化するため,微小なリーク位置を正確に特定することが困難になる。
【0005】
しかし,検査に供される回路チップは,例えばチップの状態のもの又はパッケージに収納されたもの等,多様である。従って,液晶温度の制御機構は,ヒータ又は恒温槽等の発熱,断熱部材をチップの態様に適合させて態様ごとに設計されていた。このため,多くの態様のチップを検査対象とする場合は,発熱,断熱部材を交換するため加熱装置が複雑になる。また,大面積のチップの温度を温度分布を生じさせずに一様に昇温することは困難である。とくに,パッケージの種類が異なると温度分布も異なる。このため,リーク検出感度の精度向上が制限されていた。
【0006】
【発明が解決しようとする課題】
上述したように従来の液晶の相転移を利用したリーク検出方法では,多様なチップを検査するために発熱,断熱部材の交換ができる複雑な加熱装置を必要とするという欠点があった。また,チップの面内温度を一様に上昇することは難しく,リーク検出感度の精度が制限されるという問題があった。
【0007】
本発明は,チップ上に塗布された液晶を局部的に加熱して,チップ上を移動する相転移温度直下の温度に加熱された高温領域を形成し,その高温領域内の相転移領域の有無を検出することで,チップ全面を一様な温度に保持する場合に生ずる液晶の温度分布又は温度変動に起因するリーク検出精度の劣化を回避し,リーク検出精度の高いリーク検出方法及びリーク検出装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
図1は本発明の実施形態例斜視図であり,リーク検出装置の主要部を表している。図2は本発明の実施形態例拡大平面図であり,チップ表面に塗布された液晶に形成された相転移領域と図1のリーク検出装置の加熱器の主要部との位置関係を表している。
【0009】
図1及び図2を参照して,上記課題を解決するための本発明の第一の構成は,回路チップ1上に液晶を塗布し,該チップ1内のリーク電流による発熱で相転移した該液晶の相転移領域22を検出してリーク位置23を特定するリーク検出方法において,該液晶を局部的に加熱するとともに該加熱位置を移動して,該チップ1面内を移動する局部的に加熱された高温領域21を該液晶に形成する工程と,該高温領域21内の該相転移領域22を検出する工程とを有することを特徴として構成し,及び,
第二の構成は,第一の構成のリーク検出方法において,該高温領域21は,先端が該液晶の表面に接触するように保持され,後端がヒータ2bに接続された良熱伝導体の加熱用針2aにより加熱されて形成されることを特徴として構成し,及び,
第三の構成は,回路チップ1上に塗布された液晶が該チップ1内のリーク電流による発熱で相転移した相転移領域22を検出する手段と,該相転移領域22の該チップ1上の位置を特定する手段とを備えたリーク検出装置において,該液晶を局部的に加熱するとともに該加熱位置を移動して,該チップ1上に塗布された該液晶面内を移動する高温領域21を形成する加熱器2と,該高温領域21内の相転移領域22を検出する相転移検出器10とを備えたことを特徴として構成し,及び,
第四の構成は,回路チップ1上に塗布された液晶が該チップ1内のリーク電流による発熱で相転移した相転移領域22を検出する手段と,該相転移領域の該チップ上の位置を特定する手段とを備えたリーク検出装置において,該チップ1上に塗布された該液晶を局部的に加熱して該液晶に高温領域21を形成する加熱器2と,該高温領域21内の相転移領域22を検出する相転移検出器10と,該チップ1を保持し,該チップ1を該チップ1表面に平行に移動して該高温領域21を移動させるXYテーブルとを備えたことを特徴として構成し,及び,
第五の構成は,第三又は第四の構成のリーク検出装置において,該加熱器2は,先端が該液晶の表面に接触するように保持され,後端がヒータ2bに接続された良熱伝導体の加熱用針2aを備えることを特徴として構成し,及び,
第六の構成は,第三,第四又は第五の構成のリーク検出装置において,該高温領域21の温度を検出する温度センサー3と,該温度センサー3の出力により該加熱器2の温度を制御して,該高温領域21の温度を一定に保持する温度コントローラを備えたことを特徴として構成する。
【0010】
本発明の第一の構成では,図1及び図2を参照して,チップ1上に塗布された液晶10を局部的に加熱して,液晶10の一部領域を高温の高温領域21にする。なお,加熱する位置は移動し,高温領域21はチップ1面内を移動する。さらに,この移動する高温領域21内を相転移検出器10により観測し,高温領域21内に形成された相転移領域22を検出する。なお,高温領域21の温度は,液晶10の相転移温度より低いことが必要であり,とくに検出感度を高くする観点から相転移温度に近いことが好ましい。
【0011】
本構成では,高温領域21はチップ上の微小な領域を局部的に加熱することで形成されるから,温度制御系の時定数が小さく,高温領域21の温度を精密に制御することができる。また,移動する高温領域21の温度はリアルタイムに制御されるから,チップ1上の任意の位置で一定温度を保持することが容易であり,チップ全体を一定温度に昇温する従来の方法に比べてチップ面内の温度分布が小さい。従って,リーク電流を高い感度で検出することができる。とくに,任意のパッケージに収容されているチップについても,チップ内の温度分布を小さくすることができる。また,本構成では微小領域の加熱で足り,チップ全体を一様に加熱する必要がないから,本構成を利用するリーク装置は機構が簡易になる。
【0012】
本発明の第二の構成では,高温領域21を形成するために,後端がヒータ2bに接続されて加熱される良熱伝導体からなる加熱用針2aの先端を液晶10表面に接触するように保持して液晶10を局部的に加熱する。この構成では,ヒータ2b温度の制御により高温領域21の温度制御ができるので,温度制御を簡単な装置でかつ精密に行うことができる。
【0013】
第三の構成は,第一の構成のリーク検出方法を利用したリーク検出装置に関する。第三の構成では,チップ1上に塗布された液晶10を,移動しつつ局部的に加熱する加熱器2を備える。かかる加熱器2は,例えば光ビームの走査機構,又は高温に加熱された加熱用針2aの先端を液晶表面に接触させ,加熱用針2aを走査する機構により実現される。また,加熱器2により液晶10に形成された高温領域21内に生じた相転移領域22は,相転移検出器10,例えば偏向顕微鏡10aにより検出される。この相転移検出器10は高温領域内21の相転移領域22を検出できれば足り,高温領域21を観測して加熱器2とともに移動するものでも又は液晶10全面を観測するため固定されたものでもよい。
【0014】
第四の構成は,第一の構成のリーク検出方法を利用した他のリーク検出装置に関する。第四の構成では,チップ1上に塗布された液晶10を局部的に加熱して高温領域21を形成する加熱器2と,チップ1を保持して移動するXYテーブル4とを備える。従って,高温領域21は,チップ1の移動とともにチップ面内上を移動する。高温領域21内に発生した相転移領域22は,高温領域21内を監視する相転移検出器10により検出され,検出時のXYテーブル4の位置からチップ1上のリーク位置23が特定される。
【0015】
第五の構成では,先端が該液晶10の表面に接触するように保持され,後端がヒータ2bに接続された良熱伝導体の加熱用針2aを備えた加熱器2を有する。本構成の装置は,第二の方法と同様に,簡単な温度制御装置により高温領域21の精密な温度制御がなされる。
【0016】
第六の構成は,上述した各構成における高温領域21の温度制御に関し,高温領域21の温度を検出する温度センサー3と,温度センサー3の出力により該加熱器2の温度を制御して,該高温領域21の温度を一定に保持する温度コントローラ(図外)を備える。温度センサー3は,微小面積の高温領域21の温度を測定できるもの,例えば液晶10面に接触する熱電対3aで実現される。かかる温度センサー3と温度コントローラとを設けることで高温領域21の温度を精密に制御することができるから,高温領域21の温度を相転移温度の直下に安定して保持することができ,リーク検出感度が高くなる。
【0017】
【発明の実施の形態】
以下,本発明を半導体チップのリーク検出装置に適用した実施形態例を参照して説明する。
【0018】
本実施形態例にかかるリーク検出装置は,図1を参照して,基台7上に,上面に試料テーブル5を載置したXYテーブル4が固定される。試料テーブル5は,3軸回りの回転機構を有し,チップ1の上表面をXYテーブルの移動面に平行に保持することができる。検査対象となるチップ1は,集積回路のパッケージの上面が取り除かれパッケージ台6上に露出されたされた半導体チップであり,パッケージ台ごと試料テーブル5上に載置される。さらに,チップ1上方に,相転移検出器10として偏向顕微鏡10aが支柱8に固持される。
【0019】
また,XYテーブル4の傍らの基台7上に支柱8が垂設され,2本のアーム9を動かし微調整する操作箱11が支柱8にガイドされて支持される。一つのアーム9の先端には加熱器2が取り付けられ,他方のアーム9の先端には温度センサー3が取り付けられる。図2を参照して,加熱器2は,先端部分に線状ヒータ2bを有し,ヒータ2b中央に良熱伝導体例えは銅製の直径10μmの細線からなる加熱用針2aが接合される。温度センサー3は,細い熱電対3aにより構成される。
【0020】
リークの検出では,先ず,半導体装置のパッケージの蓋を取り去り,パッケージ台6上に固定されたチップ1を露出し,チップ1の上面に液晶を塗布する。次いで,図1を参照して,チップ1を,パッケージ台6の底面を密着させて試料テーブル5上に載置し,試料テーブル5を微調整してチップ1表面をXYテーブル4の移動面に平行に保持する。次いで,チップ1の端子に電源を供給し及び必要な信号を入力及び出力する図外のICテスタのプローブを接続する。
【0021】
次いで,偏向顕微鏡10aの視野内に加熱器2及び温度センサー3の先端を移動し,XYテーブル4を例えばX方向に移動している状態で,加熱器2及び温度センサー3の先端を液晶10表面に接触する。次いで,温度センサー3の出力が液晶10の相転移温度直下になるように,図外の温度コントローラを通して加熱器2のヒータ2b入力電力を制御する。このとき,図2を参照して,加熱器2の先端,即ち加熱用針2aの先端に接触する液晶10表面を中心に,例えば半径30ミクロンの範囲が相転移温度直下の高温領域21となる。高温領域21の温度を測定する熱電対3aは,加熱用針2aに近接して,例えば10μm以内に保持される。
【0022】
偏向顕微鏡10aは液晶が塗布されていない状態で暗視野になるように偏向板を調整し,高温領域21内を監視する。XYテーブル4を走査し,高温領域21内にリーク位置23が入ると,リーク位置23の周囲に相転移領域22が形成され偏向顕微鏡10aにより黒点として観測される。このリーク位置23は,偏向顕微鏡10aの視野内の相転移領域22の中心位置と,XYテーブルの位置とから容易に決定することができる。
【0023】
【発明の効果】
上述したように本発明によれば,液晶の温度を加熱するために液晶を局部的にかつ走査して加熱して微小面積の高温領域形成するから,温度制御を精密にすることができ,またチップ面内の高温領域の温度変化も小さくできるから,リーク電流を精度よく検出することができ,半導体装置の不良解析技術の向上に寄与するところが大きい。
【図面の簡単な説明】
【図1】本発明の実施形態例斜視図
【図2】本発明の実施形態例拡大平面図
【符号の説明】
1 チップ
2 加熱器
2a 加熱用針
2b ヒータ
2c 接合部
3 温度センサー(3a 温度センサー)
4 XYテーブル
5 試料テーブル
6 パッケージ台
7 基台
8 支柱
9 アーム
10 相転移検出器(10a 顕微鏡)
11 操作箱
21 高温領域
22 相転移領域
23 リーク位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leak detection method for detecting a defect that generates a leak current in a circuit chip, for example, a semiconductor device, and specifying the position thereof, and a leak detection device suitable for using the method.
[0002]
One of the failures of semiconductor devices is accompanied by a defect in which leakage current increases more than normal. In order to analyze such a failure, it is necessary to accurately detect the leak position in the chip. Furthermore, since a slight leak current causes a failure in a semiconductor device composed of fine elements with low power consumption, high-accuracy leak detection that can detect even a small amount of leak current is required. Therefore, there is a demand for a leak detection method and a leak detection apparatus that can detect a minute increase in leak current and accurately specify the position of the leak.
[0003]
[Prior art]
Conventionally, a method using a phase transition of liquid crystal has been widely used as a method for detecting a leak of a circuit chip. In this method, a circuit is operated by applying liquid crystal on a circuit chip, for example, a semiconductor chip. At this time, if there is a defect with a leak current in the chip, the liquid crystal temperature rises locally due to heat generated by the leak current, and a liquid crystal phase transition region is formed in the vicinity of the leak position. By detecting this phase transition region and specifying the position, the position can be specified as a leak position.
[0004]
In such a conventional leak detection method using the phase transition of the liquid crystal, the temperature of the liquid crystal applied on the chip needs to be precisely maintained just below the phase transition temperature in order to increase the detection sensitivity of the leak current. . If the liquid crystal holding temperature is low, a very small temperature rise due to a small amount of leakage current cannot be detected, and the detection sensitivity deteriorates. In addition, if there is a distribution of the holding temperature in the chip surface or temporal variation, the detection sensitivity changes depending on the location or time, so that it is difficult to accurately identify a minute leak position.
[0005]
However, there are various types of circuit chips to be inspected, for example, in a chip state or in a package. Therefore, the liquid crystal temperature control mechanism is designed for each mode by adapting the heat generation and heat insulation members such as a heater or a thermostat to the chip mode. For this reason, when many types of chips are to be inspected, the heating device becomes complicated because the heat generating and heat insulating members are replaced. In addition, it is difficult to raise the temperature of a large area chip uniformly without causing temperature distribution. In particular, different types of packages have different temperature distributions. For this reason, improvement in accuracy of leak detection sensitivity has been limited.
[0006]
[Problems to be solved by the invention]
As described above, the conventional leak detection method using the phase transition of the liquid crystal has a drawback that a complicated heating device capable of generating heat and exchanging the heat insulating member is required to inspect various chips. In addition, it is difficult to raise the in-plane temperature of the chip uniformly, and there is a problem that the accuracy of leak detection sensitivity is limited.
[0007]
The present invention locally heats the liquid crystal coated on the chip to form a high temperature region heated to a temperature just below the phase transition temperature moving on the chip, and whether or not there is a phase transition region in the high temperature region. Leak detection method and leak detection apparatus with high leak detection accuracy by avoiding deterioration of leak detection accuracy due to temperature distribution or temperature fluctuation of liquid crystal that occurs when the entire surface of the chip is held at a uniform temperature. The purpose is to provide.
[0008]
[Means for Solving the Problems]
FIG. 1 is a perspective view of an embodiment of the present invention and shows a main part of a leak detection apparatus. FIG. 2 is an enlarged plan view of an embodiment of the present invention, showing the positional relationship between the phase transition region formed in the liquid crystal applied to the chip surface and the main part of the heater of the leak detection apparatus of FIG. .
[0009]
Referring to FIGS. 1 and 2, the first configuration of the present invention for solving the above-described problem is that the liquid crystal is applied on the circuit chip 1 and the phase transition is caused by the heat generated by the leakage current in the chip 1. In the leak detection method of detecting the liquid crystal phase transition region 22 and specifying the leak position 23, the liquid crystal is locally heated and moved to move locally within the chip 1 surface. Forming a high temperature region 21 formed on the liquid crystal, and detecting the phase transition region 22 in the high temperature region 21; and
The second configuration is the leak detection method of the first configuration, in which the high temperature region 21 is held in such a manner that the front end is in contact with the surface of the liquid crystal and the rear end is connected to the heater 2b. It is characterized by being formed by being heated by the heating needle 2a, and
The third configuration includes means for detecting a phase transition region 22 in which the liquid crystal applied on the circuit chip 1 has undergone phase transition due to heat generated by a leakage current in the chip 1, and the phase transition region 22 on the chip 1. In a leak detection apparatus comprising a means for specifying a position, the liquid crystal is locally heated and moved in the heating position so that a high-temperature region 21 that moves in the liquid crystal surface coated on the chip 1 is provided. Comprising a heater 2 to be formed, and a phase transition detector 10 for detecting a phase transition region 22 in the high temperature region 21; and
The fourth configuration is a means for detecting the phase transition region 22 in which the liquid crystal applied on the circuit chip 1 has undergone phase transition due to heat generated by the leakage current in the chip 1 and the position of the phase transition region on the chip. In a leak detection apparatus comprising a means for specifying, a heater 2 that locally heats the liquid crystal applied on the chip 1 to form a high temperature region 21 in the liquid crystal, and a phase in the high temperature region 21 A phase transition detector 10 for detecting a transition region 22 and an XY table that holds the chip 1 and moves the chip 1 in parallel to the surface of the chip 1 to move the high temperature region 21. And as
A fifth configuration is the leak detection device of the third or fourth configuration, wherein the heater 2 is held so that the front end is in contact with the surface of the liquid crystal and the rear end is connected to the heater 2b. Characterized in that it comprises a conductor heating needle 2a, and
The sixth configuration is the leak detection device of the third, fourth or fifth configuration, in which the temperature sensor 3 for detecting the temperature of the high temperature region 21 and the temperature of the heater 2 by the output of the temperature sensor 3 are set. A temperature controller that controls and keeps the temperature of the high temperature region 21 constant is provided.
[0010]
In the first configuration of the present invention, referring to FIG. 1 and FIG. 2, the liquid crystal 10 applied on the chip 1 is locally heated so that a partial region of the liquid crystal 10 becomes a high temperature region 21 of high temperature. . The heating position moves, and the high temperature region 21 moves within the surface of the chip 1. Further, the moving high temperature region 21 is observed by the phase transition detector 10 to detect the phase transition region 22 formed in the high temperature region 21. Note that the temperature of the high temperature region 21 needs to be lower than the phase transition temperature of the liquid crystal 10, and is preferably close to the phase transition temperature from the viewpoint of increasing the detection sensitivity.
[0011]
In this configuration, since the high temperature region 21 is formed by locally heating a minute region on the chip, the time constant of the temperature control system is small, and the temperature of the high temperature region 21 can be precisely controlled. In addition, since the temperature of the moving high temperature region 21 is controlled in real time, it is easy to maintain a constant temperature at an arbitrary position on the chip 1, compared with the conventional method in which the entire chip is heated to a constant temperature. The temperature distribution in the chip surface is small. Therefore, the leak current can be detected with high sensitivity. In particular, the temperature distribution in a chip can be reduced even for a chip housed in an arbitrary package. Further, in this configuration, it is sufficient to heat a minute area, and it is not necessary to uniformly heat the entire chip. Therefore, the leak device using this configuration has a simple mechanism.
[0012]
In the second configuration of the present invention, in order to form the high temperature region 21, the tip of the heating needle 2a made of a good heat conductor that is heated with the rear end connected to the heater 2b is brought into contact with the surface of the liquid crystal 10. And the liquid crystal 10 is locally heated. In this configuration, since the temperature control of the high temperature region 21 can be performed by controlling the temperature of the heater 2b, the temperature control can be accurately performed with a simple device.
[0013]
The third configuration relates to a leak detection apparatus using the leak detection method of the first configuration. The third configuration includes a heater 2 that locally heats the liquid crystal 10 applied on the chip 1 while moving. The heater 2 is realized by, for example, a light beam scanning mechanism or a mechanism that scans the heating needle 2a by bringing the tip of the heating needle 2a heated to a high temperature into contact with the liquid crystal surface. Further, the phase transition region 22 generated in the high temperature region 21 formed in the liquid crystal 10 by the heater 2 is detected by the phase transition detector 10, for example, the deflection microscope 10a. The phase transition detector 10 only needs to be able to detect the phase transition region 22 in the high temperature region 21 and may be one that moves with the heater 2 by observing the high temperature region 21 or may be fixed to observe the entire surface of the liquid crystal 10. .
[0014]
The fourth configuration relates to another leak detection apparatus using the leak detection method of the first configuration. The fourth configuration includes a heater 2 that locally heats the liquid crystal 10 applied on the chip 1 to form a high temperature region 21 and an XY table 4 that holds and moves the chip 1. Accordingly, the high temperature region 21 moves on the chip surface as the chip 1 moves. The phase transition region 22 generated in the high temperature region 21 is detected by the phase transition detector 10 that monitors the inside of the high temperature region 21, and the leak position 23 on the chip 1 is specified from the position of the XY table 4 at the time of detection.
[0015]
In the fifth configuration, the heater 2 is provided with a good heat conductor heating needle 2a which is held such that the front end is in contact with the surface of the liquid crystal 10 and the rear end is connected to the heater 2b. In the apparatus of this configuration, precise temperature control of the high temperature region 21 is performed by a simple temperature control device, as in the second method.
[0016]
The sixth configuration relates to the temperature control of the high temperature region 21 in each of the above-described configurations, the temperature sensor 3 for detecting the temperature of the high temperature region 21, and the temperature of the heater 2 by controlling the temperature sensor 3 output, A temperature controller (not shown) that keeps the temperature of the high temperature region 21 constant is provided. The temperature sensor 3 is realized by a sensor capable of measuring the temperature of the high-temperature region 21 having a very small area, for example, a thermocouple 3a in contact with the liquid crystal 10 surface. By providing such a temperature sensor 3 and a temperature controller, the temperature of the high temperature region 21 can be precisely controlled, so that the temperature of the high temperature region 21 can be stably maintained immediately below the phase transition temperature, and leakage detection can be performed. Sensitivity is increased.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to an embodiment in which the present invention is applied to a semiconductor chip leak detection apparatus.
[0018]
In the leak detection apparatus according to this embodiment, referring to FIG. 1, an XY table 4 on which a sample table 5 is placed is fixed on a base 7. The sample table 5 has a rotation mechanism around three axes, and can hold the upper surface of the chip 1 parallel to the moving surface of the XY table. The chip 1 to be inspected is a semiconductor chip that is exposed on the package base 6 by removing the upper surface of the package of the integrated circuit, and is placed on the sample table 5 together with the package base. Further, a deflection microscope 10 a as a phase transition detector 10 is fixed to the support column 8 above the chip 1.
[0019]
Further, a support column 8 is suspended from a base 7 beside the XY table 4, and an operation box 11 for moving and finely adjusting the two arms 9 is guided and supported by the support column 8. The heater 2 is attached to the tip of one arm 9, and the temperature sensor 3 is attached to the tip of the other arm 9. Referring to FIG. 2, the heater 2 has a linear heater 2b at the tip, and a heating needle 2a made of a fine heat conductor, for example, a copper thin wire having a diameter of 10 μm, is joined to the center of the heater 2b. The temperature sensor 3 is composed of a thin thermocouple 3a.
[0020]
In detecting the leak, first, the lid of the package of the semiconductor device is removed, the chip 1 fixed on the package base 6 is exposed, and liquid crystal is applied to the upper surface of the chip 1. Next, referring to FIG. 1, the chip 1 is placed on the sample table 5 with the bottom surface of the package base 6 in close contact, and the sample table 5 is finely adjusted so that the surface of the chip 1 becomes the moving surface of the XY table 4. Hold in parallel. Next, a probe of an IC tester (not shown) that supplies power to the terminals of the chip 1 and inputs and outputs necessary signals is connected.
[0021]
Next, the tips of the heater 2 and the temperature sensor 3 are moved within the field of view of the deflection microscope 10a, and the tips of the heater 2 and the temperature sensor 3 are moved to the surface of the liquid crystal 10 while the XY table 4 is moved, for example, in the X direction. To touch. Next, the heater 2b input power of the heater 2 is controlled through a temperature controller (not shown) so that the output of the temperature sensor 3 is directly below the phase transition temperature of the liquid crystal 10. At this time, referring to FIG. 2, for example, a range of a radius of 30 μm becomes a high temperature region 21 immediately below the phase transition temperature centering on the surface of the liquid crystal 10 contacting the tip of the heater 2, that is, the tip of the heating needle 2 a. . The thermocouple 3a for measuring the temperature of the high temperature region 21 is held close to the heating needle 2a, for example, within 10 μm.
[0022]
The deflection microscope 10a adjusts the deflection plate so that a dark field is obtained in a state where no liquid crystal is applied, and monitors the inside of the high temperature region 21. When the XY table 4 is scanned and the leak position 23 enters the high temperature region 21, a phase transition region 22 is formed around the leak position 23 and is observed as a black spot by the deflection microscope 10a. The leak position 23 can be easily determined from the center position of the phase transition region 22 in the field of view of the deflection microscope 10a and the position of the XY table.
[0023]
【The invention's effect】
As described above, according to the present invention, in order to heat the temperature of the liquid crystal, the liquid crystal is locally and scanned and heated to form a high-temperature region having a very small area. Since the temperature change in the high-temperature region in the chip surface can be reduced, the leak current can be detected with high accuracy, which greatly contributes to the improvement of semiconductor device failure analysis technology.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of the present invention. FIG. 2 is an enlarged plan view of an embodiment of the present invention.
1 Chip 2 Heater 2a Heating Needle 2b Heater 2c Joint 3 Temperature Sensor (3a Temperature Sensor)
4 XY table 5 Sample table 6 Package base 7 Base 8 Strut 9 Arm 10 Phase transition detector (10a microscope)
11 Operation box 21 High temperature region 22 Phase transition region 23 Leak position

Claims (6)

回路チップ上に液晶を塗布し,該チップ内のリーク電流による発熱で相転移した該液晶の相転移領域を検出してリーク位置を特定するリーク電流の検出方法において,
該液晶の一部を局部的に加熱するとともに該加熱位置を移動して,該チップ面内を移動する局部的に加熱された高温領域を該液晶に形成する工程と,
該高温領域内の該相転移領域を検出する工程とを有することを特徴とするリーク電流の検出方法。
In a leakage current detection method for applying a liquid crystal on a circuit chip and detecting a phase transition region of the liquid crystal that has undergone phase transition due to heat generated by the leakage current in the chip to identify a leakage position,
A step of locally heating a part of the liquid crystal and moving the heating position to form a locally heated high temperature region moving in the chip surface in the liquid crystal;
And a step of detecting the phase transition region in the high temperature region.
請求項1記載のリーク検出方法において,
該高温領域は,先端が該液晶の表面に接触するように保持され,後端がヒータに接続された良熱伝導体の加熱用針により加熱されて形成されることを特徴とするリーク電流の検出方法。
The leak detection method according to claim 1,
The high temperature region is formed by holding the tip of the liquid crystal in contact with the surface of the liquid crystal and heating the back end by a heating needle of a good heat conductor connected to the heater. Detection method.
回路チップ上に塗布された液晶が該チップ内のリーク電流による発熱で相転移した相転移領域を検出する手段と,該相転移領域の該チップ上の位置を特定する手段とを備えたリーク電流検出装置において,
該液晶の一部を局部的に加熱するとともに該加熱位置を移動して,該チップ上に塗布された該液晶面内を移動する高温領域を形成する加熱器と,
該高温領域内の相転移領域を検出する相転移検出器とを備えたことを特徴とするリーク電流検出装置。
Leakage current comprising: means for detecting a phase transition region in which the liquid crystal applied on the circuit chip has undergone phase transition due to heat generation due to leakage current in the chip; and means for identifying the position of the phase transition region on the chip In the detection device,
A heater by moving the heating position with locally heating a portion of the liquid crystal, to form a high temperature region to move the liquid crystal plane coated on the chip,
A leak current detection device comprising: a phase transition detector for detecting a phase transition region in the high temperature region.
回路チップ上に塗布された液晶が該チップ内のリーク電流による発熱で相転移した相転移領域を検出する手段と,該相転移領域の該チップ上の位置を特定する手段とを備えたリーク電流検出装置において,
該チップ上に塗布された該液晶の一部を局部的に加熱して該液晶に高温領域を形成する加熱器と,
該高温領域内の相転移領域を検出する相転移検出器と,
該チップを保持し,該チップを該チップ表面に平行に移動して該高温領域を移動させるXYテーブルとを備えたことを特徴とするリーク電流検出装置。
Leakage current comprising: means for detecting a phase transition region in which the liquid crystal applied on the circuit chip has undergone phase transition due to heat generation due to leakage current in the chip; and means for identifying the position of the phase transition region on the chip In the detection device,
A heater for locally heating a part of the liquid crystal applied on the chip to form a high temperature region in the liquid crystal;
A phase transition detector for detecting a phase transition region in the high temperature region;
An apparatus for detecting leakage current, comprising: an XY table that holds the chip and moves the chip parallel to the surface of the chip to move the high temperature region.
請求項3又は4記載のリーク電流検出装置において,
該加熱器は,先端が該液晶の表面に接触するように保持され,後端がヒータに接続された良熱伝導体の加熱用針を備えることを特徴とするリーク電流検出装置。
In the leak current detection device according to claim 3 or 4,
The leak current detecting device, wherein the heater includes a heating needle of a good heat conductor that is held such that a front end thereof is in contact with the surface of the liquid crystal and a rear end is connected to a heater.
請求項3,4又は5記載のリーク電流検出装置において,
該高温領域の温度を検出する温度センサーと,
該温度センサーの出力により該加熱器の温度を制御して,該高温領域の温度を一定に保持する温度コントローラを備えたことを特徴とするリーク電流検出装置。
The leak current detection device according to claim 3, 4 or 5,
A temperature sensor for detecting the temperature of the high temperature region;
A leak current detection device comprising a temperature controller for controlling the temperature of the heater by the output of the temperature sensor and maintaining the temperature in the high temperature region constant.
JP04371097A 1997-02-27 1997-02-27 Leak current detection method and leak current detection apparatus Expired - Fee Related JP3617236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04371097A JP3617236B2 (en) 1997-02-27 1997-02-27 Leak current detection method and leak current detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04371097A JP3617236B2 (en) 1997-02-27 1997-02-27 Leak current detection method and leak current detection apparatus

Publications (2)

Publication Number Publication Date
JPH10239404A JPH10239404A (en) 1998-09-11
JP3617236B2 true JP3617236B2 (en) 2005-02-02

Family

ID=12671371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04371097A Expired - Fee Related JP3617236B2 (en) 1997-02-27 1997-02-27 Leak current detection method and leak current detection apparatus

Country Status (1)

Country Link
JP (1) JP3617236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116930816B (en) * 2023-09-13 2024-02-13 深圳市德兰明海新能源股份有限公司 Electric leakage detection method and device for distribution box, distribution box and storage medium

Also Published As

Publication number Publication date
JPH10239404A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US6043671A (en) Semiconductor inspection device with guide member for probe needle for probe card and method of controlling the same
US6552561B2 (en) Apparatus and method for controlling temperature in a device under test using integrated temperature sensitive diode
US7492176B2 (en) Prober and probe contact method
JP4825812B2 (en) Semiconductor wafer inspection method and apparatus using chuck device capable of adjusting temperature
JP6821910B2 (en) Prover and probe needle contact method
JPH09326425A (en) Method of defect inspection and its apparatus
JP2005072143A (en) Probe unit
TWI778468B (en) Double-sided probe systems with thermal control systems and related methods
JP2008537781A (en) Dual photoacoustic and resistance measurement system
JP2004301548A (en) Electric characteristic evaluating apparatus
JP3617236B2 (en) Leak current detection method and leak current detection apparatus
CN106771619B (en) High-precision temperature control resistance testing system
JPH0621166A (en) Wafer prober
JP2008192861A (en) Semiconductor inspection apparatus and method
JP5021373B2 (en) Inspection device, inspection method, and probe unit used for inspection device
JP2607798B2 (en) Method and apparatus for measuring voltage signal of integrated circuit
US20220291279A1 (en) Semiconductor testing apparatus for wafer probing testing and final packaged ic testing
JP2879282B2 (en) Probe device
KR20020025786A (en) Calibration Device for Semiconductor Testing Apparatus, Calibration Method and Semiconductor Testing Apparatus
JPH0774218A (en) Test method of ic and its probe card
JP3828299B2 (en) Z-axis height setting apparatus and method in wafer test system
JP2014107483A (en) Obirch inspection method and obirch device
JP6157270B2 (en) Probe apparatus and probe method
JP2022096153A (en) Electronic device inspection device and inspection method
JP3129935B2 (en) Wafer inspection equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees