JPH09326425A - Method of defect inspection and its apparatus - Google Patents

Method of defect inspection and its apparatus

Info

Publication number
JPH09326425A
JPH09326425A JP8141353A JP14135396A JPH09326425A JP H09326425 A JPH09326425 A JP H09326425A JP 8141353 A JP8141353 A JP 8141353A JP 14135396 A JP14135396 A JP 14135396A JP H09326425 A JPH09326425 A JP H09326425A
Authority
JP
Japan
Prior art keywords
probe
sample
contact
defect inspection
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8141353A
Other languages
Japanese (ja)
Other versions
JP3577839B2 (en
Inventor
Satoshi Tomimatsu
聡 富松
Takeshi Hasegawa
剛 長谷川
Shigeyuki Hosoki
茂行 細木
Fumiko Arakawa
史子 荒川
Masaichiro Asayama
匡一郎 朝山
Yasuhiro Mitsui
泰裕 三井
Hitoshi Nakahara
仁 中原
Yoshimi Kawanami
義実 川浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14135396A priority Critical patent/JP3577839B2/en
Publication of JPH09326425A publication Critical patent/JPH09326425A/en
Application granted granted Critical
Publication of JP3577839B2 publication Critical patent/JP3577839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect a failure through the measurement of a local electrical characteristics of microstructure devices. SOLUTION: By observing with scanning electronic microscope and with the aid of probe movement mechanism 14, 15, 16, and 17 controlled by the probe movement control circuit 18, a plurality of sharp tipped probe 1, 2, 3, and 4 are made to approach until their contact current saturate and contacted tightly the sample electrodes 5, 6, 7, and 8 respectively. When the contact of all probes used for the measurement are completed, the current-voltage characteristics among the probes is measured by the measuring circuit of electrical characteristics 19 and the local electrical characteristics of the device is obtained. Since the specific local position of the device is directly probed by the probe, the defective position is easily identified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子素子の性能を
評価、ないし不良を解析する装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating the performance of an electronic element or analyzing a failure.

【0002】[0002]

【従来の技術】従来、電子素子の特性評価は、プロー
バ、または電子ビームテスタを用いて行われていた。例
えば、電子ビームテスタ法は、応用物理学会誌、第63
巻、第6号、608頁から611頁に、その例がそれぞ
れ記載されている。
2. Description of the Related Art Conventionally, the characteristics of electronic devices have been evaluated using a prober or an electron beam tester. For example, the electron beam tester method is described in Journal of Applied Physics, No. 63.
Volumes, No. 6, pp. 608-611, examples of which are described respectively.

【0003】従来知られているプローバでは、大気中で
光学顕微鏡により観察しながら、検査試料の電気特性を
測定したい位置に探針を接触させる。この装置では、2
本の探針を用いることが可能であり、これにより回路の
特定部分の電流電圧特性等の素子特性を評価することが
出来る。またこの装置では、YAGレーザにより配線切
断等の加工が可能であり、素子の一部を孤立させて特性
測定を行うことができる。
In a conventionally known prober, a probe is brought into contact with a position where the electrical characteristics of an inspection sample are to be measured while observing with an optical microscope in the atmosphere. With this device, 2
It is possible to use a book-like probe, which makes it possible to evaluate device characteristics such as current-voltage characteristics of a specific portion of the circuit. Further, in this apparatus, it is possible to perform processing such as wiring cutting with a YAG laser, and it is possible to measure characteristics by isolating part of the element.

【0004】電子ビームテスタは、走査型電子顕微鏡像
のコントラストから動作状態の電子素子の配線電位を得
るものである。これは、エネルギーフィルタを用いるこ
とで、10mVの精度の電位コントラストを得ることができ
るため、良品電子素子から得られた基準データと比較す
ることによって、故障を検出し、その箇所を同定するこ
とができる。
The electron beam tester obtains the wiring potential of the electronic element in the operating state from the contrast of the scanning electron microscope image. This is because it is possible to obtain a potential contrast with an accuracy of 10 mV by using an energy filter, so it is possible to detect a failure and identify its location by comparing it with the reference data obtained from a non-defective electronic element. it can.

【0005】[0005]

【発明が解決しようとする課題】上記第1の手法(プロ
ーバ)では、試料観察に光学顕微鏡を用いるため、サブ
ミクロン配線の観察に限界があり、将来電子素子が0.1
μm線幅になれば、観察できなくなるので、このような
微細配線への探針のコンタクトは不可能になる。また、
電子素子の加工にYAGレーザを用いているため、0.1
μm以下の微細加工はレーザ波長(この装置では0.355μ
m)から困難となる。また、接触させる電子素子の配線
等が0.1μmのように微細化してくると、これとコンタク
トを取るために、探針先端も細くする必要があるため、
探針が損傷しやすくなり、また、配線も微細であるため
に破壊されやすくなるといった問題が生じる。このた
め、探針や配線が損傷せず、かつ確実な接触を取るため
には、接触手法では従来よりも格段に高い精度が要求さ
れる。また、従来のように大きい接触領域を取れる場合
には、探針と試料の相対的なドリフトは大して問題には
ならなかったが、接触領域の微細化の伴い、ドリフトに
よる接触状態の変化が大きな問題となってくる。しか
し、従来法では、このようなドリフト対策は実施されて
いない。また、従来法では大気中において探針と配線等
の接触を行うため、将来、接触面積の微細化が進むと、
配線上や探針先端の酸化膜や汚染物質等による接触抵抗
が大きな問題となってくる。また、素子の電気特性測定
のための加工も、切断したり、剥離したりするだけでな
く、パッドを形成したり、配線形成をしたりという金属
堆積を行う加工も必要となるが、大気中での加工を用い
る従来法では不可能であった。
In the first method (prober) described above, since an optical microscope is used for observing a sample, there is a limit in observing submicron wiring, and an electronic element of 0.1
When the line width becomes μm, it becomes impossible to observe, so it becomes impossible to contact the probe with such fine wiring. Also,
Since a YAG laser is used for processing electronic elements,
The laser wavelength (0.355μ
m) becomes difficult. Also, when the wiring of the electronic element to be contacted becomes finer such as 0.1 μm, it is necessary to make the tip of the probe thin in order to make contact with this,
There is a problem in that the probe is easily damaged, and the wiring is fine, so that the probe is easily broken. For this reason, in order to make reliable contact without damaging the probe or the wiring, the contact method requires much higher accuracy than the conventional method. Further, when a large contact area can be taken as in the conventional case, the relative drift between the probe and the sample did not pose a problem, but with the miniaturization of the contact area, the change in the contact state due to the drift is large. It becomes a problem. However, the conventional method does not take such measures against drift. Further, in the conventional method, since the probe and the wiring are contacted in the atmosphere, if the contact area becomes finer in the future,
Contact resistance due to oxide films on the wiring and the tip of the probe and contaminants becomes a big problem. In addition, not only cutting and peeling processing for measuring the electrical characteristics of the element, but also metal processing such as pad formation and wiring formation is required. It was not possible with the conventional method that uses the processing described in 1.

【0006】一方、上記第2の手法(電子ビームテス
タ)では、電子ビームを用いるため、高い面分解能で表
面電位情報を得ることが出来るが、回路へ与える入力パ
タンは電子素子の入力端子から行うため、特定の局所的
位置に任意の電圧を印加することはできなかった。この
ため、特定位置だけの電気特性、例えば電流電圧特性等
を計測することはできなかった。このため、電子ビーム
テスタによる不良解析には、多くのテストパタンを試す
必要があり、これで場所が同定できたとしても、不良の
原因を特定することは難しかった。
On the other hand, in the second method (electron beam tester), since the electron beam is used, surface potential information can be obtained with high surface resolution, but the input pattern given to the circuit is from the input terminal of the electronic element. Therefore, it was not possible to apply an arbitrary voltage to a specific local position. For this reason, it was not possible to measure the electrical characteristics of only a specific position, such as current-voltage characteristics. Therefore, it is necessary to try many test patterns for failure analysis by the electron beam tester, and it is difficult to identify the cause of the failure even if the location can be identified.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、第一に、探針先端と、該探針を接触させるべき試料
内の特定の位置を観察するための顕微手段として、電子
照射系、またはイオン照射系と2次電子検出系により構
成される顕微手段を設ける。この顕微手段は、nmレベル
の分解能を有する。
In order to solve the above-mentioned problems, firstly, electron irradiation is used as a microscopic means for observing a tip of a probe and a specific position in a sample to which the probe is brought into contact. A microscopic means composed of a system or an ion irradiation system and a secondary electron detection system is provided. This microscopic means has a resolution of nm level.

【0008】また、探針先端を試料に接触させるために
位置合せ用の移動機構と、接近機構を設ける。ここで、
探針と試料の間の接触は確実に電気的導通がとれ、かつ
探針や試料が損傷しないようにする必要がある。このた
め本発明では、接触手法として、探針・試料間の接触電
流が飽和することで接触確認を行い、確実な電気的導通
を実現する。ここで、探針や試料を損傷しないために
は、接触時の接近速度を小さくする必要があるため、本
発明では、トンネル電流や原子間力を検出することで接
触直前の位置検出をして、その位置からの接近速度のみ
を小さくとることができる。また、ゲート電極のように
接触電流が流れない場所への接触には、力検出による接
触確認や、交流バイアス印加による接触電流実効値の飽
和等を用いて接触確認を行うことが出来る。また、本発
明では、試料表面の探針を接触させるべき位置の電位を
モニタすることで、正確な接触確認を行うこともでき
る。つまり、探針と試料間にバイアスを与えた状態で、
探針と試料を接触させると、探針・試料間に接触抵抗が
ある場合には、この接触抵抗により電圧降下が起きるた
め、探針が接触した位置の試料電位はこの電圧降下の分
だけ探針電位より小さくなる(探針側がプラスの場
合)。そこで、この探針が接触した位置の試料電位が探
針に印加した電圧と、ある誤差範囲で等しくなること
で、接触抵抗が小さくなったと判断できる。こうして、
接触確認を行うことができる。本発明では、上記の試料
電位モニタには、エネルギーフィルタを有する2次電子
検出器を用いているしかし、本発明では、観察に電子や
イオンといった荷電粒子を用いているため、探針と試料
の接触時に試料表面の電位が変化するため、この1次荷
電粒子ビームが電界変化により曲げられ、観察位置がず
れるといった問題が生じる。これを補正するために、本
発明では接触直前の探針先端位置を顕微鏡像のパタン情
報としてメモリに記録し、探針接触により観察位置ずれ
が生じたら、観察領域を広げてメモリのパタン情報との
パタン照合を行い探針先端位置を割り出して、その位置
を中心にして高倍観察に戻すという手法を用いる。
Further, a moving mechanism for positioning and an approaching mechanism are provided to bring the tip of the probe into contact with the sample. here,
It is necessary to ensure electrical contact between the probe and the sample and prevent damage to the probe and the sample. Therefore, in the present invention, as a contact method, contact confirmation is performed by saturating the contact current between the probe and the sample, and reliable electrical conduction is realized. Here, in order to prevent damage to the probe and the sample, it is necessary to reduce the approach speed at the time of contact, so in the present invention, the position immediately before contact is detected by detecting the tunnel current or the atomic force. , Only the approach speed from that position can be made small. Further, for contact with a place where no contact current flows, such as a gate electrode, contact confirmation by force detection, saturation of effective contact current value by AC bias application, or the like can be used for contact confirmation. Further, in the present invention, accurate contact confirmation can be performed by monitoring the potential of the position on the sample surface where the probe should come into contact. In other words, with a bias applied between the probe and the sample,
When contacting the probe with the sample, if there is contact resistance between the probe and sample, a voltage drop will occur due to this contact resistance, so the sample potential at the position where the probe comes into contact is detected by this voltage drop. It becomes smaller than the needle potential (when the probe side is positive). Therefore, it can be determined that the contact resistance is reduced by making the sample potential at the position where the probe comes into contact equal to the voltage applied to the probe within a certain error range. Thus
Contact confirmation can be performed. In the present invention, a secondary electron detector having an energy filter is used for the sample potential monitor, but since charged particles such as electrons and ions are used for observation in the present invention, the probe and the sample Since the potential of the sample surface changes at the time of contact, this primary charged particle beam is bent by a change in the electric field, which causes a problem that the observation position shifts. In order to correct this, in the present invention, the probe tip position immediately before contact is recorded in the memory as pattern information of the microscopic image, and if the observation position shift occurs due to the probe contact, the observation region is expanded and the pattern information of the memory is stored. Pattern matching is performed to find the position of the tip of the probe and return to high-magnification observation centered on that position.

【0009】また、探針と試料の相対的なドリフトによ
る接触状態の変化を防ぐためには、ドリフトによるずれ
を補うか、接触から電気特性測定終了までの時間を短く
するかが必要となる。そこで、1つの手法としては、探
針にばね効果を持たせて、変位を吸収させることが考え
られる。従来にも、縦方向にばね効果を持つ探針は存在
した。しかし、この従来の目的は、探針接触時の衝撃を
緩和するためのものであり、ドリフトのような微小変位
を補うことを目的とはしていなかった。また、従来法
は、横方向(試料表面に水平な方向)には、ばね効果を
持たないため、この方向のドリフトには全く対応できな
かった。本発明では、探針に縦、横両方向共にばね効果
を有する探針を用いることで、全方向のドリフトによる
ずれをばね構造部で吸収できるようにしている。また、
電気的特性測定に用いるすべての探針を接触直前の状態
(トンネル電流または原子間力検出状態)で一時保持し
た後、すべての探針を同時に接触させることで、すぐに
電気特性測定に入ることができるため、接触時間を短く
することができ、ドリフトによる影響を最小にすること
ができる。
Further, in order to prevent the change in the contact state due to the relative drift between the probe and the sample, it is necessary to compensate for the shift due to the drift or to shorten the time from the contact to the end of the electrical characteristic measurement. Therefore, as one method, it is considered that the probe has a spring effect to absorb the displacement. Conventionally, there has been a probe having a spring effect in the vertical direction. However, this conventional purpose is to alleviate the impact at the time of contact with the probe, and has not been intended to compensate for minute displacement such as drift. Further, the conventional method does not have a spring effect in the lateral direction (direction parallel to the sample surface), and therefore cannot cope with drift in this direction at all. In the present invention, by using a probe having a spring effect in both the vertical and horizontal directions as the probe, the spring structure portion can absorb the deviation due to the drift in all directions. Also,
Immediately start electrical property measurement by temporarily holding all the probes used for electrical characteristic measurement in the state immediately before contact (tunnel current or atomic force detection state), and then contacting all the probes at the same time. Therefore, the contact time can be shortened and the influence of drift can be minimized.

【0010】探針と試料の接触面積の微細化に伴って増
大する配線上や探針先端の酸化膜や汚染物質等による接
触抵抗問題に対して、本発明では、測定を真空中で行う
ため、汚染を少なく抑えることができる。また、探針接
触の前に探針や試料の表面をイオンビームや、電子ビー
ムや、光を照射することで、これら酸化膜や汚染物質等
を除去できるようにしている。
To solve the problem of contact resistance due to oxide films or contaminants on the wiring or on the tip of the probe which increases with the miniaturization of the contact area between the probe and the sample, in the present invention, the measurement is performed in vacuum. The pollution can be reduced. Further, by irradiating the surface of the probe or the sample with an ion beam, an electron beam, or light before the contact with the probe, it is possible to remove these oxide films, contaminants, and the like.

【0011】電気的特性は、試料に接触させた探針間の
電流電圧特性等を測定することで得られる。本発明で
は、探針を用いているため、電子ビームテスタでは不可
能であった試料表面の任意位置への電圧印加も可能であ
る。ここで、顕微手段に用いる荷電粒子ビーム(電子、
またはイオンビーム)が、電流電圧特性に影響を与える
場合に、この電気特性測定中のみこの荷電粒子ビームを
遮断することができる照射系を持つ。また、本発明で
は、荷電粒子照射系と2次電子検出系を装備しているた
め、この2次電子検出系にエネルギーフィルタを付加す
ることで、電子ビームテスタのように、試料表面電位分
布を観察することができる。このため、探針で、試料表
面の任意位置に電圧を印加しながら、その時の試料表面
電位分布を計測することも可能となる。
The electrical characteristics can be obtained by measuring the current-voltage characteristics between the probes brought into contact with the sample. In the present invention, since the probe is used, it is possible to apply a voltage to an arbitrary position on the sample surface, which is not possible with the electron beam tester. Here, the charged particle beam (electron,
Or an ion beam) affects the current-voltage characteristics, it has an irradiation system that can block the charged particle beam only during the measurement of the electrical characteristics. In addition, since the present invention is equipped with a charged particle irradiation system and a secondary electron detection system, by adding an energy filter to this secondary electron detection system, the sample surface potential distribution can be calculated like an electron beam tester. Can be observed. Therefore, it is possible to measure the sample surface potential distribution at that time while applying a voltage to an arbitrary position on the sample surface with the probe.

【0012】素子特性測定前の試料加工では、本発明で
は、集束イオンビームを用いることで、0.1μm以下の微
細加工を行うことが出来る。電子ビームの場合も反応性
アシストガスと組み合わせることで、微細加工が可能と
なる。このため、電子素子の一部分を孤立化させること
が出来るため、不良位置同定が容易となる。また、本発
明では、加工を真空中で行うため、堆積性ガスと照射ビ
ーム(イオン、または電子、またはレーザ)の使用によ
り金属膜の堆積が可能であり、探針接触のための電極パ
ッドの形成が可能となる。また、表面に出ていない下層
の素子や配線に探針のコンタクトを行いたい場合には、
従来のようにその上面をすべて剥離しなくとも、本発明
では、配線へのコンタクトホールを表面からあけた後、
この孔を上記のように堆積ガスと照射ビームを用いて金
属で埋め込むことにより、表面からの電気的接触が可能
となる。
In the sample processing before the device characteristic measurement, in the present invention, by using the focused ion beam, fine processing of 0.1 μm or less can be performed. Even in the case of electron beam, fine processing is possible by combining with reactive assist gas. Therefore, a part of the electronic element can be isolated, so that the defective position can be easily identified. Further, in the present invention, since the processing is performed in a vacuum, it is possible to deposit a metal film by using a deposition gas and an irradiation beam (ion, electron, or laser). Can be formed. Also, if you want to make a probe contact to the lower layer element or wiring that is not exposed,
Even if the upper surface is not peeled off as in the conventional case, in the present invention, after opening a contact hole to the wiring from the surface,
By filling the holes with metal as described above using the deposition gas and the irradiation beam, electrical contact from the surface becomes possible.

【0013】[0013]

【発明の実施の形態】本発明の目的は、電子素子の不良
位置同定と、その特性測定のために電子素子の局所的な
電気特性を測定することにある。本発明では、走査型電
子顕微鏡のようなnmオーダの分解能を持つ顕微手段で観
察しながら、探針先端をこの探針を接触させるべき微小
領域に接触させる。ここで、この接触電流の飽和等によ
り正確な接触確認を行う。その後、これら探針間の電流
電圧特性を測定することで、素子の局所情報を得ること
ができる。こうして、不良位置同定を行うことができ
る。また、この電気特性測定系に判別回路を付加するこ
とで、良品、不良品の選別を行うこともできる。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to identify a defective position of an electronic element and measure a local electric characteristic of the electronic element to measure its characteristic. In the present invention, the tip of the probe is brought into contact with a minute region to be brought into contact with the probe while observing with a microscopic device having a resolution on the order of nm such as a scanning electron microscope. Here, accurate contact confirmation is performed by saturation of the contact current. Then, by measuring the current-voltage characteristics between these probes, the local information of the element can be obtained. In this way, the defective position can be identified. Further, by adding a discriminating circuit to this electric characteristic measuring system, it is possible to select good products and defective products.

【0014】以下〈実施例1〉〜〈実施例9〉に、具体
的実施例を示す。
Specific examples are shown below in <Example 1> to <Example 9>.

【0015】〈実施例1〉図1に、本発明の全体システ
ムを示す。ここでは4つの探針1、2、3、4を用いて
電極5、6、7、8間の電気特性を測定することを目的
とする。これらの探針1、2、3、4は、試料9の0.1
μmレベルの微小領域にも接触できるように、先端の曲
率半径が0.1μm以下であることが望ましい。まず、試料
9表面と探針1、2、3、4を走査型電子顕微鏡で観察
する。この走査型電子顕微鏡は、電子源10、偏向レン
ズ11、2次電子検出器13から構成されており、20
が1次電子ビーム、21が試料表面から放出される2次
電子である。こうして観察しながら探針1、2、3、4
をそれぞれ接触させるべき電極5、6、7、8の上まで
移動させる。この移動は、探針1、2、3、4それぞれ
の探針移動機構14、15、16、17を探針移動制御
回路18で制御することにより行う。ここで、本実施例
では、探針移動機構14、15、16、17には、高い
位置分解能を有する圧電素子を用いている。
<Embodiment 1> FIG. 1 shows the entire system of the present invention. Here, the purpose is to measure the electrical characteristics between the electrodes 5, 6, 7, and 8 by using the four probes 1, 2, 3, and 4. These probes 1, 2, 3, and 4 are 0.1 of the sample 9
It is desirable that the radius of curvature of the tip be 0.1 μm or less so that it can be contacted with a minute region of the μm level. First, the surface of the sample 9 and the probes 1, 2, 3, and 4 are observed with a scanning electron microscope. This scanning electron microscope is composed of an electron source 10, a deflection lens 11, and a secondary electron detector 13.
Is a primary electron beam, and 21 is a secondary electron emitted from the sample surface. While observing in this way, the tips 1, 2, 3, 4
Are moved above the electrodes 5, 6, 7, 8 to be brought into contact with each other. This movement is performed by controlling the probe movement mechanism 14, 15, 16, 17 of each of the probes 1, 2, 3, 4 by the probe movement control circuit 18. Here, in this embodiment, the probe moving mechanisms 14, 15, 16 and 17 use piezoelectric elements having a high positional resolution.

【0016】次に、図2を用いて接触法を述べる。この
図では、探針1の接触のみを取り上げて説明する。この
接触において重要なことは、探針1と電極5を確実に接
触させ、かつ両者が損傷しないように最低限の接触にす
ることである。このように両者を損傷しないためには、
探針の接近速度を小さくする必要がある。しかし、全体
的に接近速度を小さくすると、接近にかかる時間が長く
なりすぎるという問題が生じる。これを解決するために
は、接触直前の位置を検知し、この位置までは接近速度
を大きくし、この直前位置から接触完了位置までの接近
速度のみを小さくすればよい。このためには、接触直前
位置を検知する方法が必要となる。例えば、この図2で
用いるようなトンネル電流検出による方法がある。図2
(a)の50は、トンネル電流検出用のプリアンプであ
り、通常pAからnA程度の電流を検出できる。51は切換
えスイッチであり、トンネル電流検出用プリアンプ50
と接触電流検出用電流計30の切換えを行う。52、5
3は、探針接近時と電気特性測定時で閉ループを切換え
るためのスイッチである。図2(b)は探針1を接近させ
るときの接近距離Ztと電流(トンネル電流、接触電
流)Iの関係を示した図である。まず、切り替えスイッ
チ51をプリアンプ50側に、52を電源31側に、5
3を切換えスイッチ51側に接続して、電源31によ
り、探針1、試料9間にバイアスを掛けて、探針1を電
極5に接近させて行くと、Z51でトンネル電流が流れ
る。このときの探針1と電極5間の距離は約1nm以下に
なる。これにより、接触直前位置の検出ができる。ただ
し、トンネル電流検出位置Z51で単に接近を止めるだけ
では、探針移動機構14の応答速度やクリープ現象のた
めに、探針1が電極5に接近して勝手に接触してしまう
ことがあるので、トンネル電流が一定になるように探針
移動機構14に探針移動制御回路18からフィードバッ
クを掛けた方が良い。その後、切換えスイッチ51を電
流計30側に接続し、接近速度を小さくして、探針1を
電極9に接近させる。すると、探針1と電極5が接触し
たところ(Z52)で接触電流が流れはじめる。このまま
探針1を接近させていくと、接触面積の増加等により接
触電流Iが図5(b)に示すように増加していく。そし
て、この接触電流Iが接触状態変化による影響を受けな
くなった状態、すなわち接触電流が飽和した状態になる
ことで接触完了として、探針1を接近距離Z53の位置で
図1の探針移動機構14を探針移動制御回路18からの
制御で止める。こうすることで、探針1と電極5の確実
な接触をとることができる。
Next, the contact method will be described with reference to FIG. In this figure, only the contact of the probe 1 is taken up for description. What is important in this contact is to make sure that the probe 1 and the electrode 5 are in contact with each other and that the contact between the probe 1 and the electrode 5 is a minimum so as not to damage them. In order not to damage both,
It is necessary to reduce the approach speed of the probe. However, if the approaching speed is reduced as a whole, the problem that the approaching time becomes too long occurs. In order to solve this, it is sufficient to detect the position immediately before the contact, increase the approach speed to this position, and decrease only the approach speed from the immediately preceding position to the contact completion position. For this purpose, a method of detecting the position immediately before contact is required. For example, there is a method of detecting a tunnel current as used in FIG. FIG.
Reference numeral 50 in (a) is a preamplifier for detecting a tunnel current, which can normally detect a current of about pA to nA. Reference numeral 51 denotes a changeover switch, which is a preamplifier 50 for detecting a tunnel current.
And the ammeter 30 for contact current detection are switched. 52, 5
Reference numeral 3 is a switch for switching the closed loop between when the probe approaches and when the electrical characteristics are measured. FIG. 2B is a diagram showing the relationship between the approach distance Zt and the current (tunnel current, contact current) I when the probe 1 is approached. First, the changeover switch 51 is on the preamplifier 50 side, 52 is on the power supply 31 side, and
When 3 is connected to the changeover switch 51 side and a bias is applied between the probe 1 and the sample 9 by the power supply 31 to bring the probe 1 closer to the electrode 5, a tunnel current flows at Z 51 . At this time, the distance between the probe 1 and the electrode 5 is about 1 nm or less. As a result, the position immediately before contact can be detected. However, if the approach is simply stopped at the tunnel current detection position Z 51 , the probe 1 may approach the electrode 5 and come into contact with the electrode 5 due to the response speed of the probe moving mechanism 14 and the creep phenomenon. Therefore, it is better to apply feedback from the probe movement control circuit 18 to the probe moving mechanism 14 so that the tunnel current becomes constant. After that, the changeover switch 51 is connected to the side of the ammeter 30 to reduce the approaching speed and bring the probe 1 closer to the electrode 9. Then, a contact current starts to flow when the probe 1 and the electrode 5 come into contact with each other (Z 52 ). When the probe 1 is moved closer to this state, the contact current I increases as shown in FIG. 5B due to an increase in the contact area. When the contact current I is no longer affected by the change in the contact state, that is, when the contact current is saturated, the contact is considered to be completed, and the probe 1 is moved at the approach distance Z 53 to move the probe shown in FIG. The mechanism 14 is stopped by the control of the probe movement control circuit 18. By doing so, the probe 1 and the electrode 5 can be surely brought into contact with each other.

【0017】こうして、すべての探針1、2、3、4の
接触が完了すると、切換えスイッチ52、53により試
料9と探針1が電気特性測定回路19に接続され、探針
1、2、3、4間の電流電圧特性が測定される。こうす
ることで素子の局所的電気特性を得ることができる。
When the contact of all the probes 1, 2, 3, 4 is completed in this way, the sample 9 and the probe 1 are connected to the electrical characteristic measuring circuit 19 by the changeover switches 52, 53, and the probes 1, 2, The current-voltage characteristic between 3 and 4 is measured. By doing so, local electrical characteristics of the device can be obtained.

【0018】図3(a)に、MOSデバイスを測定試料と
する場合の探針接触例を示す。ここでは3つの探針1、
2、3のみを使用し、それぞれソース電極35、ゲート
電極36、ドレイン電極37に接触させる。例えば、出
力特性を測定する場合には、探針1によりソース電極3
5をグランドレベルに落とし、探針2によりゲート電極
36の電圧VGをパラメータとして振りながら、探針3
によりドレイン電極37に印加するドレイン電圧V
Dと、探針1、3間(ソース、ドレイン間)を流れるド
レイン電流IDの関係を測定することで、このMOSの
出力特性を得ることができる。例えばこれがnチャネル
MOSであり、良品であれば、図3(b)の特性が計測さ
れることになる。
FIG. 3A shows an example of probe contact when a MOS device is used as a measurement sample. Here, three probes 1,
Only two or three are used and brought into contact with the source electrode 35, the gate electrode 36, and the drain electrode 37, respectively. For example, when measuring output characteristics, the source electrode 3 is moved by the probe 1.
5 to the ground level, the probe 2 swings the voltage V G of the gate electrode 36 as a parameter, and the probe 3
The drain voltage V applied to the drain electrode 37 by
By measuring and D, between the probe 1 and 3 (source, drain) of the relationship between the drain current I D flowing through, it is possible to obtain an output characteristic of the MOS. For example, if this is an n-channel MOS and is a non-defective product, the characteristics shown in FIG. 3B will be measured.

【0019】このように、探針を試料に接触させ、その
部分から測定される局所的な素子特性を良品と不良品で
比較して行くことで、不良位置を同定することが可能と
なる。この手法では、不良と考えられる位置に直接電圧
を印加して電気特性を得られるので、電子素子の入力端
子からテストパタンを入力して不良位置を同定する手法
と比較して、不良位置の同定が容易であり、またその不
良状態も詳細に計測することが可能である。
In this way, the defective position can be identified by bringing the probe into contact with the sample and comparing the local element characteristics measured from that portion between the good product and the defective product. In this method, the electrical characteristics can be obtained by directly applying a voltage to the position considered to be defective, so the defective position can be identified by comparing with the method of inputting a test pattern from the input terminal of the electronic element to identify the defective position. Is easy, and the defective state can be measured in detail.

【0020】〈実施例2〉本実施例では、試料からの2
次電子により試料表面情報を得る方法について説明す
る。ここでは、簡略化のために探針1だけを示している
が、実際には図1に示すように、複数探針で行う。図4
の100はエネルギーフィルタであり、101は電位計
測器である。ここでは始めに、この検出系を用いた接触
法を説明する。実施例1で図2を用いて説明した、接触
電流飽和による接触確認は、あくまでも接触状態が安定
になることを目的とした接触法であり、接触抵抗を素子
特性に対して、誤差範囲まで下げることを保証しない。
すなわち、図2の接触法で、良品と不良品の特性を相対
比較して、不良検知を行うことは可能であるが、得られ
た素子特性が、絶対的なものであるかどうかについては
明確には判断できない。このため、絶対的な特性が重要
となる測定を行うためには、本実施例で図4を用いて述
べるような接触確認を用いる必要がある。ここでも探針
1の接触のみを抽出して説明する。まず、電子源10か
ら出た1次電子ビーム20を偏向レンズ11により探針
1が接触すべき電極5に照射する。このとき、この電極
5から放出される2次電子21をエネルギーフィルタ1
00を通して2次電子検出器13で検出する。この2次
電子のエネルギー分布情報から電位計測器101で電極
5の電位Vを知ることができる。例えば、探針1に電位
Vtのバイアスを加えて接近させたとすると、接近距離
Ztと電極5電位Vの関係は、図4(b)のようになる。
101は探針1が電極5に接触した位置にあたるが、こ
の近傍では接触抵抗による電圧降下が大きいため、まだ
電位が探針電圧Vtまで上がりきっておらず、まだ接触
が悪い状態であり、接触抵抗が素子抵抗に対して無視で
きない状態であることを示している。すなわち、確実な
接触を取るためには、電極5電位が、ある誤差レベルV
t'以上になる位置Z102まで来ることで接触完了として
接近を止める。これは、すなわち接触抵抗による電圧降
下が無視できるレベル(例えば1%等)以下の誤差にな
ったときを接触完了として判断していることになる。こ
うして確実な接触確認を行うことが可能になる。
<Embodiment 2> In the present embodiment, 2 from the sample is used.
A method of obtaining the sample surface information by the next electron will be described. Although only the probe 1 is shown here for simplification, a plurality of probes is actually used as shown in FIG. FIG.
100 is an energy filter, and 101 is a potential measuring device. Here, first, a contact method using this detection system will be described. The contact confirmation by the contact current saturation described with reference to FIG. 2 in the first embodiment is a contact method for the purpose of stabilizing the contact state, and lowers the contact resistance to the error range with respect to the element characteristics. I do not guarantee that.
That is, with the contact method of FIG. 2, it is possible to relatively compare the characteristics of a non-defective product and a defective product to detect defects, but it is clear whether the obtained device characteristics are absolute or not. Can't judge. Therefore, in order to perform the measurement in which the absolute characteristics are important, it is necessary to use the contact confirmation as described with reference to FIG. 4 in this embodiment. Here, only the contact of the probe 1 will be extracted and described. First, the primary electron beam 20 emitted from the electron source 10 is applied to the electrode 5 to be contacted by the probe 1 by the deflection lens 11. At this time, the secondary electrons 21 emitted from the electrode 5 are transferred to the energy filter 1
00 through the secondary electron detector 13. The potential V of the electrode 5 can be known by the potential measuring device 101 from the energy distribution information of the secondary electrons. For example, when the probe 1 is biased with a potential Vt to be brought close to it, the relationship between the approach distance Zt and the potential V of the electrode 5 is as shown in FIG. 4B.
Z 101 corresponds to the position where the probe 1 comes into contact with the electrode 5, but since the voltage drop due to contact resistance is large in this vicinity, the potential has not yet risen to the probe voltage Vt, and the contact is still poor. It shows that the contact resistance is in a state that cannot be ignored with respect to the element resistance. That is, in order to make a reliable contact, the potential of the electrode 5 is set to a certain error level V
When the position reaches the position Z 102 which is equal to or more than t ', the contact is completed and the approach is stopped. This means that when the voltage drop due to the contact resistance has an error below a negligible level (for example, 1%), it is judged that the contact is completed. In this way, it becomes possible to perform reliable contact confirmation.

【0021】また、この図4(a)の装置を用いること
で、エネルギーフィルタ100により従来の電子ビーム
テスタと同様に、配線電位をモニタできるため、これに
より得られる試料表面電位分布を観察することが可能で
あり、これを不良解析に用いることもできる。ただし、
従来の電子ビームテスタと異なり、この場合は探針を有
するため、探針で局所的に電圧を加えながら試料表面電
位分布を得ることができるため、不良位置同定が容易と
なる。
Further, by using the apparatus of FIG. 4A, the wiring potential can be monitored by the energy filter 100 like the conventional electron beam tester. Therefore, the sample surface potential distribution obtained by this can be observed. It is also possible to use this for failure analysis. However,
Unlike the conventional electron beam tester, in this case, since the probe is provided, it is possible to obtain the sample surface potential distribution while locally applying a voltage at the probe, which facilitates defective position identification.

【0022】ところで、探針と試料の接触に際して、以
下に述べるような問題が、観察において生じる。本実施
例では電子ビームを用いているが、バイアスを掛けた探
針1が電極5に接触し、電極電位Vが図4(b)で説明し
たように変化することで、図5のように、この1次電子
ビーム110が曲げられ、観察像の位置ずれが生じる。
この場合、他の探針2、3、4の接触が完了していない
と、これらの探針の接触位置を観察できなくなり、正し
い接触ができなくなる。また、上記したように、配線電
位モニタによる不良解析を行う場合には、この像ずれが
致命的なものとなる。このため、この像ずれを補正する
手法が必要となる。これについて、図6により説明す
る。図6(a)の131は本来観察すべき領域であり、1
32は探針1が電極5に接触したためにずれた観察領域
である。図6の(b)から(g)は観察像である。図6(b)
は、探針1が電極5に接触する直前の低倍観察像であ
り、この観察像を画像メモリ133に取り込み、探針の
パタン認識を行う。次に、探針1を電極5に正確に接触
させるために高倍観察を行う(図6(c))。この図6
(c)の観察領域は、図6(a)の領域131に相当する。
ここで、探針1が電極5に接触すると、観察領域が図6
(a)の領域132のようにずれるため、観察像が図6
(d)のように、探針も電極も見えない状態になる。そこ
で、図6(a)の像ずれ補正回路130により、偏向レン
ズ11で1次電子ビーム20を広領域走査に切換えて、
観察をする(図6(e))。ここで、画像メモリ133に
取り込んでおいた初期画像(図6(b))と現在の画像
(図6(e))を像ずれ補正回路130で照合し、パタン
認識から初期中心位置を割り出す。この割り出された中
心位置のずれの量だけ、像ずれ補正回路130により偏
向レンズ11にオフセットを加え、1次電子ビーム20
のずれを補正し、初期中心位置に戻す(図6(f))。こ
うして、この補正された位置を中心にして、高倍観察に
戻す(図6(g))ことで、像ずれを補正することができ
る。
By the way, when the probe and the sample come into contact with each other, the following problems occur in the observation. Although the electron beam is used in the present embodiment, the biased probe 1 comes into contact with the electrode 5 and the electrode potential V changes as described with reference to FIG. The primary electron beam 110 is bent, and the displacement of the observed image occurs.
In this case, if the contact of the other probes 2, 3 and 4 is not completed, the contact position of these probes cannot be observed and correct contact cannot be performed. Further, as described above, this image shift becomes fatal when performing the failure analysis by the wiring potential monitor. Therefore, a method for correcting this image shift is necessary. This will be described with reference to FIG. Reference numeral 131 in FIG. 6A is an area to be originally observed, and 1
Reference numeral 32 is an observation region that is displaced due to the contact of the probe 1 with the electrode 5. 6B to 6G are observed images. FIG. 6 (b)
Is a low-magnification observation image immediately before the probe 1 comes into contact with the electrode 5. The observation image is stored in the image memory 133 and the pattern of the probe is recognized. Next, high magnification observation is performed in order to bring the probe 1 into accurate contact with the electrode 5 (FIG. 6C). This figure 6
The observation area of (c) corresponds to the area 131 of FIG.
Here, when the probe 1 comes into contact with the electrode 5, the observation area becomes
Since it shifts like the region 132 in (a), the observed image is shown in FIG.
As in (d), neither the probe nor the electrode can be seen. Therefore, by the image shift correction circuit 130 of FIG. 6A, the deflection lens 11 switches the primary electron beam 20 to the wide area scan,
Observe (Fig. 6 (e)). Here, the initial image (FIG. 6B) stored in the image memory 133 and the current image (FIG. 6E) are collated by the image shift correction circuit 130, and the initial center position is determined from the pattern recognition. An offset is added to the deflection lens 11 by the image shift correction circuit 130 by the amount of the calculated shift of the center position, and the primary electron beam 20
Is corrected and returned to the initial center position (FIG. 6 (f)). In this way, the image shift can be corrected by returning to the high-magnification observation centering on the corrected position (FIG. 6 (g)).

【0023】上記の手法では、パタン認識による探針形
状の取込みを用いたが、簡単に探針形状を取込む手法に
ついて、図7を用いて説明する。102は探針1、試料
9間に電圧を与える電源であるが、変調を掛けられるよ
うになっている。すなわち、まだ探針1が試料に接触し
ていない状態では、この電源102による変調で、探針
1電位は変化するが、試料9表面電位は変化しない。こ
のため、この変調間に、2次電子による観察像を得る
と、図7(b)、(c)に示すように、探針コントラストの
みが変化することになる。こうして、探針形状を画像メ
モリ133に取り込むことが可能になる。
In the above method, the capture of the probe shape by pattern recognition was used, but a method of simply capturing the probe shape will be described with reference to FIG. A power source 102 applies a voltage between the probe 1 and the sample 9 and can be modulated. That is, when the probe 1 is not in contact with the sample yet, the potential of the probe 1 changes due to the modulation by the power source 102, but the surface potential of the sample 9 does not change. Therefore, when an observation image of secondary electrons is obtained during this modulation, only the probe contrast changes as shown in FIGS. 7B and 7C. In this way, the probe shape can be stored in the image memory 133.

【0024】本実施例で用いた装置では、2次電子検出
系にエネルギーフィルタを持つため、接触位置の電位モ
ニタにより、正確な探針接触確認を行うことができる。
また、探針による電圧印加と組み合わせた、試料表面電
位分布測定による不良解析が可能であり、不良位置同定
が容易となる。また、像ずれ補正により、観察場所を一
定に保つことができる。
In the apparatus used in this embodiment, since the secondary electron detection system has an energy filter, it is possible to confirm the probe contact accurately by monitoring the potential of the contact position.
Further, it is possible to perform defect analysis by measuring the sample surface potential distribution in combination with voltage application by a probe, which facilitates defect position identification. Further, the image shift correction makes it possible to keep the observation location constant.

【0025】〈実施例3〉本実施例では、電気特性測定
(探針接触)の前に行う測定試料の加工手段を有する装
置について、図8を用いて説明を行う。この装置では、
図1の電子照射系の代わりに、イオン源150、静電レ
ンズ151、153、偏向器152により構成されるイ
オンビーム照射系を持ち、イオンビーム154を試料9
に照射することができる。
<Embodiment 3> In this embodiment, an apparatus having a processing means for processing a measurement sample before the electrical characteristic measurement (probe contact) will be described with reference to FIG. In this device,
Instead of the electron irradiation system of FIG. 1, an ion beam irradiation system composed of an ion source 150, electrostatic lenses 151 and 153, and a deflector 152 is provided, and an ion beam 154 is applied to the sample 9.
Can be irradiated.

【0026】LSIを測定試料として不良検出を行うた
めには、測定したい配線や電極に、ただ探針を接触させ
るだけでは、その部分の電気特性を得ることはできな
い。なぜなら、これらの配線は様々な場所で閉ループを
形成しており、実際に測定したい部分(例えば、1つの
MOSFET等)以外の電気特性を含んでしまうからで
ある。このため、実際に測定したい部分だけの電気特性
を得るためには、その部分を孤立させる必要がある。こ
のために、試料の加工手段が必要になる。この加工手段
としてイオンビーム照射系を付加したものが、図8に示
す装置である。この場合は、加工のみならず、観察手段
としてもこのイオンビーム154を用いる。すなわち、
イオンビーム154を試料9表面上で走査し、試料9か
ら放出される2次電子を2次電子検出器13で検出する
ことにより、いわゆる走査型イオン顕微鏡として観察す
ることができる。もちろんこの場合には、試料9表面が
できるだけ損傷を受けないようにするため、加工する場
合よりイオン電流量を絞る必要がある。それでも、イオ
ンビームによる損傷が問題になる場合には、図8では電
子照射系を取り除いてイオン照射系を導入しているが、
電子照射系も併存させて電子ビームによる観察を行うこ
ともできる。
In order to detect defects by using the LSI as a measurement sample, it is not possible to obtain the electrical characteristics of that portion by merely bringing the probe into contact with the wiring or electrode to be measured. This is because these wirings form closed loops at various places and include electrical characteristics other than the portion to be actually measured (for example, one MOSFET). Therefore, in order to obtain the electrical characteristics of only the portion to be actually measured, it is necessary to isolate that portion. For this reason, a sample processing means is required. An apparatus shown in FIG. 8 has an ion beam irradiation system added as the processing means. In this case, the ion beam 154 is used not only for processing but also as an observation means. That is,
By scanning the ion beam 154 on the surface of the sample 9 and detecting the secondary electrons emitted from the sample 9 by the secondary electron detector 13, it can be observed as a so-called scanning ion microscope. Of course, in this case, in order to prevent the surface of the sample 9 from being damaged as much as possible, it is necessary to reduce the amount of ion current more than in the case of processing. Even if the damage due to the ion beam is still a problem, the electron irradiation system is removed and the ion irradiation system is introduced in FIG.
An electron irradiation system can also be provided for observation with an electron beam.

【0027】ここから、試料加工の種類について、図9
により説明する。図9(a)の素子160の電気特性を測
定したい場合には、上記したように測定部分が他の場所
で閉ループを形成しないように、この素子160につな
がる配線、例えば161をイオンビーム154を用いて
溝162を掘ることで、回路を遮断しこの素子160だ
けを孤立化させるようにする。こうして、探針により電
気特性を測定すれば、この素子160のみの特性を得る
ことが可能となる。また、測定したい素子が、必ず試料
表面に出ているとは限らない。例えば、保護膜が形成さ
れている場合や、多層配線で下層に埋まっている場合が
有り得る。しかし、このままでは、探針を接触させるこ
とができないので、この場合には、図9(b)に示すよう
に、測定したい素子163の上の層をイオンビーム15
4で削り取り、素子163に探針が接触できるように加
工する必要がある。また、探針を配線に直接接触させる
ことが難しい場合には、図9(c)に示すように、ガスノ
ズル165により堆積性ガス166を導入しながらイオ
ンビーム154を照射することで、金属膜を形成するこ
とができるため、配線167と導通が取れる探針接触用
パッド164を形成することが可能である。また、図9
(b)のように広範囲を削りとらなくても、図9(d)に示
すように下層の素子163を測定したい場合には、配線
168までイオンビーム154でコンタクトホール16
9をあけ、図9(c)と同様に、図9(d')のように金属
膜170によりコンタクトホール169を埋め込み、こ
の埋め込み金属部170に探針を接触させることで、素
子163の特性を測定することも可能になる。
From here, FIG. 9 shows the types of sample processing.
This will be described below. When it is desired to measure the electrical characteristics of the element 160 of FIG. 9A, the wiring connected to the element 160, for example, 161 is connected to the ion beam 154 so that the measurement portion does not form a closed loop at other places as described above. The trench 162 is used to cut off the circuit so that only this element 160 is isolated. Thus, by measuring the electrical characteristics with the probe, it is possible to obtain the characteristics of only the element 160. In addition, the element to be measured does not always appear on the sample surface. For example, there may be a case where a protective film is formed, or a case where the protective film is buried in a lower layer. However, since the probe cannot be brought into contact with this state as it is, in this case, as shown in FIG. 9B, the layer above the element 163 to be measured is covered with the ion beam 15
It is necessary to grind away with 4 and process so that the probe can contact the element 163. When it is difficult to directly contact the probe with the wiring, as shown in FIG. 9C, the ion beam 154 is irradiated while introducing the deposition gas 166 by the gas nozzle 165 to irradiate the metal film. Since it can be formed, it is possible to form the probe contact pad 164 that can be electrically connected to the wiring 167. In addition, FIG.
If it is desired to measure the lower layer device 163 as shown in FIG. 9D without removing the wide area as shown in FIG. 9B, the wiring 168 is contacted with the ion beam 154 to the contact hole 16
9 is opened, and as in FIG. 9C, the contact hole 169 is filled with the metal film 170 as shown in FIG. 9D ′, and the probe is brought into contact with the embedded metal portion 170, so that the characteristics of the element 163 are improved. It is also possible to measure

【0028】ここでは、イオンビームによる加工を説明
したが、加工にレーザを用いることも可能である。ただ
しこの場合は、レーザ波長で決まる加工精度(例えば、
YAGレーザなら0.4μm程度)が限度となる。このため
微細加工には集束イオンビームのほうが有効である。ま
た、反応性アシストガスを用いればイオンビームやレー
ザビームの場合にも加工速度を速めることができ、電子
ビームでも加工することが可能となる。
Although the processing by the ion beam is described here, it is also possible to use a laser for the processing. However, in this case, the processing accuracy determined by the laser wavelength (for example,
The limit is about 0.4 μm for a YAG laser. Therefore, the focused ion beam is more effective for fine processing. Further, if the reactive assist gas is used, the processing speed can be increased even in the case of an ion beam or a laser beam, and it becomes possible to perform processing with an electron beam.

【0029】また、図8では、加工機能を有する装置と
して説明したが、必ずしも加工手段と探針による電気特
性測定装置が1つの装置になっている必要はなく、別の
加工装置で図9に示したような加工を行い、図1に示す
不良検査装置で測定を行うこともできる。
Further, in FIG. 8, the device having the processing function has been described, but the processing means and the electric characteristic measuring device by the probe do not necessarily have to be one device, and another processing device is used as shown in FIG. It is also possible to perform the processing as shown and perform the measurement with the defect inspection apparatus shown in FIG.

【0030】本実施例で説明したような試料加工を行う
ことで、素子の特定部のみの電気特性が測定可能で、素
子の不良位置の絞り込みができるので、不良同定が容易
になる。
By performing the sample processing as described in the present embodiment, it is possible to measure the electrical characteristics of only a specific portion of the device and narrow down the defective position of the device, so that the defect identification becomes easy.

【0031】〈実施例4〉本実施例では、探針と試料を
接触させる前の、清浄化処理について図10を用いて説
明する。探針と試料の間の接触不良の多くは、これらの
間に絶縁性の物質が混入することにより起こる。例え
ば、酸化膜や、汚染物質がこの原因となる。従来のテス
タでは、ボンディングパッドのような大きな電極に探針
を接触させていたため、接触面積を大きくとることがで
きたので、これらの絶縁性物質が、あまり問題とはなら
なかった。しかし、現在の素子のように配線が微小化
し、この配線に直接探針を接触させる必要が出てくる
と、接触面積を大きくとることができないため、このよ
うな絶縁性物質が接触不良に大きく影響を与えることに
なる。本発明は、従来と異なり、真空中で電気特性測定
を行うため、探針接触前に試料や探針の表面を清浄化し
てやれば、このような接触不良を抑えることができる。
<Embodiment 4> In this embodiment, a cleaning process before contacting a probe with a sample will be described with reference to FIG. Most of the poor contact between the probe and the sample is caused by mixing of an insulating substance between them. For example, oxide films and contaminants cause this. In the conventional tester, since the probe is brought into contact with a large electrode such as a bonding pad, the contact area can be made large, and therefore these insulating substances do not cause much problems. However, when the wiring becomes minute like the current element and it becomes necessary to directly contact the probe with this wiring, the contact area cannot be made large. It will have an impact. Unlike the prior art, the present invention measures electrical characteristics in a vacuum. Therefore, if the surface of the sample or the probe is cleaned before the contact with the probe, such contact failure can be suppressed.

【0032】例えば、図10(a)のように、素子160
を測定するために探針を接触させるべき配線167の上
に汚染物質172が存在する場合には、図8に示すよう
な装置でイオンビーム154を照射することにより17
3のように汚染物質を除去することが可能である。
For example, as shown in FIG.
When the contaminant 172 is present on the wiring 167 to which the probe is to be contacted to measure the ion beam, the ion beam 154 is irradiated by an apparatus as shown in FIG.
It is possible to remove contaminants as in 3.

【0033】また、図10(b)のように、探針表面の汚
染物質の場合も、図10(a)と同様に、イオンビーム1
54を照射することで、175のように除去することが
できる。また、探針の場合には、様々な試料を測定する
と、前に測定した試料物質が付着している可能性がある
ので、この手法により毎回探針を清浄化する必要があ
る。
Further, as shown in FIG. 10B, also in the case of contaminants on the surface of the probe, the ion beam 1 is used as in the case of FIG. 10A.
By irradiating 54, it can be removed as in 175. Further, in the case of the probe, when various samples are measured, there is a possibility that the sample substance measured previously is attached, and therefore it is necessary to clean the probe every time by this method.

【0034】また、この清浄化は、イオンビームだけで
なく、電子ビームや光の照射でも可能である。
The cleaning can be performed not only by ion beam but also by irradiation with electron beam or light.

【0035】本実施例では、真空中で清浄化させること
で、探針と試料の確実な接触が可能となり、正確な素子
特性を測定できるようになる。
In this embodiment, by cleaning in vacuum, the probe and sample can be brought into reliable contact with each other, and accurate device characteristics can be measured.

【0036】〈実施例5〉探針を用いた電気特性測定手
法で、最も重要なことは、探針と試料の接触を確実に保
つことである。しかし、通常の場合、探針と試料の間に
は、熱的、または機械的なドリフトが存在するために、
相対位置の変化が起こるため、接触状態を一定に保つこ
とは難しい。これを補うためには、例えば、図11に示
すようなばね効果を有する探針を用いればよい。この探
針40を電極43に接触させた状態で、探針ホルダ42
と電極43の相対位置が、図11(a)から図11(b)の
ようにΔx変化した場合でも、コの字型のばね構造部4
1がばね効果によりこの相対変位を吸収し、接触を良好
に保つことができる。ほかにも、図4(c)、(d)のよう
な形状を持つ探針44、45も、同様にドリフトをばね
構造部46、47で吸収することができる。この場合、
探針40先端と電極43が摩擦力を持つ必要があるた
め、ばね構造部41が微小な力で圧縮された状態で接触
するようにしておく。図12は探針接近距離Ztと、探
針試料間を流れる接触電流Icの関係を示したものであ
る。上記までの接触法では、接触電流が飽和する位置Z
23を接触完了としたが、このばね探針ではさらにZ24
で接近させ、探針40先端と電極43が摩擦力を持つ様
にする。この探針停止位置Z24は、当然のことながら、
探針1と電極4が破損しない位置である必要があるが、
このばね探針の場合には、縦方向にもばね効果を持つた
めに、ばね効果を持たない探針と比較して、探針、試料
等が破損しない接近領域が広いため、Z24の設定は容易
である。また、測定に必要な時間とドリフト速度から見
積もると、変位距離Δxは高々1μm程度であるため、
ばね構造部41の弾性変形で十分に追従できる。また、
このばね構造部43は試料表面に垂直方向のドリフトも
吸収することができるため、接触状態を一定に保つこと
ができる。
<Embodiment 5> In the electric characteristic measuring method using the probe, the most important thing is to surely maintain the contact between the probe and the sample. However, in the usual case, there is a thermal or mechanical drift between the probe and the sample,
Since the relative position changes, it is difficult to keep the contact state constant. To compensate for this, for example, a probe having a spring effect as shown in FIG. 11 may be used. With the probe 40 in contact with the electrode 43, the probe holder 42
Even if the relative position of the electrode 43 and the electrode 43 changes by Δx as shown in FIG. 11A to FIG. 11B, the U-shaped spring structure portion 4
1 absorbs this relative displacement due to the spring effect, and good contact can be maintained. In addition, the probes 44 and 45 having the shapes shown in FIGS. 4C and 4D can similarly absorb the drift by the spring structure portions 46 and 47. in this case,
Since the tip of the probe 40 and the electrode 43 need to have a frictional force, the spring structure portion 41 is made to contact with each other while being compressed by a small force. FIG. 12 shows the relationship between the probe approach distance Zt and the contact current Ic flowing between the probe samples. In the contact method up to the above, the position Z where the contact current is saturated
Although the contact of 23 is completed, this spring probe further approaches Z 24 so that the tip of the probe 40 and the electrode 43 have a frictional force. This probe stop position Z 24 is, of course,
It is necessary that the probe 1 and the electrode 4 are not damaged.
In the case of this spring probe, since it has a spring effect in the vertical direction as well, compared to a probe that does not have a spring effect, the approach area where the probe, sample, etc. are not damaged is wider, so the setting of Z 24 is set. Is easy. Also, when estimated from the time required for measurement and the drift velocity, the displacement distance Δx is at most about 1 μm,
The spring structure portion 41 can be sufficiently deformed by elastic deformation. Also,
Since this spring structure portion 43 can also absorb the drift in the direction perpendicular to the sample surface, the contact state can be kept constant.

【0037】本実施例によれば、探針と試料のドリフト
による相対位置変化をばね構造部で吸収することが可能
であり、接触を良好に保つことができる。
According to this embodiment, the change in relative position due to the drift of the probe and the sample can be absorbed by the spring structure, and good contact can be maintained.

【0038】〈実施例6〉上記実施例では観察手段に電
子ビームを用いているため、この照射電子が電極や探針
に吸収される。探針間の電圧電流特性の測定で流れる素
子電流が、この電子ビームによる電流を無視できる程度
に大きければ問題にはならないが、素子電流が小さく電
子ビームによる電流が無視できない場合には、この観察
用の電子ビームを遮断する必要がある。この場合には、
1次電子ビーム照射系に図13に示すように、ブランキ
ング電極140と遮蔽板141を付加すればよい。すな
わち、探針接触のための観察時には、図13(a)に示す
ようにブランキング電極140を働かせずに1次電子ビ
ーム20を通し、探針による電気特性測定時には図13
(b)に示すようにブランキング電極140に電圧を掛
け、1次電子ビーム20を曲げて、遮蔽板141で遮ら
れるようにする。
<Embodiment 6> Since an electron beam is used as the observation means in the above embodiment, the irradiated electrons are absorbed by the electrodes and the probe. It does not matter if the element current flowing in the measurement of the voltage-current characteristics between the probes is large enough to ignore this electron beam current, but if the element current is small and the electron beam current cannot be ignored, this observation It is necessary to block the electron beam for. In this case,
A blanking electrode 140 and a shield plate 141 may be added to the primary electron beam irradiation system as shown in FIG. That is, at the time of observation for contacting with the probe, the primary electron beam 20 is passed through without operating the blanking electrode 140 as shown in FIG.
As shown in (b), a voltage is applied to the blanking electrode 140 to bend the primary electron beam 20 so that it is shielded by the shield plate 141.

【0039】本実施例によれば、電子照射の影響を受け
ずに、正しい電気特性を得ることができる。
According to this embodiment, correct electric characteristics can be obtained without being affected by electron irradiation.

【0040】〈実施例7〉本実施例では、実施例2に示
したように探針接触時に像ずれが生じても、像ずれ補正
に頼らずに確実に探針を接触させる方法について述べ
る。この接触法を図14に示す。ここでは、簡単のため
に2つの探針1、2だけ抽出している。始めは、探針
1、2ともまだ接触すべき電極5、6から離れた状態で
ある(図14(a))。まず、探針1をトンネル電流検出
状態まで接近させる(図14(b))。ここで、この探針
1を一定トンネル電流によるフィードバック制御状態に
保つ。次に、探針2を接近させ、同様にトンネル電流検
出状態に保つ(図14(c))。こうして2本ともトンネ
ル状態に保った後、同時に2本の探針1、2を接近さ
せ、それぞれ電極5、6に接触させる。これにより、観
察像がずれて、探針1、2先端と電極5、6の接触位置
が見えなくなったとしても、正しく接触させることがで
きる。ここでは2本の探針の場合を説明したが、これ以
上の複数の探針を用いる場合にも、一旦すべての探針を
トンネル状態に保った後、同時にすべての探針を接近さ
せて接触させることで、同様に像移動の影響を受けるこ
となく正しく接触させることができる。
<Embodiment 7> In the present embodiment, a method will be described in which even if an image shift occurs when the probe comes into contact as shown in the second embodiment, the probe is surely brought into contact without depending on the image shift correction. This contact method is shown in FIG. Here, for the sake of simplicity, only two probes 1 and 2 are extracted. Initially, the probe needles 1 and 2 are separated from the electrodes 5 and 6 to be in contact with each other (FIG. 14A). First, the probe 1 is brought close to the tunnel current detection state (FIG. 14B). Here, the probe 1 is kept in a feedback control state by a constant tunnel current. Next, the probe 2 is moved closer to the tunnel current detection state (FIG. 14C). After keeping both of them in the tunnel state in this way, the two probes 1 and 2 are simultaneously approached and brought into contact with the electrodes 5 and 6, respectively. As a result, even if the observation images are displaced and the contact positions of the tips of the probes 1 and 2 and the electrodes 5 and 6 are no longer visible, they can be correctly contacted. Although the case of using two probes has been described here, even when using more than one probe, all the probes are once kept in a tunnel state, and then all the probes are brought close to each other to make contact. By doing so, it is possible to make a correct contact without being affected by the image movement as well.

【0041】また、この場合には、すべての探針を同時
に接触させるため、探針接触から電気特性計測までの時
間を短縮することができるため、実施例6で述べたよう
なドリフトによる接触状態の変化も起きにくいという利
点がある。
Further, in this case, since all the probes are brought into contact with each other at the same time, the time from the probe contact to the measurement of the electrical characteristics can be shortened. Therefore, the contact state due to the drift as described in the sixth embodiment can be achieved. The advantage is that changes in

【0042】本実施例によれば、すべての探針を同時に
接触させるため、観察像の像ずれの影響を受けることな
く接触を行うことができ、またドリフトによる影響も抑
えることが可能となる。
According to this embodiment, since all the probes are brought into contact with each other at the same time, they can be brought into contact with each other without being affected by the image shift of the observed image, and the influence of drift can be suppressed.

【0043】〈実施例8〉実施例1では、接触の直前位
置検出として、トンネル電流検出を用いたが、本実施例
で説明するように、接触直前位置検出に探針1先端と電
極5間に働く原子間力を用いる方法もある。図15(a)
の60は原子間力検出用のカンチレバーであり、原子間
力によるこのカンチレバー60の変形により力を受ける
圧電素子62、63の圧電起電力を電圧計64で検知す
る。すなわち電圧計64で計測される起電力から探針1
と電極5の間の原子間力を知ることができる。図15
(b)は探針1を接近させるときの接近距離Ztと探針1
と電極5の間に働く原子間力Faの関係を示した図であ
る。まず、切り替えスイッチ65を電圧計64側に接続
して、探針1を電極5に接近させて行くと、Z61から原
子間力Faが急激に大きくなる。ここで、ある力F62
なったところZ62で接近を中止する。これにより、接触
直前位置の検出ができる。ただし、原子間力検出位置Z
62で単に接近を止めるだけでは、図2でも説明したよう
に、探針移動機構14の応答速度やクリープ現象のため
に、探針1が電極5に接近して勝手に接触してしまうこ
とがあるので、原子間力がF62で一定になるように探針
移動機構14に探針移動制御回路18からフィードバッ
クを掛けた方が良い。その後、切換えスイッチ65を電
流計30側に接続し、接近速度を小さくして、探針1を
電極5に接近させる。図15(c)は、探針1を接近させ
るときの接近距離Ztと接触電流Icの関係を示した図で
ある。この後は、図2の説明と同じであり、Z63で探針
1と電極5が接触し、この接触電流が飽和する位置Z64
で探針1の接近を止め、接触完了とする。
<Embodiment 8> In Embodiment 1, the tunnel current detection is used as the position just before the contact, but as described in this embodiment, the position immediately before the contact is detected between the tip of the probe 1 and the electrode 5. There is also a method that uses the atomic force that acts on. Figure 15 (a)
60 is a cantilever for detecting an atomic force, and the voltmeter 64 detects the piezoelectric electromotive force of the piezoelectric elements 62 and 63 which receives a force due to the deformation of the cantilever 60 due to the atomic force. That is, from the electromotive force measured by the voltmeter 64, the probe 1
The atomic force between the electrode and the electrode 5 can be known. FIG.
(b) is the approach distance Zt when the probe 1 is approached and the probe 1
FIG. 6 is a diagram showing a relationship of an interatomic force Fa acting between the electrode 5 and the electrode 5. First, when the changeover switch 65 is connected to the voltmeter 64 side and the probe 1 is moved closer to the electrode 5, the atomic force Fa increases rapidly from Z 61 . Here, when a certain force F 62 is reached, the approach is stopped at Z 62 . As a result, the position immediately before contact can be detected. However, the atomic force detection position Z
If the approach is simply stopped at 62 , the probe 1 may approach the electrode 5 and come into contact with the electrode 5 due to the response speed of the probe moving mechanism 14 and the creep phenomenon, as described in FIG. Therefore, it is better to apply feedback from the probe movement control circuit 18 to the probe moving mechanism 14 so that the atomic force becomes constant at F 62 . After that, the changeover switch 65 is connected to the side of the ammeter 30 to reduce the approaching speed so that the probe 1 approaches the electrode 5. FIG. 15C is a diagram showing the relationship between the approach distance Zt and the contact current Ic when the probe 1 is approached. Thereafter, the same as described in FIG. 2, the position Z 64 that the probe 1 and the electrode 5 is in contact with Z 63, the contact current is saturated
Stops the approach of the probe 1 and completes the contact.

【0044】本実施例の接触法では、探針先端が誤って
絶縁物の上に接近したとしても、原子間力による直前位
置検出を用いているため、探針先端を破損することがな
い。
In the contact method of the present embodiment, even if the tip of the probe accidentally approaches the insulator, since the immediately preceding position detection by the atomic force is used, the tip of the probe is not damaged.

【0045】〈実施例9〉上記実施例で説明してきたよ
うに、接触させる電極等に必ず接触電流が流れるとは限
らない。例えば、電極がゲート等の電極であれば、試料
基板とは基本的に絶縁されているので、接触電流が検出
できない。この場合には、以下に述べるような接触法を
用いる。
<Embodiment 9> As described in the above embodiments, the contact current does not always flow through the electrodes or the like to be contacted. For example, if the electrode is an electrode such as a gate, the contact current cannot be detected because it is basically insulated from the sample substrate. In this case, the contact method as described below is used.

【0046】絶縁物を介している場合でも、交流バイア
スを印加すれば交流電流を流すことができる。この交流
バイアス印加を用いる方法について図16により説明す
る。まず、探針1と試料9の間に交流電源80により交
流電圧を印加して、接触により流れる交流電流の実効値
を電流計30で計測する(図16(a))。このときの、
接近距離Ztと接触電流実効値Icの関係を示したものが
図16(b)であり、接近距離がZ81のときに探針1と電
極5接触し、接近距離がZ82のときに電流Icが飽和す
る。この飽和を接触確認とし、探針移動制御回路18が
探針移動機構14を接近距離Z82止める。こうして、接
触を完了することができる。この交流電流を用いる場合
も、トンネル電流検出を介して接触させることもでき
る。
Even through an insulator, an AC current can be passed by applying an AC bias. A method using this AC bias application will be described with reference to FIG. First, an AC voltage is applied between the probe 1 and the sample 9 by the AC power supply 80, and the effective value of the AC current flowing by contact is measured by the ammeter 30 (FIG. 16A). At this time,
FIG. 16B shows the relationship between the approach distance Zt and the contact current effective value Ic. When the approach distance is Z 81 , the probe 1 and the electrode 5 come into contact with each other, and when the approach distance is Z 82 , the current flows. Ic is saturated. With this saturation as contact confirmation, the probe movement control circuit 18 stops the probe movement mechanism 14 by the approach distance Z 82 . In this way, the contact can be completed. When using this alternating current, it is also possible to make contact via tunneling current detection.

【0047】また、図17に示すように接触電流の代わ
りに、探針1と電極5の間に働く力を用いて接触を確認
することができる。この場合には、図15の原子間力を
計測する場合と異なり、板ばね90は接触による力を検
出するので、通常原子間力測定に用いられるnNオーダの
力より充分大きな力を計測する必要があるため、図15
(a)のカンチレバー60より剛性の強いものを使用す
る。こうして、探針1を接近させると、接近距離Ztと
探針1・電極5間に働く力Fの関係は、図17(b)に示
すようになるので、特定の力F91になったところで探針
移動制御回路18の命令で探針移動機構14を止めるこ
とで、接触を行うことができる。ここで、この接触力F
は、探針先端形状、探針先端材質(強度)、接触電極の
大きさ、接触電極の材質等により決定される。例えば、
図17(b)のFmin以下では、接触が弱く、接触抵抗が
大きかったり、オーミック接触になっていなかったりと
いう問題が生じる。また、Fmax以上の力になると、探
針が破壊されたり、配線が倒れたりといった問題が生じ
る。つまり、確実な接触を行うためには、Fmin、Fmax
に対応した接近距離ZminとZmaxの間まで接近させる必
要がある。
Further, as shown in FIG. 17, the contact can be confirmed by using the force acting between the probe 1 and the electrode 5 instead of the contact current. In this case, unlike the case of measuring the atomic force in FIG. 15, the leaf spring 90 detects the force due to the contact, so it is necessary to measure a force sufficiently larger than the nN order force normally used for the atomic force measurement. 15
A cantilever having a higher rigidity than the cantilever 60 of (a) is used. When the probe 1 is approached in this way, the relationship between the approach distance Zt and the force F acting between the probe 1 and the electrode 5 becomes as shown in FIG. 17 (b), so that at a specific force F 91. Contact can be made by stopping the probe moving mechanism 14 according to a command from the probe movement control circuit 18. Where this contact force F
Is determined by the shape of the tip of the probe, the material (strength) of the probe tip, the size of the contact electrode, the material of the contact electrode, and the like. For example,
Below Fmin in FIG. 17B, there are problems that the contact is weak, the contact resistance is large, and the ohmic contact is not established. Further, if the force exceeds Fmax, problems such as breakage of the probe and collapse of the wiring occur. In other words, in order to make reliable contact, Fmin, Fmax
It is necessary to approach the distances Zmin and Zmax corresponding to.

【0048】本実施例によれば、ゲート電極のような絶
縁物を介した電極にも正しく探針を接触させることがで
きる。
According to this embodiment, the probe can be properly brought into contact with an electrode such as a gate electrode via an insulator.

【0049】[0049]

【発明の効果】本発明によれば、高分解能の荷電粒子照
射による顕微手段と高い位置精度をもつ探針移動機構を
有するので、0.1μm以下の微細構造を持つ電子素子にお
いても、任意の位置に探針を接触させることが出来るた
め、任意の位置の電気的特性を測定することが出来る。
また、トンネル電流等による接触直前検出を介して接触
電流が飽和するまで探針を接近させることによる接触確
認等を用いることで確実な接触が行えるため、正確な素
子特性の測定が可能となる。また、真空中でのイオン等
を用いた清浄化装置により、探針や試料表面の汚染物質
等を除去できるため、正確な素子特性の測定が可能とな
る。また、イオンビーム等を用いた加工では、0.1μm以
下の微細加工も可能であり、電子素子の特定位置を孤立
化させることが出来るため、不良位置同定が容易とな
る。また、本発明では真空中で加工を行うため、堆積性
ガスとイオンビーム等の使用により金属膜の堆積が可能
であり、電極パッド形成により探針接触が容易になり、
またコンタクトホール形成により下層配線への電気的接
触も可能になる。このため、電子素子内部の局所的電気
特性も計測可能となる。
EFFECTS OF THE INVENTION According to the present invention, since it has a microscopic means by high-resolution charged particle irradiation and a probe moving mechanism having a high positional accuracy, it is possible to set an arbitrary position even in an electronic device having a fine structure of 0.1 μm or less. Since the probe can be brought into contact with, the electrical characteristics at any position can be measured.
In addition, since accurate contact can be performed by using contact confirmation or the like by bringing the probe close until the contact current is saturated through detection immediately before contact by tunnel current or the like, accurate element characteristics can be measured. Further, since the contaminants and the like on the probe and the sample surface can be removed by the cleaning device using the ions in vacuum, the element characteristics can be accurately measured. Further, in the processing using an ion beam or the like, fine processing of 0.1 μm or less is possible, and the specific position of the electronic element can be isolated, so that the defective position can be easily identified. Further, in the present invention, since the processing is performed in a vacuum, it is possible to deposit a metal film by using a deposition gas and an ion beam, and the electrode pad formation facilitates probe contact,
Further, by forming the contact hole, it is possible to make electrical contact with the lower layer wiring. Therefore, it becomes possible to measure the local electrical characteristics inside the electronic element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】探針電流検出系を示す図。FIG. 2 is a diagram showing a probe current detection system.

【図3】実デバイスでの測定例を示す図。FIG. 3 is a diagram showing an example of measurement with an actual device.

【図4】試料電位検出系を示す図。FIG. 4 is a diagram showing a sample potential detection system.

【図5】探針接触による試料電位変化により曲げられる
電子ビームを示す図。
FIG. 5 is a diagram showing an electron beam that is bent by a change in sample potential due to contact with a probe.

【図6】観察像ずれの補正法を示す図。FIG. 6 is a diagram showing a method of correcting an observation image shift.

【図7】探針マーキング法を示す図。FIG. 7 is a diagram showing a probe marking method.

【図8】イオンビーム照射系を有する不良検査装置を示
す図。
FIG. 8 is a diagram showing a defect inspection apparatus having an ion beam irradiation system.

【図9】試料加工を示す図。FIG. 9 is a view showing sample processing.

【図10】清浄化法を示す図。FIG. 10 is a diagram showing a cleaning method.

【図11】ばね効果を有する探針を示す図。FIG. 11 is a view showing a probe having a spring effect.

【図12】ばね探針における接触状態を示す図。FIG. 12 is a diagram showing a contact state of a spring probe.

【図13】電子ビームの遮断法を示す図。FIG. 13 is a diagram showing an electron beam blocking method.

【図14】複数探針の同時接触手法を示す図。FIG. 14 is a diagram showing a simultaneous contact method for a plurality of probes.

【図15】原子間力検出を介する接触法を示す図。FIG. 15 is a diagram showing a contact method via atomic force detection.

【図16】交流電圧印加によるゲート電極への接触法を
示す図。
FIG. 16 is a diagram showing a method of contacting a gate electrode by applying an AC voltage.

【図17】力検出によるゲート電極への接触法を示す
図。
FIG. 17 is a diagram showing a method of contacting a gate electrode by force detection.

【符号の説明】[Explanation of symbols]

1、2、3、4…探針、5、6、7、8…電極、9…試
料、10…電子源、11…偏向レンズ、13…2次電子
検出器、14、15、16、17…探針移動機構、18
…探針移動制御回路、19…電気特性測定回路、20…
1次電子ビーム、21…2次電子、30…電流計、31
…電源、35…ソース電極、36…ゲート電極、37…
ドレイン電極、40…探針、41…ばね構造部、42…
探針ホルダ、44、45…探針、46、47…ばね構造
部、50…プリアンプ、51、52、53…切換えスイ
ッチ、60…カンチレバー、62、63…圧電素子、6
4…電圧計、65…切換えスイッチ、70…絶縁層、7
1…スイッチ、80…交流電源、90…板ばね、100
…エネルギーフィルタ、101…電位計測器、102…
交流電源、110…曲げられた電子ビーム、130…像
ずれ補正回路、131…初期観察領域、132…像ずれ
した観察領域、133…画像メモリ、140…ブランキ
ング電極、141…遮蔽板、150…イオン源、151
…静電レンズ、152…偏向器、153…静電レンズ、
154…イオンビーム、160…測定素子、161…配
線、162…加工溝、163…下層測定素子、164…
電極パッド、165…ノズル、166…堆積性ガス、1
67、168…配線、169…コンタクトホール、17
0…埋め込み金属部、172…汚染物質、173…除去
された汚染物質、174…汚染物質、175…除去され
た汚染物質。
1, 2, 3, 4 ... Probe, 5, 6, 7, 8 ... Electrode, 9 ... Sample, 10 ... Electron source, 11 ... Deflection lens, 13 ... Secondary electron detector, 14, 15, 16, 17 ... Probe moving mechanism, 18
... Probe movement control circuit, 19 ... Electrical characteristic measurement circuit, 20 ...
Primary electron beam, 21 ... Secondary electron, 30 ... Ammeter, 31
... power supply, 35 ... source electrode, 36 ... gate electrode, 37 ...
Drain electrode, 40 ... Probe, 41 ... Spring structure part, 42 ...
Probe holder, 44, 45 ... Probes, 46, 47 ... Spring structure part, 50 ... Preamplifier, 51, 52, 53 ... Changeover switch, 60 ... Cantilever, 62, 63 ... Piezoelectric element, 6
4 ... Voltmeter, 65 ... Changeover switch, 70 ... Insulating layer, 7
1 ... Switch, 80 ... AC power supply, 90 ... Leaf spring, 100
... Energy filter, 101 ... Potential measuring device, 102 ...
AC power supply, 110 ... Bent electron beam, 130 ... Image shift correction circuit, 131 ... Initial observation region, 132 ... Image shift observation region, 133 ... Image memory, 140 ... Blanking electrode, 141 ... Shielding plate, 150 ... Ion source, 151
... electrostatic lens, 152 ... deflector, 153 ... electrostatic lens,
154 ... Ion beam, 160 ... Measuring element, 161 ... Wiring, 162 ... Machining groove, 163 ... Lower layer measuring element, 164 ...
Electrode pad, 165 ... Nozzle, 166 ... Depositive gas, 1
67, 168 ... Wiring, 169 ... Contact hole, 17
0 ... Embedded metal part, 172 ... Pollutant, 173 ... Removed pollutant, 174 ... Pollutant, 175 ... Removed pollutant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01R 31/26 G01R 31/26 J 31/302 H01L 21/304 341D 31/319 G01R 31/28 L H01L 21/3065 R 21/304 341 H01L 21/302 E (72)発明者 荒川 史子 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所中央研究所内 (72)発明者 朝山 匡一郎 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所中央研究所内 (72)発明者 三井 泰裕 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所中央研究所内 (72)発明者 中原 仁 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 川浪 義実 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G01R 31/26 G01R 31/26 J 31/302 H01L 21/304 341D 31/319 G01R 31/28 L H01L 21/3065 R 21/304 341 H01L 21/302 E (72) Inventor Fumiko Arakawa 5-20-1 Kamimizumotocho, Kodaira-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Seiichiro Asayama 5-20-1 Kamimizuhoncho, Kodaira-shi, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. (72) Inventor Yasuhiro Mitsui 5-20-1 Kamimizuhoncho, Kodaira-shi, Tokyo Inside the Central Research Laboratory of Hitachi Ltd. ( 72) Inventor Hitoshi Nakahara 1-280, Higashi Koikekubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi, Ltd. (72) Yoshimi Kawanami, Toin love, Kokubunji, Tokyo Kubo chome 280 address Hitachi, Ltd. center within the Institute

Claims (31)

【特許請求の範囲】[Claims] 【請求項1】真空容器と、該真空容器に探針と該探針移
動機構と、試料を載置する試料台と、荷電粒子源と、該
荷電粒子源からのビームを照射する照射手段と、試料か
らの荷電粒子を検出する検出器と、該探針と試料間、ま
たは該探針間に電圧印加をする手段と、試料の電気特性
を測定する手段を有する不良検査装置。
1. A vacuum container, a probe in the vacuum container, a mechanism for moving the probe, a sample stage on which a sample is placed, a charged particle source, and an irradiation means for irradiating a beam from the charged particle source. A defect inspection apparatus having a detector for detecting charged particles from a sample, a means for applying a voltage between the probe and the sample, or a means for applying a voltage between the probes, and a means for measuring an electrical characteristic of the sample.
【請求項2】真空容器と、該真空容器に探針と該探針移
動機構と、試料を載置する試料台と、荷電粒子源と、該
荷電粒子源からのビームを照射する照射手段と、試料か
らの荷電粒子を検出する検出器と、該探針と試料間、ま
たは該探針間に電圧印加をする手段と、試料の電気特性
を測定する手段と、該測定手段からの測定値に基づいて
不良を判定する判定手段を有する不良検査装置。
2. A vacuum container, a probe in the vacuum container, a mechanism for moving the probe, a sample stage on which a sample is placed, a charged particle source, and irradiation means for irradiating a beam from the charged particle source. A detector for detecting charged particles from the sample, a means for applying a voltage between the probe and the sample, or a means for applying a voltage between the probes, a means for measuring the electrical characteristics of the sample, and a measurement value from the measuring means A defect inspection apparatus having a determination means for determining a defect based on the above.
【請求項3】前記の試料の電気特性を測定する手段は、
前記探針と試料の任意の組み合わせの間の電流電圧特性
を測定することを特徴とする請求項1、2記載の不良検
査装置。
3. The means for measuring the electrical characteristics of the sample comprises:
The defect inspection apparatus according to claim 1, wherein a current-voltage characteristic between an arbitrary combination of the probe and the sample is measured.
【請求項4】前記の試料の電気特性を測定する手段は、
エネルギーフィルタを有する前記の荷電粒子を検出する
検出器による試料表面の電位測定であることを特徴とす
る請求項1、2記載の不良検査装置。
4. The means for measuring the electrical characteristics of the sample comprises:
3. The defect inspection device according to claim 1, wherein the potential measurement is performed on the sample surface by a detector having an energy filter for detecting the charged particles.
【請求項5】真空容器と、該真空容器に探針と該探針移
動機構と、試料を載置する試料台と、荷電粒子源と、該
荷電粒子源からのビームを照射する照射手段と、試料か
らの荷電粒子を検出する検出器と、該探針、または試料
の電位変化による荷電粒子の照射位置ずれを補正する機
構と、該探針と試料間、または該探針間に電圧印加をす
る手段と、試料の電気特性を測定する手段を有する不良
検査装置。
5. A vacuum container, a probe in the vacuum container, a mechanism for moving the probe, a sample stage on which a sample is placed, a charged particle source, and an irradiation unit for irradiating a beam from the charged particle source. A detector for detecting charged particles from a sample, a mechanism for correcting the irradiation position deviation of the probe or charged particles due to a potential change of the sample, and a voltage application between the probe and the sample or between the probes. A defect inspection apparatus having means for measuring and electrical characteristics of a sample.
【請求項6】前記荷電粒子の照射位置ずれを補正する機
構は、前記探針と試料の接触直前の観察像を記録する画
像メモリと、観察像ずれが生じることで広領域観察に切
換える機構と、該広領域観察像と前記画像メモリに記録
された観察像を照合して、観察像中心位置の移動量を割
り出し、該移動量だけ観察領域を移動させることでずれ
を補正することを特徴とする請求項5記載の不良検査装
置。
6. A mechanism for correcting the irradiation position deviation of the charged particles includes an image memory for recording an observation image immediately before contact between the probe and the sample, and a mechanism for switching to wide area observation when the observation image deviation occurs. The wide area observation image and the observation image recorded in the image memory are collated, the movement amount of the observation image center position is calculated, and the deviation is corrected by moving the observation area by the movement amount. The defect inspection apparatus according to claim 5.
【請求項7】前記観察像の照合において、前記探針へ変
調電圧の印加を行い、荷電粒子検出器により検出される
画像情報の中から該変調に同期した信号より探針形状を
取得することを特徴とする請求項6記載の不良検査装
置。
7. In the collation of the observation image, a modulation voltage is applied to the probe, and the probe shape is obtained from a signal synchronized with the modulation from image information detected by a charged particle detector. The defect inspection device according to claim 6.
【請求項8】真空容器と、該真空容器に探針と該探針移
動機構と、試料を載置する試料台と、荷電粒子源と、該
荷電粒子源からのビームを照射する照射手段と、試料か
らの荷電粒子を検出する検出器と、該探針と試料間、ま
たは該探針間に電圧印加をする手段と、該探針と試料間
を流れる接触電流が飽和することで該探針と試料の接触
確認を行う機構と、試料の電気特性を測定する手段を有
する不良検査装置。
8. A vacuum container, a probe in the vacuum container, a mechanism for moving the probe, a sample stage on which a sample is placed, a charged particle source, and an irradiation unit for irradiating a beam from the charged particle source. , A detector for detecting charged particles from a sample, a means for applying a voltage between the probe and the sample, or a means for applying a voltage between the probe and the probe by saturating a contact current flowing between the probe and the sample. A defect inspection device having a mechanism for confirming contact between a needle and a sample, and means for measuring the electrical characteristics of the sample.
【請求項9】前記接触確認機構は、前記探針と試料間に
流れるトンネル電流の検出を介して該探針と試料の接触
を行うことを特徴とする請求項8記載の不良検査装置。
9. The defect inspection apparatus according to claim 8, wherein the contact confirmation mechanism makes contact between the probe and the sample through detection of a tunnel current flowing between the probe and the sample.
【請求項10】前記不良検査装置において、前記探針と
試料間の接触電流検出とトンネル電流検出には異なる電
流検出器を用い、トンネル電流検出の後、更に該探針と
試料を接近させるときに、該電流検出器を切換える切換
えスイッチを有することを特徴とする請求項9記載の不
良検査装置。
10. In the defect inspection apparatus, different current detectors are used for detecting a contact current and a tunnel current between the probe and the sample, and when the probe and the sample are further brought closer to each other after the tunnel current is detected. The defect inspection apparatus according to claim 9, further comprising a changeover switch for changing over the current detector.
【請求項11】前記不良検査装置において、前記探針と
試料間の接触電流検出時は、該探針と試料間に閉回路を
形成し、試料の電気特性測定時には該探針間に閉回路を
形成するように切換える切換えスイッチを有することを
特徴とする請求項8〜10記載の不良検査装置。
11. In the defect inspection apparatus, a closed circuit is formed between the probe and the sample when a contact current between the probe and the sample is detected, and a closed circuit is formed between the probes when measuring the electrical characteristics of the sample. 11. The defect inspection apparatus according to claim 8, further comprising a changeover switch for changing over so as to form a defect.
【請求項12】真空容器と、該真空容器に探針と該探針
移動機構と、試料を載置する試料台と、荷電粒子源と、
該荷電粒子源からのビームを照射する照射手段と、試料
からの荷電粒子を検出する検出器と、該探針と試料間、
または該探針間に電圧印加をする手段と、検査する試料
表面の該探針が接触すべき位置の電位が、探針印加電圧
により規定される電位になることで該探針と試料の接触
確認を行う機構と、試料の電気特性を測定する手段を有
する不良検査装置。
12. A vacuum container, a probe and a probe moving mechanism in the vacuum container, a sample stage on which a sample is placed, a charged particle source,
Irradiation means for irradiating a beam from the charged particle source, a detector for detecting charged particles from the sample, and between the probe and the sample,
Alternatively, the means for applying a voltage between the probes and the potential at the position on the surface of the sample to be inspected to contact the probe become the potential defined by the probe applied voltage, so that the probe contacts the sample. A defect inspection device having a confirmation mechanism and means for measuring the electrical characteristics of a sample.
【請求項13】探針を試料表面に接触させ、試料特性を
計測する装置の該探針として、該探針と試料との接触時
において、試料表面に平行な方向の探針、試料間の相対
位置変化をばね構造により吸収する構造を持つことを特
徴とする探針。
13. A probe for contacting a sample surface with a sample, wherein the probe is in a direction parallel to the sample surface when the probe is in contact with the sample. A probe having a structure in which a change in relative position is absorbed by a spring structure.
【請求項14】前記探針として、請求項13記載の探針
を有することを特徴とする請求項1〜12記載の不良検
査装置。
14. The defect inspection apparatus according to claim 1, wherein the probe has the probe according to claim 13.
【請求項15】前記探針移動機構として、該探針と試料
の接触後、更に一定距離だけ探針支持部と試料を接近さ
せることを特徴とする請求項14記載の不良検査装置。
15. The defect inspection apparatus according to claim 14, wherein, as the probe moving mechanism, the probe support portion and the sample are brought closer to each other by a predetermined distance after the probe comes into contact with the sample.
【請求項16】前記不良検査装置において、光照射手段
を有することを特徴とする請求項1〜12記載の不良検
査装置。
16. The defect inspection apparatus according to claim 1, further comprising a light irradiation unit in the defect inspection apparatus.
【請求項17】前記荷電粒子照射手段において、前記電
気特性測定中に、前記荷電粒子ビームを遮断する機構を
有することを特徴とする請求項1〜3、5〜12記載の
不良検査装置。
17. The defect inspection apparatus according to claim 1, wherein said charged particle irradiation means has a mechanism for interrupting said charged particle beam during the measurement of said electric characteristics.
【請求項18】前記探針移動機構において、前記電気特
性に用いるすべての前記探針を、試料表面に同時に接触
させることを特徴とする請求項1〜12記載の不良検査
装置。
18. The defect inspection apparatus according to claim 1, wherein in the probe moving mechanism, all of the probes used for the electrical characteristics are brought into contact with the sample surface at the same time.
【請求項19】前記不良検査装置において、前記探針と
試料間に働く力を検出することで該探針と試料の接触確
認を行う機構を有することを特徴とする請求項1〜7記
載の不良検査装置。
19. The defect inspection apparatus according to claim 1, further comprising a mechanism for confirming contact between the probe and the sample by detecting a force acting between the probe and the sample. Defective inspection device.
【請求項20】前記不良検査装置において、該探針と試
料間に交流電圧を印加して該探針と試料間を流れる接触
電流実効値が飽和することで該探針と試料の接触確認を
行う機構を有することを特徴とする請求項1〜11記載
の不良検査装置。
20. In the defect inspection apparatus, an AC voltage is applied between the probe and the sample to saturate an effective value of a contact current flowing between the probe and the sample to confirm contact between the probe and the sample. The defect inspection apparatus according to claim 1, further comprising a mechanism for performing the inspection.
【請求項21】前記接触確認機構は、前記探針と試料間
に働く原子間力の検出を介して該探針と試料の接触を行
うことを特徴とする請求項1〜8、12記載の不良検査
装置。
21. The contact confirmation mechanism makes contact between the probe and the sample through detection of an atomic force acting between the probe and the sample. Defective inspection device.
【請求項22】前記探針移動機構として、前記探針と試
料間に流れるトンネル電流の検出位置からさらに1nm以
上該探針と試料を接近させることを特徴とする請求項1
〜7記載の不良検査装置。
22. The probe moving mechanism further brings the probe and the sample closer to each other by 1 nm or more from a detection position of a tunnel current flowing between the probe and the sample.
~ The defect inspection device according to 7.
【請求項23】前記探針において、該探針先端の曲率半
径が100nm以下であることを特徴とする請求項1〜12
記載の不良検査装置。
23. In the probe, the radius of curvature of the tip of the probe is 100 nm or less.
Defect inspection device described.
【請求項24】前記探針移動機構において、圧電素子に
よる微動機構を有することを特徴とする請求項1〜12
記載の不良検査装置。
24. A fine movement mechanism including a piezoelectric element is provided in the probe movement mechanism.
Defect inspection device described.
【請求項25】荷電粒子ビーム、またはレーザを用い
て、試料の回路切断、または配線形成、またはトレンチ
埋め込み、または電極パッド形成、または保護層除去、
または検査素子の上層除去を行った後、荷電粒子照射系
を有する顕微手段を用いて該試料を観察しながら、探針
を該試料に接触させ、該探針と試料間、または該探針間
の電気特性を測定することで試料の素子特性評価を行う
不良検査方法。
25. Using a charged particle beam or a laser, cutting a circuit of a sample, forming a wiring, burying a trench, forming an electrode pad, or removing a protective layer,
Alternatively, after removing the upper layer of the inspection element, the probe is brought into contact with the sample while observing the sample by using a microscopic means having a charged particle irradiation system, and between the probe and the sample, or between the probes. A defect inspection method that evaluates the device characteristics of a sample by measuring the electrical characteristics of.
【請求項26】荷電粒子ビーム、またはレーザを用い
て、試料の回路切断、または配線形成、またはトレンチ
埋め込み、または電極パッド形成、または保護層除去、
または検査素子の上層除去を行った後、荷電粒子照射系
を有する顕微手段を用いて該試料を観察しながら、探針
を該試料に接触させ、該探針と試料間、または該探針間
に電圧を印加し、該試料表面からの荷電粒子を分光検出
することにより得られる試料表面電位分布情報から該試
料の素子特性評価を行う不良検査方法。
26. Using a charged particle beam or a laser, cutting a circuit of a sample, forming a wiring, filling a trench, forming an electrode pad, or removing a protective layer,
Alternatively, after removing the upper layer of the inspection element, the probe is brought into contact with the sample while observing the sample by using a microscopic means having a charged particle irradiation system, and between the probe and the sample, or between the probes. A defect inspection method for evaluating device characteristics of a sample from information on the sample surface potential distribution obtained by applying a voltage to the sample and spectrally detecting charged particles from the sample surface.
【請求項27】荷電粒子ビーム、または光を用いて、探
針または試料表面上の絶縁性薄膜、または汚染物質の除
去による表面清浄化処理を行った後、荷電粒子照射系を
有する顕微手段を用いて該試料を観察しながら、該探針
を該試料に接触させ、該探針と試料間、または該探針間
の電気特性を測定することで試料の素子特性評価を行う
不良検査方法。
27. A microscopic means having a charged particle irradiation system after performing a surface cleaning treatment by removing an insulating thin film on the surface of a probe or a sample or a contaminant by using a charged particle beam or light. A defect inspection method for evaluating element characteristics of a sample by observing the sample using the probe and bringing the probe into contact with the sample and measuring electrical characteristics between the probe and the sample or between the probe.
【請求項28】荷電粒子ビーム、または光を用いて、探
針または試料表面上の絶縁性薄膜、または汚染物質の除
去による表面清浄化処理を行った後、荷電粒子照射系を
有する顕微手段を用いて該試料を観察しながら、該探針
を該試料に接触させ、該探針と試料間、または該探針間
に電圧を印加し、該試料表面からの荷電粒子を分光検出
することにより得られる試料表面電位分布情報から該試
料の素子特性評価を行う不良検査方法。
28. A microscopic means having a charged particle irradiation system after performing a surface cleaning treatment by removing an insulating thin film on the surface of a probe or a sample or a contaminant by using a charged particle beam or light. By contacting the probe with the sample while observing the sample using a voltage is applied between the probe and the sample, or between the probes, and spectrally detecting charged particles from the surface of the sample. A defect inspection method for evaluating device characteristics of a sample from the obtained surface potential distribution information of the sample.
【請求項29】前記探針と試料の接触において、該探針
と試料間を流れる接触電流が飽和することで該探針と試
料の接触確認を行うことを特徴とする請求項25〜28
記載の不良検査方法。
29. In the contact between the probe and the sample, the contact between the probe and the sample is confirmed by saturating the contact current flowing between the probe and the sample.
Defect inspection method described.
【請求項30】前記探針と試料の接触において、該探針
と試料間に働く力を検出することで該探針と試料の接触
確認を行うことを特徴とする請求項25〜28記載の不
良検査装置。
30. The contact between the probe and the sample is detected by detecting the force acting between the probe and the sample when the probe and the sample are in contact with each other. Defective inspection device.
【請求項31】前記探針と試料の接触において、該探針
と試料間に電圧を印加し、該試料表面の該探針が接触す
べき位置からの荷電粒子を分光検出することにより得ら
れる試料表面電位情報が、探針印加電圧により規定され
る電位になることで該探針と試料の接触確認を行うこと
を特徴とする請求項25〜28記載の不良検査方法。
31. When the probe and the sample are brought into contact with each other, a voltage is applied between the probe and the sample, and the charged particles are spectroscopically detected from a position on the sample surface where the probe should come into contact. 29. The defect inspection method according to claim 25, wherein the contact confirmation between the probe and the sample is performed when the sample surface potential information becomes a potential defined by the probe applied voltage.
JP14135396A 1996-06-04 1996-06-04 Defect inspection method and apparatus Expired - Lifetime JP3577839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14135396A JP3577839B2 (en) 1996-06-04 1996-06-04 Defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14135396A JP3577839B2 (en) 1996-06-04 1996-06-04 Defect inspection method and apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003334551A Division JP3953015B2 (en) 2003-09-26 2003-09-26 Inspection method and inspection apparatus
JP2003334550A Division JP3879722B2 (en) 2003-09-26 2003-09-26 Inspection device

Publications (2)

Publication Number Publication Date
JPH09326425A true JPH09326425A (en) 1997-12-16
JP3577839B2 JP3577839B2 (en) 2004-10-20

Family

ID=15290006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14135396A Expired - Lifetime JP3577839B2 (en) 1996-06-04 1996-06-04 Defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3577839B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046674A1 (en) * 1999-12-20 2001-06-28 Japan Science And Technology Corporation Apparatus for evaluating electrical characteristics
WO2001063660A1 (en) * 2000-02-25 2001-08-30 Hitachi, Ltd. Apparatus for detecting defect in device and method of detecting defect
JP2001324459A (en) * 2000-05-16 2001-11-22 Hitachi Ltd Charged particle beam apparatus and probe control method
JP2002323429A (en) * 2001-04-26 2002-11-08 Seiko Instruments Inc Scanning probe microscope
US6552556B1 (en) * 1999-03-31 2003-04-22 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Prober for electrical measurement of potentials in the interior of ultra-fine semiconductor devices, and method of measuring electrical characteristics with said prober
US6781125B2 (en) 2000-11-02 2004-08-24 Hitachi, Ltd. Method and apparatus for processing a micro sample
JP2004251915A (en) * 2004-05-26 2004-09-09 Hitachi Ltd Probe device
US6881597B2 (en) 2001-01-22 2005-04-19 Renesas Technology Corp. Method of manufacturing a semiconductor device to provide a plurality of test element groups (TEGs) in a scribe region
JP2005514625A (en) * 2002-01-07 2005-05-19 カプレス・アクティーゼルスカブ Electrical feedback detection system for multi-point probes
US6960765B2 (en) 2000-07-24 2005-11-01 Hitachi, Ltd. Probe driving method, and probe apparatus
JP2005347773A (en) * 2005-08-05 2005-12-15 Renesas Technology Corp Sample inspection device
JP2006059701A (en) * 2004-08-20 2006-03-02 Sii Nanotechnology Inc Charged particle beam device and narrow gap electrode formation method using it
US7129727B2 (en) 2004-10-27 2006-10-31 Hitachi High-Technologies Corporation Defect inspecting apparatus
JP2007027548A (en) * 2005-07-20 2007-02-01 Jeol Ltd Sample inspecting device and method for controlling sample inspection device
JP2007273489A (en) * 2007-06-25 2007-10-18 Hitachi High-Technologies Corp Sample holder
US7297945B2 (en) 2003-12-05 2007-11-20 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
JP2008051547A (en) * 2006-08-22 2008-03-06 Hitachi High-Technologies Corp Prober device equipped with scanning electron microscope, and probe cleaning method of prober device
JP2008083071A (en) * 2007-12-25 2008-04-10 Hitachi Ltd Sample preparation apparatus
JP2008209335A (en) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp Method for measurement of specimen, and prober device
JP2008241277A (en) * 2007-03-26 2008-10-09 Sanyu Seisakusho:Kk Method for detecting electrical contact between probe and microscope sample and its apparatus
US7462830B2 (en) 2003-09-18 2008-12-09 Hitachi Ltd. Method and apparatus for observing inside structures, and specimen holder
US7582885B2 (en) 2005-04-13 2009-09-01 Hitachi High-Technologies Corp. Charged particle beam apparatus
JP2009277953A (en) * 2008-05-16 2009-11-26 Hitachi High-Technologies Corp Measuring method and inspecting apparatus
US7663390B2 (en) 2007-06-25 2010-02-16 Hitachi High-Technologies Corporation Inspection apparatus and method
JP2011095266A (en) * 2010-12-10 2011-05-12 Hitachi High-Technologies Corp Prober device including scanning electron microscope, and probe cleaning method of the prober device
WO2013129209A1 (en) * 2012-03-01 2013-09-06 株式会社日立ハイテクノロジーズ Charged particle beam device
US8816712B2 (en) 2008-08-08 2014-08-26 Hitachi High-Technologies Corporation Inspection device
US9709600B2 (en) 2013-08-14 2017-07-18 Fei Company Circuit probe for charged particle beam system
CN107907712A (en) * 2017-11-08 2018-04-13 中国科学院物理研究所 Time-sharing multiplex control device for multiprobe STM and the multiprobe STM including it
EP4227977A1 (en) * 2022-02-14 2023-08-16 Innovatum Instruments Inc. Automated probe landing
CN116609604A (en) * 2023-05-31 2023-08-18 武汉云岭光电股份有限公司 Electrostatic discharge testing system and method
WO2023248287A1 (en) * 2022-06-20 2023-12-28 株式会社日立ハイテク Charged particle beam system and sample evaluation information generation method

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552556B1 (en) * 1999-03-31 2003-04-22 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Prober for electrical measurement of potentials in the interior of ultra-fine semiconductor devices, and method of measuring electrical characteristics with said prober
US6833719B2 (en) 1999-12-20 2004-12-21 Japan Science And Technology Corporation Apparatus for evaluating electrical characteristics
JP2001174491A (en) * 1999-12-20 2001-06-29 Japan Science & Technology Corp Apparatus for evaluating electric characteristic
KR100748046B1 (en) * 1999-12-20 2007-08-09 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Apparatus for evaluating electrical characteristics
JP4526626B2 (en) * 1999-12-20 2010-08-18 独立行政法人科学技術振興機構 Electrical property evaluation equipment
WO2001046674A1 (en) * 1999-12-20 2001-06-28 Japan Science And Technology Corporation Apparatus for evaluating electrical characteristics
US6970004B2 (en) 2000-02-25 2005-11-29 Hitachi, Ltd. Apparatus for inspecting defects of devices and method of inspecting defects
US6734687B1 (en) 2000-02-25 2004-05-11 Hitachi, Ltd. Apparatus for detecting defect in device and method of detecting defect
WO2001063660A1 (en) * 2000-02-25 2001-08-30 Hitachi, Ltd. Apparatus for detecting defect in device and method of detecting defect
JP2001324459A (en) * 2000-05-16 2001-11-22 Hitachi Ltd Charged particle beam apparatus and probe control method
JP4505946B2 (en) * 2000-05-16 2010-07-21 株式会社日立製作所 Charged particle beam apparatus and probe control method
US7301146B2 (en) 2000-07-24 2007-11-27 Hitachi, Ltd. Probe driving method, and probe apparatus
EP2423676A1 (en) 2000-07-24 2012-02-29 Hitachi, Ltd. Probe apparatus
US6960765B2 (en) 2000-07-24 2005-11-01 Hitachi, Ltd. Probe driving method, and probe apparatus
US6927391B2 (en) 2000-11-02 2005-08-09 Hitachi, Ltd. Method and apparatus for processing a micro sample
US8618520B2 (en) 2000-11-02 2013-12-31 Hitachi, Ltd. Method and apparatus for processing a micro sample
US7465945B2 (en) 2000-11-02 2008-12-16 Hitachi, Ltd. Method and apparatus for processing a micro sample
US8222618B2 (en) 2000-11-02 2012-07-17 Hitachi, Ltd. Method and apparatus for processing a microsample
US7888639B2 (en) 2000-11-02 2011-02-15 Hitachi, Ltd. Method and apparatus for processing a micro sample
US7205560B2 (en) 2000-11-02 2007-04-17 Hitachi, Ltd. Method and apparatus for processing a micro sample
US7205554B2 (en) 2000-11-02 2007-04-17 Hitachi, Ltd. Method and apparatus for processing a micro sample
US6781125B2 (en) 2000-11-02 2004-08-24 Hitachi, Ltd. Method and apparatus for processing a micro sample
US7470918B2 (en) 2000-11-02 2008-12-30 Hitachi Ltd. Method and apparatus for processing a micro sample
US7550750B2 (en) 2000-11-02 2009-06-23 Hitachi, Ltd. Method and apparatus for processing a micro sample
US6881597B2 (en) 2001-01-22 2005-04-19 Renesas Technology Corp. Method of manufacturing a semiconductor device to provide a plurality of test element groups (TEGs) in a scribe region
JP4598300B2 (en) * 2001-04-26 2010-12-15 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope and physical property measurement method using the same
JP2002323429A (en) * 2001-04-26 2002-11-08 Seiko Instruments Inc Scanning probe microscope
JP2005514625A (en) * 2002-01-07 2005-05-19 カプレス・アクティーゼルスカブ Electrical feedback detection system for multi-point probes
US8134131B2 (en) 2003-09-18 2012-03-13 Hitachi, Ltd. Method and apparatus for observing inside structures, and specimen holder
US7462830B2 (en) 2003-09-18 2008-12-09 Hitachi Ltd. Method and apparatus for observing inside structures, and specimen holder
US7476872B2 (en) 2003-09-18 2009-01-13 Hitachi Ltd. Method and apparatus for observing inside structures, and specimen holder
US8074293B2 (en) 2003-12-05 2011-12-06 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
US7297945B2 (en) 2003-12-05 2007-11-20 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
US7553334B2 (en) 2003-12-05 2009-06-30 Hitachi High-Technologies Corporation Defective product inspection apparatus, probe positioning method and probe moving method
DE102004058483B4 (en) * 2003-12-05 2009-12-17 Hitachi High-Technologies Corp. Device for testing products for faults, sensor positioning methods and sensor movement methods
JP4604554B2 (en) * 2004-05-26 2011-01-05 株式会社日立製作所 Probe device
JP2004251915A (en) * 2004-05-26 2004-09-09 Hitachi Ltd Probe device
JP2006059701A (en) * 2004-08-20 2006-03-02 Sii Nanotechnology Inc Charged particle beam device and narrow gap electrode formation method using it
US7129727B2 (en) 2004-10-27 2006-10-31 Hitachi High-Technologies Corporation Defect inspecting apparatus
US7582885B2 (en) 2005-04-13 2009-09-01 Hitachi High-Technologies Corp. Charged particle beam apparatus
JP2007027548A (en) * 2005-07-20 2007-02-01 Jeol Ltd Sample inspecting device and method for controlling sample inspection device
JP2005347773A (en) * 2005-08-05 2005-12-15 Renesas Technology Corp Sample inspection device
JP2008051547A (en) * 2006-08-22 2008-03-06 Hitachi High-Technologies Corp Prober device equipped with scanning electron microscope, and probe cleaning method of prober device
JP2008209335A (en) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp Method for measurement of specimen, and prober device
JP2008241277A (en) * 2007-03-26 2008-10-09 Sanyu Seisakusho:Kk Method for detecting electrical contact between probe and microscope sample and its apparatus
JP2007273489A (en) * 2007-06-25 2007-10-18 Hitachi High-Technologies Corp Sample holder
US7663390B2 (en) 2007-06-25 2010-02-16 Hitachi High-Technologies Corporation Inspection apparatus and method
US8040146B2 (en) 2007-06-25 2011-10-18 Hitachi High-Technologies Corporation Inspection apparatus having a heating mechanism for performing sample temperature regulation
JP2008083071A (en) * 2007-12-25 2008-04-10 Hitachi Ltd Sample preparation apparatus
JP4572934B2 (en) * 2007-12-25 2010-11-04 株式会社日立製作所 Sample preparation equipment
JP2009277953A (en) * 2008-05-16 2009-11-26 Hitachi High-Technologies Corp Measuring method and inspecting apparatus
US8816712B2 (en) 2008-08-08 2014-08-26 Hitachi High-Technologies Corporation Inspection device
JP2011095266A (en) * 2010-12-10 2011-05-12 Hitachi High-Technologies Corp Prober device including scanning electron microscope, and probe cleaning method of the prober device
CN104126217A (en) * 2012-03-01 2014-10-29 株式会社日立高新技术 Charged particle beam device
JP2013182760A (en) * 2012-03-01 2013-09-12 Hitachi High-Technologies Corp Charged particle beam device
WO2013129209A1 (en) * 2012-03-01 2013-09-06 株式会社日立ハイテクノロジーズ Charged particle beam device
US9330883B2 (en) 2012-03-01 2016-05-03 Hitachi High-Technologies Corporation Charged particle beam device
US9709600B2 (en) 2013-08-14 2017-07-18 Fei Company Circuit probe for charged particle beam system
CN107907712A (en) * 2017-11-08 2018-04-13 中国科学院物理研究所 Time-sharing multiplex control device for multiprobe STM and the multiprobe STM including it
CN107907712B (en) * 2017-11-08 2019-10-25 中国科学院物理研究所 Time-sharing multiplex control device and multiprobe STM for multiprobe STM
EP4227977A1 (en) * 2022-02-14 2023-08-16 Innovatum Instruments Inc. Automated probe landing
WO2023248287A1 (en) * 2022-06-20 2023-12-28 株式会社日立ハイテク Charged particle beam system and sample evaluation information generation method
CN116609604A (en) * 2023-05-31 2023-08-18 武汉云岭光电股份有限公司 Electrostatic discharge testing system and method

Also Published As

Publication number Publication date
JP3577839B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP3577839B2 (en) Defect inspection method and apparatus
JP4408538B2 (en) Probe device
JP4657394B2 (en) Method and apparatus for detecting defects in a wafer
US7902849B2 (en) Apparatus and method for test structure inspection
US20160370425A1 (en) Particle Beam Heating to Identify Defects
JP5873741B2 (en) Semiconductor inspection apparatus and semiconductor inspection method
JP2011215112A (en) Multi-probe afm nanoprober and measurement method using the same
US20210025936A1 (en) Evaluation Apparatus for Semiconductor Device
JP3819230B2 (en) Multi-probe scanning probe microscope apparatus and sample surface evaluation method using the same
US6930502B2 (en) Method using conductive atomic force microscopy to measure contact leakage current
JP4090657B2 (en) Probe device
JP4996648B2 (en) Probe device
JP2005091199A (en) Method and device for observing internal structure, and sample holder for internal structure observation
JP4735491B2 (en) Defect inspection method and apparatus
Sikul et al. SEM-based nanoprobing on in-situ delayered advanced 10 nm technology node IC
JP2981117B2 (en) Method for detecting and inspecting minute foreign matter, scanning probe microscope used therefor, and method for producing semiconductor element or liquid crystal display element using the same
JP3879722B2 (en) Inspection device
US20240069095A1 (en) Defect detection using thermal laser stimulation and atomic force microscopy
US20210033642A1 (en) Probe Module and Probe
JP2008300878A (en) Defect inspection method and device
JP3953015B2 (en) Inspection method and inspection apparatus
JP4505946B2 (en) Charged particle beam apparatus and probe control method
JP2007071884A (en) Method and device for inspecting failure
JPH08160109A (en) Electronic element evaluating device
US20210048450A1 (en) Method for Manufacturing Semiconductor Device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

EXPY Cancellation because of completion of term