JP3613808B2 - Processing method of conductive metal - Google Patents

Processing method of conductive metal Download PDF

Info

Publication number
JP3613808B2
JP3613808B2 JP13226894A JP13226894A JP3613808B2 JP 3613808 B2 JP3613808 B2 JP 3613808B2 JP 13226894 A JP13226894 A JP 13226894A JP 13226894 A JP13226894 A JP 13226894A JP 3613808 B2 JP3613808 B2 JP 3613808B2
Authority
JP
Japan
Prior art keywords
induction coil
induction
container
turns
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13226894A
Other languages
Japanese (ja)
Other versions
JPH07335381A (en
Inventor
努 田中
勝 吉田
誠治 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13226894A priority Critical patent/JP3613808B2/en
Publication of JPH07335381A publication Critical patent/JPH07335381A/en
Application granted granted Critical
Publication of JP3613808B2 publication Critical patent/JP3613808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)
  • General Induction Heating (AREA)
  • Continuous Casting (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、複数の坩堝又は鋳型等の容器に誘導コイルをそれぞれ取り付け、該誘導コイルにて生ずる電磁誘導を利用して導電性金属の溶融又は鋳造等の加工を行う方法に関する。
【0002】
【従来の技術】
例えば特開平4−13445 号公報には、複数の鋳型を備える連続鋳造設備において、各鋳型の周囲にそれと同心状に誘導コイルを配設し、各々の誘導コイルに対応して設けてある高周波電源から、誘導コイルに高周波電流を与え、鋳型内に供給された溶湯に鋳型の中心に向かうピンチ力を発生させることによって、湯面と鋳型内壁面との間に隙間を生じさせて鋳造を行う方法が開示されている。これによって、凝固シェルと鋳壁との間へのパウダの流入が増加し、潤滑性が増大して鋳造速度が向上すると共に、初期凝固シェルの形状が良好となり、鋳型の振動によって生じるオッシレーションマークが減少して鋳片の品質が向上する。
【0003】
一方特開平2−287091号公報には、冷却管が埋設された複数の金属製の坩堝の周囲に誘導コイルを、該坩堝の上下方向にコイルの巻回密度を異ならせてそれぞれ配設し、各々の誘導コイルに対応して設けてある高周波電源から誘導コイルに高周波電流を与え、坩堝の壁を冷却しつつ電磁誘導によって坩堝内に投入した導電性金属材料を溶解すると共に混合することによって、不純物の混入を防止して純度が高い合金を製造する方法が開示されている。
【0004】
図6は上述した従来方法を実施するための加工設備の一例を示す回路図であり、図6においては並列共振回路を用いて誘導コイルを発振するようになしてある。なお金属材料を装入する鋳型及び坩堝等の容器は複数配備されており、その平面断面積は可変である。平面断面積が可変である複数の容器(図示せず)の周囲にはそれぞれ、誘導コイル31,31,31,31が設けられており、誘導コイル31,31,31,31は、複数のタップ32,32,…を備えるトランス33,33,33,33の2次コイル側にそれぞれ接続されている。またトランス33,33,33,33の1次コイル側及び可変容量式のコンデンサ34,34,34,34はスイッチ35,35,35,35を介して、誘導コイル31,31,31,31に対応して備えられた高周波電源36,36,36,36に並列的に接続されている。そして加工スケジュールに応じて、誘導コイルと電源との接続数及び容器の平面断面積が変更されるようになっている。
【0005】
このような装置において、導電性金属の溶融又は鋳造を行うには、使用する容器に係るスイッチ35,35,…を接続して高周波電源36,36,…から高周波電流を誘導コイル31,31,…に与え、誘導コイル31,31,…が発生する電磁誘導を利用して導電性金属を加熱し、又はピンチ力を与えて溶融又は鋳造を行う。
【0006】
そして加工スケジュールに応じて接続する誘導コイルの数の増減及び容器の平面断面積の変更を行うには、まず接続予定の容器に係るトランス33,33,…及びコンデンサ34,34,…について、その容器の平面断面積の変更に応じて次のようにタップ32,32,…及びコンデンサ34,34,…の容量の切り替えを行う。
【0007】
容器の平面断面積,更には容器に配設した誘導コイル31,31,…の長さを拡大する場合は、それによって誘導コイル31,31,…のインダクタンスが増加する。誘導コイル31,31,…が容器内の導電性金属に与える電磁気的効果は誘導コイル31,31,…が発生する磁束密度に比例するが、高周波電源36,36,…の出力が一定である場合は、インダクタンスが増加すると磁束密度は低下するため、導電性金属が受ける加熱及びピンチ力等の電磁気的効果が減少し、加工速度の低下又は品質の低下を招く。一方、磁束密度は誘導コイル31,31,…に印加される電圧に比例するため、容器の平面断面積の変更前後おいて同等な電磁気的効果を導電性金属に同程度に与えるためには、誘導コイル31,31,…に印加する電圧を高める、即ち電圧が高いタップ32,32,…に切り替える操作を行う。
【0008】
また誘導コイル31,31,…のインダクタンスが増加すると、インダクタンスの平方根に逆比例して共振周波数が低下する。共振周波数の減少は、磁気シールドパラメータの値を小さくし、溶融した導電性金属の自由表面の形状に対する不安定性を増加させることになる。そこで共振周波数を一定にすべく、インダクタンスの増加に逆比例してコンデンサ34,34,…の容量を減少させる操作を行う。
【0009】
反対に、容器の平面断面積を縮小する場合はこれと逆の操作を行う。そして使用予定の容器に係る誘導コイル31,31,…を作動させるべく、スイッチ35,35,…を閉じ、その他のスイッチ35,35,…は開いたままにしておく。なお、このような並列発振回路以外の発振方式によっても電磁誘導を行い得るが、そのような場合であっても容器の平面断面積の変更に伴って、コンデンサの容量切り替え及びタップの切り替えの各操作が行われる。
【0010】
【発明が解決しようとする課題】
しかしながら従来の方法にあっては、各誘導コイルに対応して高周波電源をそれぞれ設けなければならず、また容器の平面断面積の変更に対応すべく、多くのタップを備えたトランス及び可変幅が大きいコンデンサを配備しなければならないため設備費が高いという問題があった。
本発明はかかる事情に鑑みてなされたものであって、その目的とするところは誘導コイルの接続数及び容器の平面断面積の変更に応じて決定した巻回数及びコイル幅に従う誘導コイルを選択することによって、高周波電源の設置数等を減少して設備費を低減し得る導電性金属の加工方法を提供することにある。
【0011】
【課題を解決するための手段】
第1発明に係る導電性金属の加工方法は、平面断面積が可変である複数の容器に、電源への接続切断自在になした誘導コイルを嵌合してあり、加工スケジュールに応じて容器の平面断面積及び電源への誘導コイル接続数を決定し、電源に接続された誘導コイルを有する容器内へ導電性金属を装入し、前記誘導コイルによる電磁誘導を利用して前記導電性金属を加工する方法において、前記誘導コイルの巻回数及びその軸長方向の1巻き当たりの導体幅が異なる複数の誘導コイルを準備しておき、容器の平面断面積及び誘導コイルの接続数に応じて所定のインダクタンスとなるように巻回数を決定し、その巻回数に応じて所定のコイル高さとなるように導体幅を決定し、これらの決定した結果に従う誘導コイルを選択することを特徴とする。
【0012】
第2発明に係る導電性金属の加工方法は、第1発明において、前記巻回数mは、次の(1)式にて決定することを特徴とする。
m=α・(n/a) …(1)
但し、n:誘導コイルの接続数
a:容器の平面断面積
α:定数
【0013】
第3発明に係る導電性金属の加工方法は、第1発明において、前記導体幅wは、次の(2)式にて決定することを特徴とする。
w=β・(1/m) …(2)
但し、m:誘導コイルの巻回数
β:定数
【0014】
【作用】
いま、平面断面積がaである円筒形の複数の容器(平面断面積は可変)の周囲に、誘導コイルが交換可能にそれぞれ配設されており、全誘導コイルは1つの高周波電源に並列接続可能になしてあり、その接続数はnであるものとする。また誘導コイルは、該誘導コイルのインダクタンス及びその磁束密度が最適であるように誘導コイルの巻回数m,及び該誘導コイルを構成する導体の誘導コイルの軸長方向の1巻き当たりの幅(導体幅)wを定めたものを取り付けてある。
【0015】
このような装置にあっては、加工スケジュールに応じて、誘導コイルの接続数及び容器の平面断面積が変更されても、高周波電源に対する負荷全体のインダクタンスが一定であれば、変更の前後で共振周波数は変化しない。一方、誘導コイルの巻回数が一定である場合、高周波電源に対する負荷全体のインダクタンスは誘導コイルの接続数に略逆比例して減少し、また各誘導コイルのインダクタンスは容器の平面断面積に略比例して増加する。そこで誘導コイルの接続数及び容器の平面断面積に応じて、インダクタンスを一定にすべく誘導コイルの巻回数を決定することによって、共振周波数を一定にすることができる。
【0016】
一方、誘導コイルへの巻回数が異なると、磁束密度の変化を招来する。これを回避するためには、前述した如く決定した巻回数に応じて、導体幅と巻回数との積であるコイル高さが一定になるように導体幅を決定する。そして、巻回数及び導体幅が異なる複数の誘導コイルを準備しておき、誘導コイルの接続数及び容器の平面断面積の変更に応じて、前述した如く決定した巻回数及び導体幅に従う誘導コイルを選択することによって、誘導コイルの接続数及び容器の平面断面積が変更されても、インダクタンス及び磁束密度が略一定となる。
【0017】
前述した如く加工スケジュールに応じて、誘導コイルの接続数n及び容器の平面断面積aに変更される場合、次の(3)式を満足することによってインダクタンスが一定になる。
【0018】
【数1】

Figure 0003613808
【0019】
(3)式は次の(4)式に変形でき、(4)式中の(m・a)/nは定数αで置き換えることができる。従って、次の(1)式にて誘導コイルの巻回数mを決定することができる。
【0020】
【数2】
Figure 0003613808
【0021】
またコイルの積層高さは、コイル1巻き当たりの導体幅wと巻回数mとの積で表され、一般的に一定値βに等しいことが望ましい。
Figure 0003613808
【0022】
そして(1)式及び(2)式にて決定された巻回数m,コイル1巻き当たりの導体幅wである誘導コイル、又はこれらに近似する誘導コイルを選択し、選択した誘導コイルに交換する。
【0023】
【実施例】
以下本発明をその実施例を示す図面に基づいて具体的に説明する。
図1は本発明方法を実施するための加工設備の回路図である。その平面断面積が可変である容器(図示せず)の周囲にはそれぞれ、導体を巻回した誘導コイル1,1,1,1が交換可能に外嵌してあり、各誘導コイル1,1,1,1は複数のタップ2,2,…を備えるトランス3,3,3,3の2次コイル側にそれぞれ接続されている。トランス3,3,3,3の1次コイル側及び容量可変のコンデンサ4,4,4,4はそれぞれ並列接続されており、これらは更にスイッチ5,5,5,5を介して高周波電源6と並列接続されている。また誘導コイル1,1,1,1は、その巻回数及びコイル1巻き当たりの導体幅が異なる複数種類を予め準備してある。
【0024】
このような装置において、特に製品が円形断面の場合は、使用する容器の数,製品寸法等の加工スケジュールに応じて接続する誘導コイルの数及び容器の平面断面積を変更して、導電性金属の溶解又は鋳造を行うには、変更後の容器の平面断面積a,及び変更後の誘導コイルの接続数nに基づいて、所定のインダクタンスになるように次の(1)式によって誘導コイルの巻回数mを決定する。
m=α・(n/a) …(1)
但し、α:定数
【0025】
図2は、容器の平面断面積を一定とし、接続する誘導コイルの基数の変更に応じて求めた巻回数の誘導コイルに交換した場合における高周波電源の発振特性を示すグラフであり、縦軸は高周波電源の出力電圧を、また横軸はその出力電流をそれぞれ示している。
【0026】
図2から明らかな如く、接続する誘導コイルの基数nが変更されても、(1)式に基づいて求めた巻回数の誘導コイルに交換することによって、電流・電圧特性は同じ線上に重なりインダクタンスは一定であることが分かる。これによって単一の高周波電源にても複数の誘導コイルを接続することができ、従来の方法より高周波電源の数を削減することが可能となり、設備費が減少する。
【0027】
また決定した誘導コイルの巻回数mに基づいて、次の(2)式によって変更後の導体の誘導コイルの1巻き当たりの長手方向の幅wを決定する。
w=β・(1/m) …(2)
但し、β:定数
【0028】
そして(1)式にて求めた巻回数m及び(2)式にて求めた幅wの誘導コイル,又はそれに近似する誘導コイルを選択し、現在取り付けてある誘導コイルを、選択した誘導コイルに交換した後、スイッチ5,5,…を閉じて高周波電流を誘導コイル1,1,…に与える。
【0029】
一方、前述した如く誘導コイルの交換を行った後であっても、交換の前後において誘導コイル1,1,…の巻回数が整数倍にならない等の理由により、高周波電源6の発振特性が適正な負荷整合線から若干外れることがある。そのような場合には、コンデンサ4,4,…の容量及びトランス3,3,…のタップ2,2,…を適宜調整する。このとき従来の方法に比べてコンデンサ及びタップの調整量は小さいため、可変幅が小さいコンデンサ及びタップ数が少ないトランスを用いることができ、設備費が更に減少する。
【0030】
次に比較試験を行った結果について説明する。
図3及び図4は、連続鋳造設備に備えられた鋳型の正断面図及び平断面図であり、図中9は平面視が長方形である筒状の鋳型である。鋳型9には上下方向に複数のスリット11,11,…が開設されており、スリット11,11,…で分けられた鋳壁9a,9a,9b,9bには上下方向に冷却管10,10,…がそれぞれ埋設してある。
【0031】
鋳型9内にはその上方から、給湯ノズル8の下端が所定長だけ延設されており、給湯ノズル8の下端付近の鋳型9の周囲には所要巻回数及び所要幅となされた誘導コイル1が鋳型9と同心状に交換自在に取り付けてある。給湯ノズル8から鋳型9内に注入された溶湯12の湯面上にはパウダが供給されるようになっており、パウダは溶湯12にて熱せられて溶融パウダ14となって溶湯12の酸化を防止する。鋳型9内の溶湯12は、冷却管10,10,…内に冷却水が通流された鋳壁9a,9a,9b,9bにて冷却収縮し、鋳壁9a,9a,9b,9bとの間に隙間が生じる。この隙間内に溶融パウダ14が入込んで凝固パウダ15になり、熱伝導性を緩和しつつ溶湯12の凝固シェル13の成長を促進すると共に、凝固シェル13と鋳壁9a,9a,9b,9bとの摩擦力を低減し、鋳片と共に下方へ引き抜かれていく。
【0032】
また前述した鋳造に際し、図示しない高周波電源から誘導コイル1へ高周波電流を与えて生じる磁場によって、溶湯12に鋳型の中央に向かうピンチ力を発生させて前記隙間を拡大し、溶融パウダ14の供給量を増加させることによって鋳込み速度を向上させている。
【0033】
このような連続鋳造設備の諸元及び鋳造条件は次の通りである。
Figure 0003613808
【0034】
まず、その外径が20mm,巻回数が4巻である誘導コイルを取り付けて鋳型を1基運転した。この場合、コンデンサの容量が0.133 μF ,トランスの1次巻回数が30回であり、高周波電源の出力電圧,出力電流が7.5 kV,33.4 Aにて誘導コイルに15000 ATの高周波電流を流すことができ、その周波数は20±0.02kHz であった。また消費電力は313 kWであった。次に、誘導コイルを外径が5mm,巻回数が16回のものに交換して4基の鋳型の運転を行った。このときコンデンサ及びトランスの条件を変更することなく、高周波電源の出力電圧,出力電流は15 kV ,66.6 Aにて誘導コイルに15000 ATの高周波電流を流すことができ、その周波数は20±0.02kHz であった。また消費電力は1250kWであり、鋳型1基のときの略4倍であった。
【0035】
これに対し比較例では、その出力電圧,出力電流が7.5 kV,33.4 Aである高周波電源を4基準備し、各高周波電源と4基の鋳型に取り付けた誘導コイルそれぞれとを1対1となるように接続して全鋳型を運転した。このときの消費電力は1250kWであり、従来方法の発振効率は本発明方法と同等であったが、高周波電源の配置基数が多いため、設備の建設費は本発明方法を採用した場合に比べて略2倍であった。
【0036】
図5は誘導炉を示す模式的正断面図であり、図中21はチャンバである。チャンバ21の底部近傍には排気管25及び給気管24が接続してあり、チャンバ21内を不活性ガスにて置換するようになっている。チャンバ21内の略中央には金属円筒状の坩堝29が配置されており、坩堝29の上方には溶融材料27を保持・投入するホッパ26が坩堝29と同軸状に設けられている。また坩堝29の下方にはその上端に所要径の金属母材22を支持する支持棒23が昇降自在に配置してあり、金属母材22の上端が坩堝29中央の所定位置に達するまでこれを挿入する。
【0037】
坩堝29には上下方向に開設したスリットが複数形成されており、その平面断面積の寸法を変更し得るようになしてある。また坩堝29の壁の内部にはその全周・全長にわたって空間部30が設けられており、該空間部30内にはチャンバ21外から冷却水を流通させ得るようになっている。空間部30はその幅が坩堝29の上・下端付近では大きく、その間では小さくなしてあり、幅が小さくなった部分の坩堝29の周囲には、所要巻回数及び所要幅となされた誘導コイル1が鋳型29と同心状に交換自在に取り付けてある。誘導コイル1にはチャンバ21外に設置してある高周波電源(図示せず)から高周波電流が与えられるようになており、誘導コイル1にて前記金属母材22の上端が溶融されて形成された溶湯プール28へ前記ホッパ26から投入された溶融材料27はここで溶融された後、坩堝29の下端にて冷却凝固され下方へ引き抜かれる。
【0038】
このような誘導炉の諸元及び鋳造条件は次の通りである。
Figure 0003613808
【0039】
まず、その断面寸法が15mm×15mm,巻回数が4回である誘導コイル1を取り付けて坩堝29を1基運転した。この場合、コンデンサの容量が0.133 μF ,トランスの1次巻回数が30回であり、高周波電源の出力電圧,出力電流が3.75kV,16.7 Aにて誘導コイルに4000 AT の高周波電流を流すことができ、その周波数は20±0.02kHz であった。また消費電力は78.3kWであった。次に、誘導コイル1を断面寸法が3.7mm ×10mm,巻回数が16巻のものに交換して4基の坩堝の運転を行った。このときコンデンサ及びトランスの条件を変更することなく、高周波電源の出力電圧,出力電流が7.5kV ,33.3 Aにて誘導コイルに4000±10ATの高周波電流を流すことができ、その周波数は20±0.02kHz であった。また消費電力は313 kWであり、坩堝1基のときの略4倍であった。
【0040】
これに対し比較例では、その出力電圧,出力電流が3.75kV,16.7 Aである高周波電源を4基準備し、各高周波電源と4基の坩堝29に取り付けた誘導コイルそれぞれとを1対1となるように接続して全坩堝を運転した。このときの消費電力は313 kWであり、従来方法の発振効率は本発明方法と同等であったが、高周波電源の配置基数が多いため、設備の建設費は本発明方法を採用した場合に比べて略2倍であった。
【0041】
【発明の効果】
以上詳述した如く本発明に係る方法にあっては、容器の平面断面積の変更及び誘導コイルの接続数に応じて誘導コイルの巻回数及び1巻き当たりの導体幅を決定することによって、1基の高周波電源にて複数の誘導コイルを接続することができるため、高周波電源の基数を容器の基数より減じることができ、設備費が減少する。また決定した巻回数及び導体幅に従う誘導コイルを選択するため、インダクタンスを一定とべく行うトランス及びコンデンサの調整量が減少して、タップ数が少ないトランス,及び可変幅が小さいコンデンサを用いることができ設備費が更に減少する等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明方法を実施するための加工設備の回路図である。
【図2】容器の平面断面積を一定とし、接続する誘導コイルの基数の変更に応じて求めた巻回数の誘導コイルに交換した場合における高周波電源の発振特性を示すグラフである。
【図3】連続鋳造設備に備えられた鋳型の正断面図である。
【図4】連続鋳造設備に備えられた鋳型の平断面図である。
【図5】誘導炉を示す模式的正断面図である。
【図6】従来方法を実施するための加工設備の一例を示す回路図である。
【符号の説明】
1 誘導コイル
2 タップ
3 トランス
4 コンデンサ
5 スイッチ
6 高周波電源
8 給湯ノズル
9 鋳型
10 冷却管
12 溶湯
13 凝固シェル
14 溶融パウダ
15 凝固パウダ[0001]
[Industrial application fields]
The present invention relates to a method for attaching a induction coil to a plurality of crucibles or containers such as a mold, and performing processing such as melting or casting of a conductive metal using electromagnetic induction generated in the induction coil.
[0002]
[Prior art]
For example, in Japanese Patent Application Laid-Open No. 4-13445, in a continuous casting facility provided with a plurality of molds, an induction coil is disposed concentrically around each mold, and a high frequency power source provided corresponding to each induction coil. From this, a high frequency current is applied to the induction coil, and a pinch force is generated in the molten metal supplied in the mold toward the center of the mold, thereby producing a gap between the molten metal surface and the inner wall surface of the mold for casting. Is disclosed. This increases the inflow of powder between the solidified shell and the cast wall, increases the lubricity and improves the casting speed, improves the shape of the initial solidified shell, and the oscillation mark generated by the vibration of the mold. Reduces the quality of the slab.
[0003]
On the other hand, in JP-A-2-287091, an induction coil is disposed around a plurality of metal crucibles in which cooling pipes are embedded, and the winding density of the coils is varied in the vertical direction of the crucible, respectively. By applying a high frequency current to the induction coil from a high frequency power source provided corresponding to each induction coil, and melting and mixing the conductive metal material put into the crucible by electromagnetic induction while cooling the crucible wall, A method for producing an alloy having a high purity by preventing the mixing of impurities is disclosed.
[0004]
FIG. 6 is a circuit diagram showing an example of processing equipment for implementing the above-described conventional method. In FIG. 6, an induction coil is oscillated using a parallel resonance circuit. A plurality of containers such as a mold and a crucible for charging the metal material are provided, and the plane cross-sectional area is variable. Induction coils 31, 31, 31, 31 are provided around a plurality of containers (not shown) whose plane cross-sectional areas are variable, and the induction coils 31, 31, 31, 31 are a plurality of taps. Are connected to the secondary coil side of transformers 33, 33, 33, 33 provided with 32, 32,. Further, the primary coil side of the transformers 33, 33, 33, 33 and the variable capacitance type capacitors 34, 34, 34, 34 are connected to the induction coils 31, 31, 31, 31 via the switches 35, 35, 35, 35. They are connected in parallel to the corresponding high-frequency power sources 36, 36, 36, 36. And according to the processing schedule, the number of connections between the induction coil and the power source and the planar cross-sectional area of the container are changed.
[0005]
In such an apparatus, in order to melt or cast the conductive metal, switches 35, 35,... Related to the containers to be used are connected, and high frequency currents are induced from the high frequency power sources 36, 36,. ..., the conductive metal is heated using electromagnetic induction generated by the induction coils 31, 31, ..., or a pinch force is applied to perform melting or casting.
[0006]
In order to increase / decrease the number of induction coils to be connected and change the plane cross-sectional area of the container according to the processing schedule, firstly, the transformers 33, 33,... And capacitors 34, 34,. The capacities of taps 32, 32,... And capacitors 34, 34,.
[0007]
When the planar cross-sectional area of the container and the length of the induction coils 31, 31,... Arranged in the container are increased, the inductance of the induction coils 31, 31,. The electromagnetic effect that the induction coils 31, 31, ... have on the conductive metal in the container is proportional to the magnetic flux density generated by the induction coils 31, 31, ..., but the output of the high frequency power sources 36, 36, ... is constant. In this case, since the magnetic flux density decreases as the inductance increases, electromagnetic effects such as heating and pinch force received by the conductive metal decrease, resulting in a decrease in processing speed or a decrease in quality. On the other hand, since the magnetic flux density is proportional to the voltage applied to the induction coils 31, 31,..., In order to give an equivalent electromagnetic effect to the conductive metal to the same extent before and after the change of the plane cross-sectional area of the container, The voltage applied to the induction coils 31, 31,... Is increased, that is, the operation is switched to the taps 32, 32,.
[0008]
Further, when the inductance of the induction coils 31, 31,... Increases, the resonance frequency decreases in inverse proportion to the square root of the inductance. Reducing the resonant frequency reduces the value of the magnetic shield parameter and increases the instability of the molten conductive metal with respect to the free surface shape. Therefore, in order to make the resonance frequency constant, an operation of decreasing the capacitances of the capacitors 34, 34,... In inverse proportion to the increase in inductance is performed.
[0009]
On the contrary, when reducing the planar cross-sectional area of the container, the opposite operation is performed. Then, the switches 35, 35,... Are closed and the other switches 35, 35,. Electromagnetic induction can also be performed by an oscillation method other than such a parallel oscillation circuit, but even in such a case, each change of the capacitance of the capacitor and switching of the tap is accompanied by a change in the plane cross-sectional area of the container. The operation is performed.
[0010]
[Problems to be solved by the invention]
However, in the conventional method, a high-frequency power source must be provided for each induction coil, and a transformer having a large number of taps and a variable width are provided in order to cope with a change in the planar cross-sectional area of the container. There was a problem that the equipment cost was high because a large capacitor had to be provided.
The present invention has been made in view of such circumstances, and an object of the present invention is to select an induction coil according to the number of turns and the coil width determined according to the change in the number of connections of the induction coil and the plane cross-sectional area of the container. Accordingly, an object of the present invention is to provide a method for processing a conductive metal that can reduce the installation cost by reducing the number of installed high-frequency power supplies.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for processing a conductive metal, comprising: a plurality of containers having a variable plane cross-sectional area, fitted with induction coils that can be freely disconnected from a power source; The plane cross-sectional area and the number of induction coil connections to the power source are determined, a conductive metal is inserted into a container having an induction coil connected to the power source, and the conductive metal is introduced using electromagnetic induction by the induction coil. In the processing method, a plurality of induction coils having different numbers of turns of the induction coil and a conductor width per one turn in the axial length direction are prepared, and are determined in accordance with the planar cross-sectional area of the container and the number of induction coils connected. The number of turns is determined so as to obtain an inductance, and the conductor width is determined so as to obtain a predetermined coil height according to the number of turns, and an induction coil is selected according to the determined result.
[0012]
The conductive metal processing method according to the second invention is characterized in that, in the first invention, the winding number m is determined by the following equation (1).
m = α · (n / a) (1)
Where n: number of connected induction coils a: plane cross-sectional area of the container α: constant
The conductive metal processing method according to a third aspect of the present invention is characterized in that, in the first aspect, the conductor width w is determined by the following equation (2).
w = β · (1 / m) (2)
Where m: number of turns of induction coil β: constant
[Action]
Now, around the plurality of containers of cylindrical plane cross-sectional area is a 0 (a plane cross-sectional area is variable), the induction coil are disposed respectively interchangeably, all induction coils parallel to one high frequency power source Yes form to be connectable, the connection number is assumed to be n 0. In addition, the induction coil has a winding number m 0 of the induction coil so that the inductance of the induction coil and the magnetic flux density thereof are optimal, and the width per turn in the axial length direction of the induction coil of the conductor constituting the induction coil ( A conductor having a width (w 0 ) is attached.
[0015]
In such an apparatus, even if the number of induction coils connected and the plane cross-sectional area of the container are changed according to the processing schedule, if the inductance of the entire load with respect to the high-frequency power source is constant, resonance will occur before and after the change. The frequency does not change. On the other hand, when the number of turns of the induction coil is constant, the inductance of the entire load with respect to the high-frequency power source decreases approximately inversely proportional to the number of induction coil connections, and the inductance of each induction coil is approximately proportional to the plane cross-sectional area of the container. Then increase. Therefore, the resonance frequency can be made constant by determining the number of turns of the induction coil so as to make the inductance constant according to the number of induction coils connected and the planar cross-sectional area of the container.
[0016]
On the other hand, if the number of turns to the induction coil is different, a change in magnetic flux density is caused. In order to avoid this, the conductor width is determined so that the coil height, which is the product of the conductor width and the number of turns, becomes constant according to the number of turns determined as described above. A plurality of induction coils having different numbers of turns and conductor widths are prepared, and induction coils according to the number of turns and the conductor widths determined as described above according to changes in the number of induction coils connected and the plane cross-sectional area of the container are prepared. By selecting, even if the number of induction coils connected and the planar cross-sectional area of the container are changed, the inductance and the magnetic flux density become substantially constant.
[0017]
As described above, when the number n of induction coil connections and the plane sectional area a of the container are changed according to the machining schedule, the inductance becomes constant by satisfying the following expression (3).
[0018]
[Expression 1]
Figure 0003613808
[0019]
The expression (3) can be transformed into the following expression (4), and (m 0 · a 0 ) / n 0 in the expression (4) can be replaced with a constant α. Therefore, the number of turns m of the induction coil can be determined by the following equation (1).
[0020]
[Expression 2]
Figure 0003613808
[0021]
The coil stacking height is represented by the product of the conductor width w 0 per coil winding and the number of turns m 0, and is generally preferably equal to a constant value β.
Figure 0003613808
[0022]
Then, the induction coil having the number of turns m determined by the equations (1) and (2) and the conductor width w per coil winding, or an induction coil similar to these, is selected and replaced with the selected induction coil. .
[0023]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a circuit diagram of a processing facility for carrying out the method of the present invention. Inductive coils 1, 1, 1, 1 wound with conductors are fitted around the containers (not shown) whose plane cross-sectional areas are variable, respectively, so that they can be replaced. , 1, 1 are respectively connected to the secondary coil sides of transformers 3, 3, 3, 3 having a plurality of taps 2, 2,. The primary coil side of the transformers 3, 3, 3 and 3 and the variable-capacitance capacitors 4, 4, 4 and 4 are respectively connected in parallel. And connected in parallel. The induction coils 1, 1, 1, 1 are prepared in advance in a plurality of types having different numbers of turns and different conductor widths per coil.
[0024]
In such an apparatus, particularly when the product has a circular cross section, the number of containers used, the number of induction coils to be connected and the plane cross-sectional area of the container are changed according to the processing schedule such as the product dimensions. In order to perform melting or casting of the induction coil, the following equation (1) is used to obtain a predetermined inductance based on the plane cross-sectional area a of the container after the change and the number n of induction coil connections after the change. The winding number m is determined.
m = α · (n / a) (1)
Where α: constant
FIG. 2 is a graph showing the oscillation characteristics of the high-frequency power source when the plane cross-sectional area of the container is constant and the container is replaced with an induction coil having the number of turns determined according to the change in the radix of the induction coil to be connected. The output voltage of the high frequency power source is shown, and the horizontal axis shows the output current.
[0026]
As is apparent from FIG. 2, even if the radix n of the induction coil to be connected is changed, the current / voltage characteristics overlap on the same line by replacing the induction coil with the number of turns determined based on the equation (1). Is constant. As a result, a plurality of induction coils can be connected to a single high-frequency power source, and the number of high-frequency power sources can be reduced as compared with the conventional method, thereby reducing the equipment cost.
[0027]
Further, based on the determined number of turns m of the induction coil, the width w in the longitudinal direction per turn of the conductor induction coil after the change is determined by the following equation (2).
w = β · (1 / m) (2)
However, β: constant [0028]
Then, an induction coil having the number of turns m obtained by the equation (1) and an induction coil having a width w obtained by the equation (2) or an induction coil similar thereto is selected, and the induction coil currently attached is selected as the selected induction coil. After the replacement, the switches 5, 5,... Are closed to apply a high frequency current to the induction coils 1, 1,.
[0029]
On the other hand, even after the induction coil has been replaced as described above, the oscillation characteristics of the high-frequency power source 6 are appropriate because the number of turns of the induction coils 1, 1,. May slightly deviate from the load matching line. In such a case, the capacities of the capacitors 4, 4,... And the taps 2, 2,. At this time, since the adjustment amount of the capacitor and the tap is small as compared with the conventional method, a capacitor having a small variable width and a transformer having a small number of taps can be used, and the equipment cost is further reduced.
[0030]
Next, the results of comparative tests will be described.
3 and 4 are a front sectional view and a plan sectional view of a mold provided in a continuous casting facility, and 9 in the figure is a cylindrical mold having a rectangular plan view. A plurality of slits 11, 11,... Are formed in the mold 9 in the vertical direction, and cooling pipes 10, 10 are formed in the casting walls 9 a, 9 a, 9 b, 9 b divided by the slits 11, 11,. , ... are buried.
[0031]
A lower end of the hot water supply nozzle 8 is extended from the upper side in the mold 9 by a predetermined length, and the induction coil 1 having a required number of turns and a required width is provided around the mold 9 near the lower end of the hot water supply nozzle 8. It is attached concentrically with the mold 9 so as to be exchangeable. Powder is supplied onto the surface of the molten metal 12 injected into the mold 9 from the hot water supply nozzle 8, and the powder is heated by the molten metal 12 to become molten powder 14 to oxidize the molten metal 12. To prevent. The molten metal 12 in the mold 9 is cooled and contracted by the cast walls 9a, 9a, 9b, 9b through which the cooling water is passed through the cooling pipes 10, 10,..., And the cast walls 9a, 9a, 9b, 9b. There is a gap between them. The molten powder 14 enters the gap to become the solidified powder 15, which promotes the growth of the solidified shell 13 of the molten metal 12 while relaxing the thermal conductivity, and at the same time, the solidified shell 13 and the cast walls 9 a, 9 a, 9 b, 9 b. The frictional force is reduced, and it is drawn downward together with the slab.
[0032]
In addition, during the above-described casting, a magnetic field generated by applying a high frequency current from a high frequency power source (not shown) to the induction coil 1 generates a pinch force in the molten metal 12 toward the center of the mold, thereby expanding the gap and supplying the molten powder 14. The casting speed is improved by increasing.
[0033]
The specifications and casting conditions of such a continuous casting facility are as follows.
Figure 0003613808
[0034]
First, an induction coil having an outer diameter of 20 mm and a winding number of 4 was attached, and one mold was operated. In this case, the capacity of the capacitor is 0.133 μF, the number of primary turns of the transformer is 30 times, the output voltage and output current of the high frequency power supply are 7.5 kV, 33.4 A, and the induction coil is 15000 AT. A high-frequency current could flow, and the frequency was 20 ± 0.02 kHz. The power consumption was 313 kW. Next, the induction coil was replaced with one having an outer diameter of 5 mm and the number of turns of 16, and four molds were operated. At this time, without changing the conditions of the capacitor and the transformer, the output voltage and output current of the high-frequency power source are 15 kV and 66.6 A, and a high-frequency current of 15000 AT can flow through the induction coil, and the frequency is 20 ±. It was 0.02 kHz. The power consumption was 1250 kW, which was about 4 times that of the case of one mold.
[0035]
On the other hand, in the comparative example, four high-frequency power supplies having output voltages and output currents of 7.5 kV and 33.4 A are prepared, and each high-frequency power supply and each of the induction coils attached to the four molds are 1 All molds were operated with a pair of connections. The power consumption at this time is 1250 kW, and the oscillation efficiency of the conventional method is equivalent to that of the method of the present invention. However, since the number of high frequency power supply arrangements is large, the construction cost of the equipment is compared with the case of adopting the method of the present invention. It was about twice.
[0036]
FIG. 5 is a schematic front sectional view showing an induction furnace, in which 21 is a chamber. An exhaust pipe 25 and an air supply pipe 24 are connected near the bottom of the chamber 21 so that the inside of the chamber 21 is replaced with an inert gas. A metal cylindrical crucible 29 is disposed substantially in the center of the chamber 21, and a hopper 26 for holding and charging the molten material 27 is provided coaxially with the crucible 29 above the crucible 29. Below the crucible 29, a support rod 23 for supporting the metal base material 22 having a required diameter is disposed at its upper end so as to be movable up and down, and this is supported until the upper end of the metal base material 22 reaches a predetermined position in the center of the crucible 29. insert.
[0037]
The crucible 29 is formed with a plurality of slits opened in the vertical direction so that the dimension of the plane cross-sectional area can be changed. In addition, a space 30 is provided in the wall of the crucible 29 over the entire circumference and length thereof, and cooling water can be circulated from outside the chamber 21 in the space 30. The width of the space 30 is large in the vicinity of the upper and lower ends of the crucible 29, and is reduced between them. Around the crucible 29 in the reduced width portion, the induction coil 1 having the required number of turns and the required width is provided. Is mounted concentrically with the mold 29 so as to be exchangeable. The induction coil 1 is supplied with a high-frequency current from a high-frequency power source (not shown) installed outside the chamber 21, and the induction coil 1 is formed by melting the upper end of the metal base material 22. The molten material 27 introduced from the hopper 26 into the molten metal pool 28 is melted here, and then cooled and solidified at the lower end of the crucible 29 and drawn downward.
[0038]
The specifications and casting conditions of such an induction furnace are as follows.
Figure 0003613808
[0039]
First, the induction coil 1 having a cross-sectional dimension of 15 mm × 15 mm and the number of turns of 4 was attached, and one crucible 29 was operated. In this case, the capacitance of the capacitor is 0.133 μF, the number of primary turns of the transformer is 30 times, the output voltage and output current of the high frequency power supply are 3.75 kV, 16.7 A, and the induction coil has a high frequency of 4000 AT. A current could be passed and the frequency was 20 ± 0.02 kHz. The power consumption was 78.3 kW. Next, the induction coil 1 was replaced with one having a cross-sectional dimension of 3.7 mm × 10 mm and the number of turns of 16, and four crucibles were operated. At this time, a high frequency current of 4000 ± 10 AT can be passed through the induction coil with the output voltage and output current of the high frequency power supply of 7.5 kV and 33.3 A without changing the conditions of the capacitor and the transformer. 20 ± 0.02 kHz. The power consumption was 313 kW, which was about 4 times that of one crucible.
[0040]
On the other hand, in the comparative example, four high-frequency power sources having output voltages and output currents of 3.75 kV and 16.7 A are prepared, and each high-frequency power source and each induction coil attached to the four crucibles 29 are each 1 All the crucibles were operated in a pair-to-one connection. The power consumption at this time is 313 kW, and the oscillation efficiency of the conventional method is equivalent to that of the method of the present invention. It was almost twice.
[0041]
【The invention's effect】
As described above in detail, in the method according to the present invention, the number of turns of the induction coil and the conductor width per turn are determined according to the change in the plane cross-sectional area of the container and the number of induction coils connected. Since a plurality of induction coils can be connected by the basic high frequency power source, the base number of the high frequency power source can be reduced from the base number of the container, and the equipment cost is reduced. In addition, since the induction coil according to the determined number of turns and the conductor width is selected, the amount of adjustment of the transformer and the capacitor for keeping the inductance constant is reduced, and a transformer with a small number of taps and a capacitor with a small variable width can be used. The present invention has excellent effects such as further reduction in equipment costs.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of processing equipment for carrying out the method of the present invention.
FIG. 2 is a graph showing the oscillation characteristics of a high-frequency power source when the planar cross-sectional area of the container is constant and the induction coil is replaced with an induction coil having the number of turns determined according to a change in the number of induction coils to be connected.
FIG. 3 is a front sectional view of a mold provided in a continuous casting facility.
FIG. 4 is a plan sectional view of a mold provided in a continuous casting facility.
FIG. 5 is a schematic front sectional view showing an induction furnace.
FIG. 6 is a circuit diagram showing an example of processing equipment for carrying out a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Induction coil 2 Tap 3 Transformer 4 Capacitor 5 Switch 6 High frequency power supply 8 Hot water supply nozzle 9 Mold 10 Cooling pipe 12 Molten metal 13 Solidified shell 14 Molten powder 15 Solidified powder

Claims (3)

平面断面積が可変である複数の容器に、電源への接続切断自在になした誘導コイルを嵌合してあり、加工スケジュールに応じて容器の平面断面積及び電源への誘導コイル接続数を決定し、電源に接続された誘導コイルを有する容器内へ導電性金属を装入し、前記誘導コイルによる電磁誘導を利用して前記導電性金属を加工する方法において、
前記誘導コイルの巻回数及びその軸長方向の1巻き当たりの導体幅が異なる複数の誘導コイルを準備しておき、容器の平面断面積及び誘導コイルの接続数に応じて所定のインダクタンスとなるように巻回数を決定し、その巻回数に応じて所定のコイル高さとなるように導体幅を決定し、これらの決定した結果に従う誘導コイルを選択することを特徴とする導電性金属の加工方法。
A plurality of containers with variable plane cross-sectional areas are fitted with induction coils that can be disconnected from the power supply, and the cross-sectional area of the container and the number of induction coil connections to the power supply are determined according to the processing schedule. In the method of charging the conductive metal into a container having an induction coil connected to a power source, and processing the conductive metal using electromagnetic induction by the induction coil,
A plurality of induction coils having different numbers of windings of the induction coil and conductor widths per one turn in the axial length direction are prepared, and a predetermined inductance is obtained according to the planar cross-sectional area of the container and the number of induction coil connections. A conductive metal processing method comprising: determining the number of turns, determining a conductor width so as to obtain a predetermined coil height according to the number of turns, and selecting an induction coil according to the determined results.
前記巻回数mは、次の(1)式にて決定する請求項1記載の導電性金属の加工方法。
m=α・(n/a) …(1)
但し、n:誘導コイルの接続数
a:容器の平面断面積
α:定数
The conductive metal processing method according to claim 1, wherein the winding number m is determined by the following equation (1).
m = α · (n / a) (1)
Where n: number of connected induction coils a: plane cross-sectional area of the container α: constant
前記導体幅wは、次の(2)式にて決定する請求項1記載の導電性金属の加工方法。
w=β・(1/m) …(2)
但し、m:誘導コイルの巻回数
β:定数
The conductive metal processing method according to claim 1, wherein the conductor width w is determined by the following equation (2).
w = β · (1 / m) (2)
Where m: number of turns of induction coil β: constant
JP13226894A 1994-06-14 1994-06-14 Processing method of conductive metal Expired - Fee Related JP3613808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13226894A JP3613808B2 (en) 1994-06-14 1994-06-14 Processing method of conductive metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13226894A JP3613808B2 (en) 1994-06-14 1994-06-14 Processing method of conductive metal

Publications (2)

Publication Number Publication Date
JPH07335381A JPH07335381A (en) 1995-12-22
JP3613808B2 true JP3613808B2 (en) 2005-01-26

Family

ID=15077316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13226894A Expired - Fee Related JP3613808B2 (en) 1994-06-14 1994-06-14 Processing method of conductive metal

Country Status (1)

Country Link
JP (1) JP3613808B2 (en)

Also Published As

Publication number Publication date
JPH07335381A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
US5109389A (en) Apparatus for generating an inductive heating field which interacts with metallic stock in a crucible
US6192969B1 (en) Casting of high purity oxygen free copper
JP6016818B2 (en) Open bottom conductive cooled crucible for ingot electromagnetic casting.
JPS6188950A (en) Molten-metal electromagnetic agitator
JPS6152962A (en) Method and device for casting conductor or semiconductor material
EP2233228B1 (en) Method of producing a fine grain casting
JP4012572B2 (en) Induction furnace for melting glass in a cold crucible
US4678024A (en) Horizontal electromagnetic casting of thin metal sheets
KR20040015249A (en) Furnace with bottom induction coil
JP3613808B2 (en) Processing method of conductive metal
US6618426B1 (en) Electromagnetic stirring of a melting metal
US1937065A (en) Induction furnace and method of operating the same
JP3967446B2 (en) Induction heating cooker
EP3697937A1 (en) Compact coil assembly for a vacuum arc remelting system
KR100419757B1 (en) A electromagnet stirrer in continuous casting machine
US3612805A (en) Inductive heating-cooling apparatus and method
EP0657236B1 (en) Molten metal pouring pot with induction heater
JPS635354B2 (en)
JPH1187044A (en) Bottom part molten metal tap type float solution device and its tap method
JP3122321B2 (en) Continuous casting equipment and melting furnace by induction heating with magnetic flux interruption device
JPH0494090A (en) Magnetic field controlling method in induction heating electric furnace
KR200253509Y1 (en) A electromagnet stirrer in continuous casting machine
CN114303035A (en) Induction furnace comprising an additional resonant circuit
RU2264695C2 (en) Induction heating device
JPH10189234A (en) Induction heating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees