JP3616813B2 - 太陽電池冷却熱回収装置 - Google Patents
太陽電池冷却熱回収装置 Download PDFInfo
- Publication number
- JP3616813B2 JP3616813B2 JP33368799A JP33368799A JP3616813B2 JP 3616813 B2 JP3616813 B2 JP 3616813B2 JP 33368799 A JP33368799 A JP 33368799A JP 33368799 A JP33368799 A JP 33368799A JP 3616813 B2 JP3616813 B2 JP 3616813B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- heat
- heat recovery
- heat pipe
- cell cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、太陽電池近傍に設置したヒートパイプ内の蒸発・凝縮現象の利用により太陽電池により電気に変換し得なかった太陽エネルギーによる熱を効率的に回収するための太陽電池冷却熱回収装置に関する。
【0002】
【従来の技術】
太陽エネルギーを電気エネルギーに変換するため半導体による太陽電池が利用され、広く用いられるようになっている。この太陽電池においては、大きな出力を得るためには大きな入射面積を必要とし、大面積の太陽電池素子が得られない場合は、多数の太陽電池素子を接続して一平面上に配置している。
【0003】
一方、太陽電池の発電効率は高効率の作動時でも20%程度であるため、入射エネルギーの大部分は熱エネルギーとして太陽電池の温度を上昇させる。しかも発電効率は温度上昇と共に低下する。したがって太陽電池装置の性能低下を防ぐためには、強力な、しかも均一な熱放散をはかる必要がある。
【0004】
従来の太陽電池の冷却は、図4に示されるように、太陽電池素子30の接着面31を備えた箱体32の内部空間33に、冷却用空気、あるいは冷却水を流通させる方式が一般的であった。
【0005】
【発明が解決しようとする課題】
このような装置は構造が簡単であるものの、太陽電池の温度制御が困難であり、素子の温度上昇によって性能の低下を引き起こす問題点があった。また、太陽電池は日射条件によって作動温度が大幅に変化するため、日射条件によっても冷却制御する必要があるが、このような制御は前記従来の装置においては極めて困難であった。
【0006】
したがって本発明は、太陽電池の温度を広範囲にわたって確実に制御することができ、しかもその際に発生する熱を有効に回収することを目的とする。
【0007】
【課題を解決するための手段】
本願発明は、上記課題を解決するため、請求項1に係る発明は、表面に太陽電池を固定する表面板と、該表面板の裏面に近接して配置したウィックと、凝縮部と、内部に封入する冷却媒体とからなるヒートパイプを備え、該ヒートパイプ内の飽和圧力を、太陽電池冷却熱回収装置の特性に合わせた最も効率の良い温度の近傍の温度における飽和圧力に設定するとともに、凝縮部の熱を外部に供給してその熱を利用する温水に伝熱する熱交換部材を備えたことを特徴とする太陽電池冷却熱回収装置としたものである。
【0008】
また、請求項2に係る発明は、前記熱交換部材を波板で形成し、片側の面がヒートパイプの凝縮部、他側の面が温水流通部としてなる請求項1記載の太陽電池冷却熱回収装置としたものである。
【0009】
また、請求項3に係る発明は、前記波板を前記表面板と平行に、且つ波型の凹凸部を形成する直線が上下方向となるように配置してなる請求項2記載の太陽電池冷却熱回収装置としたものである。
【0010】
また、請求項4に係る発明は、前記熱交換部材を、ヒートパイプの裏面上部から後方に突出させ、該突出部で温水供給部材と接触させてなる請求項1記載の太陽電池冷却熱回収装置としたものである。
【0011】
また、請求項5に係る発明は、前記突出部の断面空間は、後方に狭い楔形とし、その底面は後方ほど高く形成してなる請求項4記載の太陽電池冷却熱回収装置としたものである。
【0012】
【発明の実施の形態】
本発明の実施例を図面に沿って説明する。図1は本発明の第1実施例を示し、函体2の前面に位置する表面板3には、後述するような太陽電池を多数接着等により固定する面としている。なお、この函体2は設置する個所に応じて任意の形状とすることができる。また、従来は前記のように、この函体2内に単に冷却水等を流通させ、冷却を行っていたものである。
【0013】
函体2の内部は、同図中では折曲して波形とした板として示され、熱交換部材としての伝熱板1により前後方向に2分割され、前側の室はヒートパイプ作動室5とし、後側の室は冷却水が循環する二次冷却室6としている。
【0014】
ヒートパイプ作動室5内には、函体2の表面板3の裏面に近接して、ウィック7が配置されている。ウィック7はヒートパイプに通常用いられているものが用いられ、毛細管作用によりヒートパイプ作動室5の底部に貯留されている一次冷却媒体としての作動液を上昇させ、函体2の表面板3側からの熱により気化することができるようにしている。このヒートパイプ作動室5内の圧力は、後述するように、ヒートパイプ内の飽和圧力を、太陽電池冷却熱回収装置の特性に合わせた最も効率の良い温度の近傍の温度における飽和圧力に設定している。また、ウィック7は少なくとも函体2の表面板3に固定される太陽電池4の裏面を覆うことができる大きさとなっている。
【0015】
二次冷却室6には、図中実施例においては第1側壁10の下部に設けた供給口11から、二次冷却媒体として冷却水を供給し、第2側壁12の上部に設けた排出口13から外部に供給するように構成している。それにより、二次冷却室6の冷却水は、下方から上方に流通する。また、排出口13には例えば温水貯蔵容器が接続する。
【0016】
上記のように構成された装置において、その使用時には図2に示すように、函体2の表面板3に太陽電池4を接着等により固定し、この太陽電池が最も効率的に受光する姿勢に配置される。太陽電池4の発電時には多量の熱が放出されるが、その熱は函体2の表面板3を介して裏面に近接して設けたヒートパイプ作動室5のウィック7に伝熱する。ウィック7には前記のようにヒートパイプ作動室5の底部に貯留されている作動液を、毛細管作用によって上昇させてウィック全面に拡散しているので、この熱を吸収する。
【0017】
例えばこの作動液が水であり、これを適量ヒートパイプ作動室5内に封入し、室内を減圧してその圧力を7.37kPaにした場合は、水は40度Cで蒸発する。したがって、このような状態で水をヒートパイプ室5内に封入しておくことにより、前記のように表面板3を介して伝熱される太陽電池からの熱をウィック7に吸熱するときには、40度Cになるまでは大きな吸熱作用はない。しかしながら、40度Cを越えようとするときにはその熱によってウィック7内の水は蒸発し、大きな潜熱によって吸熱するので、表面板3を介して太陽電池4を裏面から急速に冷却することができる。
【0018】
このとき蒸発したヒートパイプ室5内の水蒸気は、ヒートパイプ室5の裏面の伝熱板1の片面と接触し、伝熱板1の他面は二次冷却室6内の冷却水によって冷却されているので、前記水蒸気は伝熱板1の表面で凝縮する。この伝熱板1は波形に折り曲げ成型されているので広い表面積を有し、水蒸気は効率よく冷却され、伝熱板1の表面を伝わって流下し、ヒートパイプ室5の底部の貯留部に溜まる。更に、貯留部の水はウィックに吸引されて上昇し、このサイクルを繰り返す。
【0019】
一方、二次冷却室6内の水は、前記のようにヒートパイプ室5内の水蒸気により加熱されて温度上昇し、その温水は排出口13から外部に排出され、温水貯留容器等に蓄えられ、必要に応じてこの温水は使用される。また、前記温水の熱を蓄熱媒体に蓄え、必要に応じてこの蓄熱媒体の熱を温水等にして使用することもできる。
【0020】
上記のように、太陽電池の冷却をヒートパイプにより行うことができるため、ヒートパイプが有する高い熱伝達率特性を用いて、効率よい冷却及び温水への熱伝達を行うことができる。また、ヒートパイプ作動室5内の飽和圧力を任意に設定することにより、太陽電池冷却熱回収装置の特性に合わせた最も効率のよい温度に維持することができる。このとき、ヒートパイプ内の前記蒸発温度は、太陽電池冷却熱回収装置が最も発電効率の良い温度となるように、周囲の伝熱特性も考慮した値に設定することが好ましい。このように温度制御を行う際に発生する熱を、温水として他に使用することができるので、太陽エネルギーの利用に際して、総合エネルギー使用効率の高いシステムとすることができる。
【0021】
また、太陽電池を用いた全体のエネルギーシステムとして、太陽電池により電力として供給すると同時に、温水等の熱として利用することができるので、広範囲のエネルギー供給に対応することができる。
【0022】
また、全体をモジュール化することにより、ビル壁面にこのモジュールを配置する等、種々の建築物に種々の態様で設置することができ、利用範囲を広く拡大することができる。また、このとき生じる温水をこれらの建物で直接利用することができ、設置施設のエネルギー需要に際して、電気、及び温水を供給することができ、利便性の高い装置とすることができる。
【0023】
図3は本発明の第2実施例を示し、函形21の表面板22には、前記実施例と同様に太陽電池20が固定され、函体の内部はヒートパイプ作動室23となっている。ヒートパイプ作動室23内における前記の表面板22に近接した位置には、前記実施例と同様にウィック24が配置され、ヒートパイプ作動室23の底部に貯留された作動液を毛細管作用で吸い上げる点も前記実施例と同様である。
【0024】
函体21の上部後方には、底壁25が傾斜することにより、室全体が楔状となっている凝縮室26が連通し、それによりヒートパイプ室全体としてL字型をなしている。底壁25は後方ほど高く形成され、底壁25の下部には二次冷却水を流通する二次冷却水供給管27が接触し、この部分で両者を固定することにより太陽電池を固定したヒートパイプ装置全体と二次冷却水供給管27は一体化される。
【0025】
この第2実施例においても、その基本的な作動は前記実施例と同様であり、表面板22に固定された太陽電池20の温度が、ヒートパイプ作動室23内の一次冷媒としての作動液の蒸発温度以上になると、その蒸発により急速に冷やされ、逆にその温度以下になる大きな冷却作用を行うことがないので冷却作用が断続し、太陽電池が最も効率よく作動する温度に自動的に維持することができる。
【0026】
また、ヒートパイプ作動室23内の一次冷媒は、前記のように蒸発するとヒートパイプ作動室23の上部に広がり、したがってヒートパイプ室23の上部に設けた凝縮室26内に入る。このとき、凝縮室26の底壁25は、二次冷却水供給管27によって冷却されているので凝縮し、底壁25が前記のように傾斜しているのでこの外壁25に沿って流下し、ヒートパイプ作動室23の底部に貯留する。以下同様の作動により太陽電池は冷却され、且つ所定の温度に保たれる。また、二次冷却水供給管27内の温水は前記実施例と同様に外部において使用される。
【0027】
上記実施例の装置においては、二次冷却水供給管27にヒートパイプ全体が固定されているので、1本のパイプである二次冷却水供給管27にぶら下がる形で設置することができ、太陽電池の施設が容易となり、低コスト化を実現することができる。また、上部から凝縮液が流れ落ちる形となるため、全体のモジュールを縦長形状とすることもでき、設置場所に適合した任意の形状とすることができる。
【0028】
【発明の効果】
本願発明は上記のように構成したので、請求項1に係る発明は、太陽電池の冷却をヒートパイプにより行うことができるため、ヒートパイプが備えている高い熱伝達率特性を用いて、効率よく太陽電池を冷却することができると共に、温水への熱伝達も効率的に行うことができる。また、ヒートパイプ作動室内の飽和圧力を任意に設定することにより、太陽電池冷却熱回収装置の特性に合わせた最も効率のよい温度に維持することができ、日射条件等に対応して自動的に最も効率の良い温度に維持することができる。
【0029】
更に、このように太陽電池を冷却する際に発生する熱を、温水として他に使用することができるので、太陽エネルギーの利用に際して、総合エネルギー使用効率の高いシステムとすることができる。また、エネルギー供給を電気エネルギーと温水の供給として行うことができるため、エネルギー供給が多様化し、ビルディングへの設置等の各種用途において、広範囲のエネルギーの使用態様に合わせた供給を行うことができる。
【0030】
また、太陽電池冷却熱回収装置の効率が向上するので、所定の出力を得るためには小モジュールの太陽電池でよくなるため、狭いモジュール敷地で足り、モジュール敷地の制約を解決することができる。また、全体をモジュール化することにより、ビル壁面にこのモジュールを配置する等、種々の建築物に種々の態様で設置することができる構造となり、利用範囲を拡大することができる。また、このとき生じる温水を、温水発生場所である建物で直接利用することができ、設置施設へのエネルギー供給に際して、熱損失が少なく熱効率の高い装置とすることができる。
【0031】
請求項2に係る発明は、前記熱交換部材を波板で形成し、片側の面がヒートパイプの凝縮部、他側の面が温水流通部としたので、ヒートパイプの熱を温水に効率よく伝熱することができ、太陽電池の温度を所定温度に確実に維持することができる。
【0032】
請求項3係る発明は、前記波板を前記表面板と平行に、且つ波型の凹凸部を形成する直線が上下方向となるように配置しているので、ヒートパイプ側で凝縮した作動媒体の液体分は、円滑に下方に流下することができ、熱交換部材の伝熱効率を向上することができる。
【0033】
請求項4に係る発明は、前記熱交換部材を、ヒートパイプの裏面上部から後方に突出させ、該突出部で温水供給部材と接触させたので、凝縮部の面積が拡大して凝縮性能が向上し、全体を小型化することができると共に、前記突出部と温水供給部材とを固定することにより、ヒートパイプが温水供給管にぶら下がった状態で設置することができ、その設置が容易となると共に、全体を縦長に成形する等、設置場所に対応した種々の形態にして設置することができる。
【0034】
請求項5に係る発明は、前記突出部の断面空間は、後方に狭い楔形とし、その底面は後方ほど高く形成したので、突出部で凝縮した液体分は、この底面状を流下し、円滑にヒートパイプ本体の底部に流下させることができる。
【図面の簡単な説明】
【図1】本発明の太陽電池冷却熱回収装置のモジュールの第1実施例を示す斜視図である。
【図2】表面板に太陽電池を貼り付けて使用した状態を示す斜視図である。
【図3】本発明の第2実施例を示す斜視図である。
【図4】従来の太陽電池冷却装置の斜視図である。
【符号の説明】
2 函体
3 表面板
4 伝熱板
5 ヒートパイプ作動室
6 二次冷却室
7 ウィック
10 第1側壁
11 供給口
12 第2側壁
13 排出口
【発明の属する技術分野】
本発明は、太陽電池近傍に設置したヒートパイプ内の蒸発・凝縮現象の利用により太陽電池により電気に変換し得なかった太陽エネルギーによる熱を効率的に回収するための太陽電池冷却熱回収装置に関する。
【0002】
【従来の技術】
太陽エネルギーを電気エネルギーに変換するため半導体による太陽電池が利用され、広く用いられるようになっている。この太陽電池においては、大きな出力を得るためには大きな入射面積を必要とし、大面積の太陽電池素子が得られない場合は、多数の太陽電池素子を接続して一平面上に配置している。
【0003】
一方、太陽電池の発電効率は高効率の作動時でも20%程度であるため、入射エネルギーの大部分は熱エネルギーとして太陽電池の温度を上昇させる。しかも発電効率は温度上昇と共に低下する。したがって太陽電池装置の性能低下を防ぐためには、強力な、しかも均一な熱放散をはかる必要がある。
【0004】
従来の太陽電池の冷却は、図4に示されるように、太陽電池素子30の接着面31を備えた箱体32の内部空間33に、冷却用空気、あるいは冷却水を流通させる方式が一般的であった。
【0005】
【発明が解決しようとする課題】
このような装置は構造が簡単であるものの、太陽電池の温度制御が困難であり、素子の温度上昇によって性能の低下を引き起こす問題点があった。また、太陽電池は日射条件によって作動温度が大幅に変化するため、日射条件によっても冷却制御する必要があるが、このような制御は前記従来の装置においては極めて困難であった。
【0006】
したがって本発明は、太陽電池の温度を広範囲にわたって確実に制御することができ、しかもその際に発生する熱を有効に回収することを目的とする。
【0007】
【課題を解決するための手段】
本願発明は、上記課題を解決するため、請求項1に係る発明は、表面に太陽電池を固定する表面板と、該表面板の裏面に近接して配置したウィックと、凝縮部と、内部に封入する冷却媒体とからなるヒートパイプを備え、該ヒートパイプ内の飽和圧力を、太陽電池冷却熱回収装置の特性に合わせた最も効率の良い温度の近傍の温度における飽和圧力に設定するとともに、凝縮部の熱を外部に供給してその熱を利用する温水に伝熱する熱交換部材を備えたことを特徴とする太陽電池冷却熱回収装置としたものである。
【0008】
また、請求項2に係る発明は、前記熱交換部材を波板で形成し、片側の面がヒートパイプの凝縮部、他側の面が温水流通部としてなる請求項1記載の太陽電池冷却熱回収装置としたものである。
【0009】
また、請求項3に係る発明は、前記波板を前記表面板と平行に、且つ波型の凹凸部を形成する直線が上下方向となるように配置してなる請求項2記載の太陽電池冷却熱回収装置としたものである。
【0010】
また、請求項4に係る発明は、前記熱交換部材を、ヒートパイプの裏面上部から後方に突出させ、該突出部で温水供給部材と接触させてなる請求項1記載の太陽電池冷却熱回収装置としたものである。
【0011】
また、請求項5に係る発明は、前記突出部の断面空間は、後方に狭い楔形とし、その底面は後方ほど高く形成してなる請求項4記載の太陽電池冷却熱回収装置としたものである。
【0012】
【発明の実施の形態】
本発明の実施例を図面に沿って説明する。図1は本発明の第1実施例を示し、函体2の前面に位置する表面板3には、後述するような太陽電池を多数接着等により固定する面としている。なお、この函体2は設置する個所に応じて任意の形状とすることができる。また、従来は前記のように、この函体2内に単に冷却水等を流通させ、冷却を行っていたものである。
【0013】
函体2の内部は、同図中では折曲して波形とした板として示され、熱交換部材としての伝熱板1により前後方向に2分割され、前側の室はヒートパイプ作動室5とし、後側の室は冷却水が循環する二次冷却室6としている。
【0014】
ヒートパイプ作動室5内には、函体2の表面板3の裏面に近接して、ウィック7が配置されている。ウィック7はヒートパイプに通常用いられているものが用いられ、毛細管作用によりヒートパイプ作動室5の底部に貯留されている一次冷却媒体としての作動液を上昇させ、函体2の表面板3側からの熱により気化することができるようにしている。このヒートパイプ作動室5内の圧力は、後述するように、ヒートパイプ内の飽和圧力を、太陽電池冷却熱回収装置の特性に合わせた最も効率の良い温度の近傍の温度における飽和圧力に設定している。また、ウィック7は少なくとも函体2の表面板3に固定される太陽電池4の裏面を覆うことができる大きさとなっている。
【0015】
二次冷却室6には、図中実施例においては第1側壁10の下部に設けた供給口11から、二次冷却媒体として冷却水を供給し、第2側壁12の上部に設けた排出口13から外部に供給するように構成している。それにより、二次冷却室6の冷却水は、下方から上方に流通する。また、排出口13には例えば温水貯蔵容器が接続する。
【0016】
上記のように構成された装置において、その使用時には図2に示すように、函体2の表面板3に太陽電池4を接着等により固定し、この太陽電池が最も効率的に受光する姿勢に配置される。太陽電池4の発電時には多量の熱が放出されるが、その熱は函体2の表面板3を介して裏面に近接して設けたヒートパイプ作動室5のウィック7に伝熱する。ウィック7には前記のようにヒートパイプ作動室5の底部に貯留されている作動液を、毛細管作用によって上昇させてウィック全面に拡散しているので、この熱を吸収する。
【0017】
例えばこの作動液が水であり、これを適量ヒートパイプ作動室5内に封入し、室内を減圧してその圧力を7.37kPaにした場合は、水は40度Cで蒸発する。したがって、このような状態で水をヒートパイプ室5内に封入しておくことにより、前記のように表面板3を介して伝熱される太陽電池からの熱をウィック7に吸熱するときには、40度Cになるまでは大きな吸熱作用はない。しかしながら、40度Cを越えようとするときにはその熱によってウィック7内の水は蒸発し、大きな潜熱によって吸熱するので、表面板3を介して太陽電池4を裏面から急速に冷却することができる。
【0018】
このとき蒸発したヒートパイプ室5内の水蒸気は、ヒートパイプ室5の裏面の伝熱板1の片面と接触し、伝熱板1の他面は二次冷却室6内の冷却水によって冷却されているので、前記水蒸気は伝熱板1の表面で凝縮する。この伝熱板1は波形に折り曲げ成型されているので広い表面積を有し、水蒸気は効率よく冷却され、伝熱板1の表面を伝わって流下し、ヒートパイプ室5の底部の貯留部に溜まる。更に、貯留部の水はウィックに吸引されて上昇し、このサイクルを繰り返す。
【0019】
一方、二次冷却室6内の水は、前記のようにヒートパイプ室5内の水蒸気により加熱されて温度上昇し、その温水は排出口13から外部に排出され、温水貯留容器等に蓄えられ、必要に応じてこの温水は使用される。また、前記温水の熱を蓄熱媒体に蓄え、必要に応じてこの蓄熱媒体の熱を温水等にして使用することもできる。
【0020】
上記のように、太陽電池の冷却をヒートパイプにより行うことができるため、ヒートパイプが有する高い熱伝達率特性を用いて、効率よい冷却及び温水への熱伝達を行うことができる。また、ヒートパイプ作動室5内の飽和圧力を任意に設定することにより、太陽電池冷却熱回収装置の特性に合わせた最も効率のよい温度に維持することができる。このとき、ヒートパイプ内の前記蒸発温度は、太陽電池冷却熱回収装置が最も発電効率の良い温度となるように、周囲の伝熱特性も考慮した値に設定することが好ましい。このように温度制御を行う際に発生する熱を、温水として他に使用することができるので、太陽エネルギーの利用に際して、総合エネルギー使用効率の高いシステムとすることができる。
【0021】
また、太陽電池を用いた全体のエネルギーシステムとして、太陽電池により電力として供給すると同時に、温水等の熱として利用することができるので、広範囲のエネルギー供給に対応することができる。
【0022】
また、全体をモジュール化することにより、ビル壁面にこのモジュールを配置する等、種々の建築物に種々の態様で設置することができ、利用範囲を広く拡大することができる。また、このとき生じる温水をこれらの建物で直接利用することができ、設置施設のエネルギー需要に際して、電気、及び温水を供給することができ、利便性の高い装置とすることができる。
【0023】
図3は本発明の第2実施例を示し、函形21の表面板22には、前記実施例と同様に太陽電池20が固定され、函体の内部はヒートパイプ作動室23となっている。ヒートパイプ作動室23内における前記の表面板22に近接した位置には、前記実施例と同様にウィック24が配置され、ヒートパイプ作動室23の底部に貯留された作動液を毛細管作用で吸い上げる点も前記実施例と同様である。
【0024】
函体21の上部後方には、底壁25が傾斜することにより、室全体が楔状となっている凝縮室26が連通し、それによりヒートパイプ室全体としてL字型をなしている。底壁25は後方ほど高く形成され、底壁25の下部には二次冷却水を流通する二次冷却水供給管27が接触し、この部分で両者を固定することにより太陽電池を固定したヒートパイプ装置全体と二次冷却水供給管27は一体化される。
【0025】
この第2実施例においても、その基本的な作動は前記実施例と同様であり、表面板22に固定された太陽電池20の温度が、ヒートパイプ作動室23内の一次冷媒としての作動液の蒸発温度以上になると、その蒸発により急速に冷やされ、逆にその温度以下になる大きな冷却作用を行うことがないので冷却作用が断続し、太陽電池が最も効率よく作動する温度に自動的に維持することができる。
【0026】
また、ヒートパイプ作動室23内の一次冷媒は、前記のように蒸発するとヒートパイプ作動室23の上部に広がり、したがってヒートパイプ室23の上部に設けた凝縮室26内に入る。このとき、凝縮室26の底壁25は、二次冷却水供給管27によって冷却されているので凝縮し、底壁25が前記のように傾斜しているのでこの外壁25に沿って流下し、ヒートパイプ作動室23の底部に貯留する。以下同様の作動により太陽電池は冷却され、且つ所定の温度に保たれる。また、二次冷却水供給管27内の温水は前記実施例と同様に外部において使用される。
【0027】
上記実施例の装置においては、二次冷却水供給管27にヒートパイプ全体が固定されているので、1本のパイプである二次冷却水供給管27にぶら下がる形で設置することができ、太陽電池の施設が容易となり、低コスト化を実現することができる。また、上部から凝縮液が流れ落ちる形となるため、全体のモジュールを縦長形状とすることもでき、設置場所に適合した任意の形状とすることができる。
【0028】
【発明の効果】
本願発明は上記のように構成したので、請求項1に係る発明は、太陽電池の冷却をヒートパイプにより行うことができるため、ヒートパイプが備えている高い熱伝達率特性を用いて、効率よく太陽電池を冷却することができると共に、温水への熱伝達も効率的に行うことができる。また、ヒートパイプ作動室内の飽和圧力を任意に設定することにより、太陽電池冷却熱回収装置の特性に合わせた最も効率のよい温度に維持することができ、日射条件等に対応して自動的に最も効率の良い温度に維持することができる。
【0029】
更に、このように太陽電池を冷却する際に発生する熱を、温水として他に使用することができるので、太陽エネルギーの利用に際して、総合エネルギー使用効率の高いシステムとすることができる。また、エネルギー供給を電気エネルギーと温水の供給として行うことができるため、エネルギー供給が多様化し、ビルディングへの設置等の各種用途において、広範囲のエネルギーの使用態様に合わせた供給を行うことができる。
【0030】
また、太陽電池冷却熱回収装置の効率が向上するので、所定の出力を得るためには小モジュールの太陽電池でよくなるため、狭いモジュール敷地で足り、モジュール敷地の制約を解決することができる。また、全体をモジュール化することにより、ビル壁面にこのモジュールを配置する等、種々の建築物に種々の態様で設置することができる構造となり、利用範囲を拡大することができる。また、このとき生じる温水を、温水発生場所である建物で直接利用することができ、設置施設へのエネルギー供給に際して、熱損失が少なく熱効率の高い装置とすることができる。
【0031】
請求項2に係る発明は、前記熱交換部材を波板で形成し、片側の面がヒートパイプの凝縮部、他側の面が温水流通部としたので、ヒートパイプの熱を温水に効率よく伝熱することができ、太陽電池の温度を所定温度に確実に維持することができる。
【0032】
請求項3係る発明は、前記波板を前記表面板と平行に、且つ波型の凹凸部を形成する直線が上下方向となるように配置しているので、ヒートパイプ側で凝縮した作動媒体の液体分は、円滑に下方に流下することができ、熱交換部材の伝熱効率を向上することができる。
【0033】
請求項4に係る発明は、前記熱交換部材を、ヒートパイプの裏面上部から後方に突出させ、該突出部で温水供給部材と接触させたので、凝縮部の面積が拡大して凝縮性能が向上し、全体を小型化することができると共に、前記突出部と温水供給部材とを固定することにより、ヒートパイプが温水供給管にぶら下がった状態で設置することができ、その設置が容易となると共に、全体を縦長に成形する等、設置場所に対応した種々の形態にして設置することができる。
【0034】
請求項5に係る発明は、前記突出部の断面空間は、後方に狭い楔形とし、その底面は後方ほど高く形成したので、突出部で凝縮した液体分は、この底面状を流下し、円滑にヒートパイプ本体の底部に流下させることができる。
【図面の簡単な説明】
【図1】本発明の太陽電池冷却熱回収装置のモジュールの第1実施例を示す斜視図である。
【図2】表面板に太陽電池を貼り付けて使用した状態を示す斜視図である。
【図3】本発明の第2実施例を示す斜視図である。
【図4】従来の太陽電池冷却装置の斜視図である。
【符号の説明】
2 函体
3 表面板
4 伝熱板
5 ヒートパイプ作動室
6 二次冷却室
7 ウィック
10 第1側壁
11 供給口
12 第2側壁
13 排出口
Claims (5)
- 表面に太陽電池を固定する表面板と、該表面板の裏面に近接して配置したウィックと、凝縮部と、内部に封入する冷却媒体とからなるヒートパイプを備え、該ヒートパイプ内の飽和圧力を、太陽電池冷却熱回収装置の特性に合わせた最も効率の良い温度の近傍の温度における飽和圧力に設定するとともに、凝縮部の熱を、外部に供給してその熱を利用する温水に伝熱する熱交換部材を備えたことを特徴とする太陽電池冷却熱回収装置。
- 前記熱交換部材を波板で形成し、片側の面がヒートパイプの凝縮部、他側の面が温水流通部としてなる請求項1記載の太陽電池冷却熱回収装置。
- 前記波板を前記表面板と平行に、且つ波型の凹凸部を形成する直線が上下方向となるように配置してなる請求項2記載の太陽電池冷却熱回収装置。
- 前記熱交換部材を、ヒートパイプの裏面上部から後方に突出させ、該突出部で温水供給部材と接触させてなる請求項1記載の太陽電池冷却熱回収装置。
- 前記突出部の断面空間は、後方に狭い楔形とし、その底面は後方ほど高く形成してなる請求項4記載の太陽電池冷却熱回収装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33368799A JP3616813B2 (ja) | 1999-11-25 | 1999-11-25 | 太陽電池冷却熱回収装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33368799A JP3616813B2 (ja) | 1999-11-25 | 1999-11-25 | 太陽電池冷却熱回収装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001156323A JP2001156323A (ja) | 2001-06-08 |
JP3616813B2 true JP3616813B2 (ja) | 2005-02-02 |
Family
ID=18268854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33368799A Expired - Lifetime JP3616813B2 (ja) | 1999-11-25 | 1999-11-25 | 太陽電池冷却熱回収装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3616813B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070144574A1 (en) * | 2004-10-06 | 2007-06-28 | Tama-Tlo, Ltd. | Solar battery system and thermoelectric hybrid solar battery system |
DE102009057203A1 (de) * | 2009-11-26 | 2011-06-01 | Aci-Ecotec Gmbh & Co. Kg | Einrichtung zum Aussetzen eines Fotovoltaik-Dünnschichtmoduls mittels Licht |
-
1999
- 1999-11-25 JP JP33368799A patent/JP3616813B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001156323A (ja) | 2001-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6397163B2 (ja) | 太陽光発電における高効率放熱装置、ソーラーパネル及び熱電併給システム | |
JPWO2006038508A1 (ja) | 太陽電池システムおよび熱電気複合型太陽電池システム | |
KR20110001457A (ko) | 태양전지 방열 냉각 장치 | |
JP2012154554A (ja) | コージェネシステム | |
CN205232149U (zh) | 一种热电联产系统 | |
KR101877006B1 (ko) | 태양열 발전기 | |
JP3616813B2 (ja) | 太陽電池冷却熱回収装置 | |
US6857425B2 (en) | Solar energy collector system | |
CN209561579U (zh) | 一种带有微通道重力热管的电池组散热结构 | |
US11967928B2 (en) | Hybrid energy generation device using sunlight and solar heat | |
JPH0566065A (ja) | ソーラーヒートポンプ暖冷房給湯機 | |
CN116241931A (zh) | 一种冷却光伏组件生活热水供热系统 | |
CN105553418A (zh) | 一种基于光伏光热板的热电联产系统 | |
CN210404503U (zh) | 一种变电站高效散热装置 | |
KR102184623B1 (ko) | 태양열을 이용한 발전장치 | |
JP3838194B2 (ja) | 暖房システム | |
CN116294246A (zh) | 基于太阳能光伏光热和半导体制热综合利用的保温箱 | |
JP2004340394A (ja) | 太陽熱給湯システム | |
CN113437399B (zh) | 一种动力电池模组电极温度调控的热管理系统 | |
CN114464922B (zh) | 一种储能电池箱 | |
CN104333324B (zh) | 一种太阳能光伏光热一体化能量转换组件 | |
CN212566082U (zh) | 一种热传递性能好的水蓄冷热装置 | |
CN216693697U (zh) | 一种超导式相变蓄热电暖器 | |
CN218525632U (zh) | 一种电池组温控系统及大容量电池组 | |
CN219247797U (zh) | 一种光伏发电板用散热结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3616813 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |