JP3613367B2 - Thermosetting resin composition - Google Patents

Thermosetting resin composition Download PDF

Info

Publication number
JP3613367B2
JP3613367B2 JP00657197A JP657197A JP3613367B2 JP 3613367 B2 JP3613367 B2 JP 3613367B2 JP 00657197 A JP00657197 A JP 00657197A JP 657197 A JP657197 A JP 657197A JP 3613367 B2 JP3613367 B2 JP 3613367B2
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
meth
weight
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00657197A
Other languages
Japanese (ja)
Other versions
JPH10204259A (en
Inventor
和利 飯田
ウィッガム ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel Corp
Original Assignee
Henkel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP00657197A priority Critical patent/JP3613367B2/en
Application filed by Henkel Corp filed Critical Henkel Corp
Priority to PCT/US1998/000858 priority patent/WO1998031738A1/en
Priority to MYPI98000177A priority patent/MY118700A/en
Priority to US09/341,289 priority patent/US6316528B1/en
Priority to IDW990703A priority patent/ID22238A/en
Priority to BR9806743-5A priority patent/BR9806743A/en
Priority to EP98904585A priority patent/EP0953008A4/en
Priority to KR1019997006429A priority patent/KR100554323B1/en
Priority to CN98801882A priority patent/CN1243526A/en
Priority to TW087100682A priority patent/TW561178B/en
Publication of JPH10204259A publication Critical patent/JPH10204259A/en
Application granted granted Critical
Publication of JP3613367B2 publication Critical patent/JP3613367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • C08K5/3155Dicyandiamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LSI等の半導体素子をキャリア基材上にのせたチップサイズパッケージやボールグリッドアレイ等を配線基板上へ実装するときに用いられるアンダーフィル封止材に関する。
【0002】
【従来の技術】
近年、カメラ一体型VTRや携帯電話機などの小型電子機器が普及するにつれLSI装置の小型化が求められている。LSI等の半導体ベアチップを保護したり、テストを容易にするパッケージの特徴を生かしながら、ベアチップ並に小型化し、特性の向上を図る目的でCSP(chip scale package)やBGA(ball grid array)が普及しつつある。
【0003】
CSP/BGAは半田等によって配線基板上の配線と接続される。しかし、実装後に温度サイクルを受けると基板とCSP/BGAとの接続信頼性を保てない場合があり、通常、CSP/BGAを配線基板上に実装した後に、CSP/BGAと基板との隙間に封止樹脂を入れて(アンダーフィル封止)、熱サイクルによる応力を緩和し、ヒートショック性を向上させる方法が採られる。
【0004】
しかしながら、この方法では封止材料として熱硬化性樹脂が用いられるために、配線基板にCSP/BGAを実装した後に、CSP/BGA上のLSIの不良、CSP/BGAと配線基板との接続の不良等が発見されたときにCSP/BGAを交換することが極めて困難であるという問題があった。
【0005】
ところで、CSP/BGAの配線基板上への実装と比較的類似する技術として、ベアチップを配線基板上に実装する技術が知られている。例えば、特開平5−102343には、光硬化性接着剤を用いてベアチップを配線基板上に固定接続し、不良の際にはこれを取り除く実装方法が記載されている。しかし、この方法では配線基板として裏側から光照射が可能なガラス等の透明基板に限られ、また、本願発明者の検討によればヒートショック性に劣る問題点がある。
【0006】
特開平6−69280には、ベアチップと基板との固定接続を所定温度で硬化する樹脂を用いて行い、不良の際にこの所定温度より高い温度で樹脂を軟化させてベアチップを取り外す方法が記載されている。しかしながら、樹脂の開示がなく、信頼性とリペア特性の両方を満足する方法は依然として知られていなかった。さらにこの従来技術では、基板に残った樹脂の処理については全く開示がない。
【0007】
このような基板上に残った樹脂残さの除去に関し、特開平6−77264は従来技術として、一般的には溶剤を使用するが溶剤で膨潤させるのに時間がかかること、溶剤として使用する腐食性のある有機酸が基板上に残ると信頼性が低下することなどを指摘し、溶剤を用いる代わりに電磁波を照射して樹脂残さを取り除く方法を採用している。即ち、従来技術では、樹脂残さを溶剤を用いて除去することは非常に困難であったことが明らかである。
【0008】
また、特開平5−251516にも、ビスフェノールA型エポキシ樹脂(松下電工(株)製 CV5183、CV5183S)を用いて、ベアチップを配線基板上に接続固定し、不良の際にはこれを取り除く実装方法が記載されている。しかし、この方法ではチップの取り外しが必ずしも容易ではなく、ミリング加工でチップを切削する方法を採った場合にはチップが正常である場合でもチップの再利用ができない問題があり、また、硬化方法が120℃で2時間30分と長時間を要し、工程の生産性が悪い問題点があった。
【0009】
【発明が解決しようとする課題】
本発明は、短時間の熱硬化で生産性よく、キャリア基材上に半導体素子を保持するCSP/BGA等の半導体装置を確実に配線基板に接続し、ヒートショック性(熱サイクル性)に優れ、かつ不良が発見されたときに容易にCSP/BGAを取り外すことが可能なアンダーフィル封止用熱硬化性樹脂組成物を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、キャリア基材上に半導体素子を保持する半導体装置と、この半導体装置が電気的に接続される配線基板とのアンダーフィル封止に用いられる熱硬化性樹脂組成物であって、エポキシ樹脂100重量部と、硬化剤3〜60重量部と、可塑剤1〜90重量部とからなることを特徴とする熱硬化性樹脂組成物に関する。
【0011】
本発明の熱硬化性樹脂組成物は、比較的低温で短い時間で硬化するにも関わらず、硬化物のヒートショック性が優れ、しかもこの硬化物は加熱して力を加えると容易に引き裂くことが可能であり、さらに基板等に付着した硬化物は加熱するか、溶剤で膨潤させるか、または加熱しながら溶剤で膨潤させて、容易に取り除くことができる性質を有している。この熱硬化性樹脂組成物を用いることによって、短時間の熱硬化で生産性よく、CSP/BGA等の半導体装置を確実に配線基板に接続することが可能であり、接続後の半導体の実装構造はヒートショック性(熱サイクル性)に優れる。そして電気的接続などに不良が発見されたときに容易に半導体装置を取り外すことが可能であるので、半導体装置や配線基板等を再度利用することができるので生産工程の歩留まり向上、生産コストの低減を図ることができる。
【0012】
【発明の実施の形態】
本発明で用いる可塑剤は、実用上沸点が130℃以上の比較的難揮発性で、樹脂硬化物のTgを低下させるようなものであり、特に硬化したときにミクロ相分離を生じさせるようなものが好ましい。このようなものとしては、(メタ)アクリル酸エステル類、および芳香族または脂肪族エステル類が好ましい。
【0013】
(メタ)アクリル酸エステル類としては、単官能性のものとして、直鎖状または分岐状の脂肪族アルコールの(メタ)アクリル酸エステル、芳香族炭化水素基で置換された脂肪族アルコールの(メタ)アクリル酸エステル、脂環式アルコールの(メタ)アクリル酸エステル、水酸基を有する(メタ)アクリル酸アルキルエステル、ヒドロキシ脂肪族アミンの(メタ)アクリル酸エステル等が挙げられ;多官能性のものとして、ポリエーテル(メタ)アクリル酸エステル、多価エポキシ化合物の(メタ)アクリル酸エステル等を挙げることができる。
【0014】
上記の直鎖状または分岐状の脂肪族アルコールの(メタ)アクリル酸エステルとしては、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸セチル等の炭素数4〜16のものが好ましい。
【0015】
芳香族炭化水素基で置換された脂肪族アルコールの(メタ)アクリル酸エステルとしては、(メタ)アクリル酸ベンジル等の芳香族炭化水素基で置換された炭素数1〜8の脂肪族アルコールの(メタ)アクリル酸エステルが好ましい。
【0016】
脂環式アルコールの(メタ)アクリル酸エステルとしては、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルが好ましい。
【0017】
水酸基を有する(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸3−フェノキシ−2−ヒドロキシプロピルが好ましい。
【0018】
ヒドロキシ脂肪族アミンの(メタ)アクリル酸エステルとしては、
一般式 NR
(但し、式中R、R、Rは、それぞれ独立してH、アルキル基、ヒドロキシアルキル基またはヒドロ−ポリ(オキシアルキレン)基を表し、R、R、Rの少なくとも1つはヒドロキシアルキル基またはヒドロ−ポリ(オキシアルキレン)基である。)
で示されるアミンの(メタ)アクリル酸エステルが好ましい。
【0019】
具体的には、(メタ)アクリル酸N,N’−ジメチルアミノエチル、(メタ)アクリル酸N,N’−ジエチルアミノエチル等のN,N’−ジアルキル置換モノアルカノールアミンの(メタ)アクリル酸エステル;(メタ)アクリル酸N−エチル−N’−ヒドロキシエチルアミノエチル、エチルジヒドロキシエチルアミンジ(メタ)アクリル酸エステル等のN−アルキル置換ジアルカノールアミンのモノ−またはジ−(メタ)アクリル酸エステル;トリエタノールアミン(メタ)アクリル酸エステル、トリエタノールアミンジ(メタ)アクリル酸エステル、トリエタノールアミントリ(メタ)アクリル酸エステル等のトリアルカノールアミンの(メタ)アクリル酸エステル;一般にアクリル変性アミンオリゴマー(acrylated amine oligomer)と総称されるアルカノールアミン(メタ)アクリル酸エステルの混合物;(CHN−(CHCHO)Hの(メタ)アクリル酸エステル、CHN(−(CHCHO)H)のモノ−またはジ−(メタ)アクリル酸エステル、N(−(CHCHO)H)のモノ−、ジ−またはトリ−(メタ)アクリル酸エステル等のヒドロ−ポリ(オキシアルキレン)の(メタ)アクリル酸エステル等を挙げることができる。
【0020】
特に、一般式(I)
(HOR3−xN(ROCOC(R)=CH・・・(I)
で示される化合物およびそれらの混合物が好ましい。但し、式中、Rは、炭素数2〜12のアルキレン基であり、特に好ましくは−(CH− (但し、nは2〜12の整数を表す。)であるか;またはRは式(II)
−R−(OR− ・・・(II)
(但し、Rは−CHCH−または−CHCH(CH)−を表し、mは1〜6の整数を表す。)、特に好ましくはRが−CHCH−で示される基である。R は水素またはメチル基であり、xは1〜3の整数である。
【0021】
前記のポリエーテル(メタ)アクリル酸エステルとしてはジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール、ジ(メタ)アクリル酸1,3−ブチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン等を挙げることができる。
【0022】
多価エポキシ化合物の(メタ)アクリル酸エステルとしては、ビスフェノールAエピクロルヒドリン反応物のジ(メタ)アクリル酸エステル等を挙げることができる。
【0023】
芳香族または脂肪族エステル類としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジn−オクチル、フタル酸ジ−2−エチルヘキシル、フタル酸オクチルデシル等のフタル酸ジC〜C12アルキル等のジアルキル芳香族カルボン酸エステル;オレイン酸ブチル、グリセリンモノオレイン酸エステル等の脂肪族一塩基酸エステル;アジピン酸ジブチル、アジピン酸ジ−2−エチルヘキシル、セバシン酸ジブチル、セバシン酸ジ−2−エチルヘキシル等の脂肪族二塩基酸エステル等を挙げることができる。
【0024】
これらの可塑剤の中でも特に好ましいものは、前記一般式(I)で示されるアルカノールアミンまたはヒドロ−ポリ(オキシアルキレン)アミンの(メタ)アクリル酸エステル、フタル酸ジC〜C12アルキル、水酸基を有する(メタ)アクリル酸エステル、および脂環式アルコールの(メタ)アクリル酸エステルであり、特に前記一般式(I)の化合物が最も好ましい。
【0025】
可塑剤の使用量は、エポキシ樹脂100重量部に対して、通常1〜90重量部、好ましくは5〜50重量部である。
【0026】
本発明の熱硬化性樹脂組成物は、構成成分がすべて混合された1液性であっても、エポキシ樹脂と硬化剤とを別々に保存し使用時に混合して用いる2液性であってもよい。従って、本発明に用いられる硬化剤としては、硬化剤として一般的に一液性のエポキシ樹脂に用いられるもの、および2液性のエポキシ樹脂に用いられるものが使用できるが、好ましいものとしては、アミン化合物、イミダゾール化合物、変性アミン化合物および変性イミダゾール化合物を挙げることができる。
【0027】
アミン化合物としては、例えばジシアンジアミド;ジエチレントリアミン、トリエチレンテトラミン、ジエチルアミノプロピルアミン等の脂肪族ポリアミン;m−キシレンジアミン、ジアミノジフェニルメタン等の芳香族ポリアミン;イソホロンジアミン、メンセンジアミン等の脂環族ポリアミン;およびポリアミド等を挙げることができる。
【0028】
イミダゾール化合物としては、例えば2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール等を挙げることができる。
【0029】
変性アミン化合物としては、エポキシ化合物にアミン化合物を付加させたエポキシ化合物付加ポリアミン等を挙げることができ、変性イミダゾール化合物としては、エポキシ化合物にイミダゾール化合物を付加させたイミダゾール付加物等を挙げることができる。
【0030】
これらの硬化剤の中でも、1液性のエポキシ樹脂に用いられる潜在性硬化剤が好ましく、リペア性の点から、特に変性アミンを硬化剤全重量の5〜95重量%使用して、ジシアンジアミドを硬化剤全重量の95〜5重量%を併用することが好ましい。
【0031】
硬化剤の配合量は、通常エポキシ樹脂100重量部に対して3〜60重量部であり、好ましくは5〜40重量部である。
【0032】
本発明で用いるエポキシ樹脂は、一般的なエポキシ樹脂を使用することができ、多官能性エポキシ樹脂に、希釈剤(架橋密度調節剤)として、単官能エポキシ樹脂を0〜30重量%、好ましくは0〜20重量%(いずれも全エポキシ樹脂中の重量%)程度含む。
【0033】
ここで多官能性エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等を挙げることができる。これらのエポキシ樹脂は2種以上を混合して使用してもよい。これらは粘度や物性を考慮して選択できるが、ビスフェノールA型エポキシ樹脂を多官能性エポキシ樹脂中に10〜100%、特に50〜100%含むことが好ましい。
【0034】
また、単官能エポキシ樹脂は、分子内に1個のエポキシ基を有する化合物であり、炭素数6〜28のアルキル基を有するものが好ましく、例えば、C〜C28アルキルグリシジルエーテル、C〜C28脂肪酸グリシジルエステル、C〜C28アルキルフェノールグリシジルエーテル等を挙げることができる。好ましくは、C〜C28アルキルグリシジルエーテルであり、これらは混合して用いてもよい。
【0035】
また、本発明の熱可塑性樹脂組成物は、前記可塑剤と単官能エポキシ樹脂とを5〜40重量%含んでいることが好ましい。
【0036】
このようにして配合される熱硬化性樹脂組成物は、配線基板と半導体装置の隙間の間に容易に浸透するか、少なくとも加熱時に粘度が低下して容易に浸透するような物性を有するが、25℃における粘度が50000mPa・s以下、特に30000mPa・s以下となるように各成分の比率およびその種類を選択して配合すると、配線基板と半導体装置の隙間(例えば100〜200μm)への浸透性が向上するので好ましい。
【0037】
本発明の熱硬化性樹脂組成物は、必要に応じてさらに、脱泡剤、レベリング剤、染料、顔料、充填剤等のその他の添加物を配合することができる。また、特に害にならない限り、光重合開始剤や少量の充填剤を配合してもよい。
【0038】
次に、本発明の熱硬化性樹脂を用いた実装構造を、図1に示す。
【0039】
半導体装置4は、LSI等の半導体素子2(いわゆるベアチップ)をキャリア基材1上に接続し、適宜樹脂3で封止して構成されるものである。この半導体装置は、配線基板5上の所定位置にマウントされており、電極8と電極9が半田等の接続手段により電気的に接続されている。キャリア基材1と配線基板5の間は、信頼性を高めるために本発明の熱硬化性樹脂組成物の硬化物10によりアンダーフィル封止されている。熱硬化性樹脂組成物の硬化物10による封止は、キャリア基材1と配線基板5の隙間をすべて充填していなければならないものではなく、熱サイクルによる応力を緩和できる程度充填されていれば良い。
【0040】
キャリア基材としては、Al、SiNおよびムライト(Al−SiO)等のセラミック基板;ポリイミド等の耐熱性樹脂からなる基板またはテープ;ガラスエポキシ、ABS、フェノール等の配線基板としても通常用いられる基板等が用いられる。
【0041】
半導体素子と、キャリア基材との電気的な接続は、特に制限はなく、高融点半田や(異方性)導電性接着剤等による接続、およびワイヤ接続等で行うことができる。接続を容易にするために、電極を突起状(バンプ)に形成してもよい。さらに半導体素子とキャリア基材との間は、接続の信頼性および耐久性を高めるために、適当な樹脂で封止されていてもよい。
【0042】
このような、本発明の熱硬化性樹脂の特徴を生かして使用できる半導体装置は、CSPおよびBGAを含むものである。
【0043】
本発明で用いられる配線基板は、特に制限はなく、ガラスエポキシ、ABS、フェノール等の配線基板として通常用いられる基板が用いられる。
【0044】
次に実装方法について説明する。
【0045】
まず配線基板の必要箇所にクリーム半田を印刷し、適宜溶剤を乾燥した後、基板上のパターンに合わせて半導体装置をマウントする。この基板をリフロー炉に通すことにより半田を溶融させて半田付けを行う。
【0046】
ここで、半導体装置と配線基板との電気的な接続は、クリーム半田に限られることはなく、半田ボールを用いた接続でもよい。また、導電性接着剤または異方性導電性接着剤を用いて接続してもよい。また、クリーム半田等の塗布または形成は、配線基板側および半導体装置側のどちらに行ってもよい。
【0047】
ここで用いる半田、(異方性)導電接着剤は、後にリペアする場合を考慮し適宜融点、接着強度等を選択して使用する。
【0048】
このように半導体装置と配線基板とを電気的に接続した後、通常は導通試験等の検査を行い、合格した場合に次の樹脂組成物を用いて固定することが好ましい。不良が発見された場合には樹脂で固定する前に取り外した方が簡単であるからである。
【0049】
次にディスペンサ等の適当な塗布手段を用いて半導体装置の周囲に熱硬化性樹脂組成物を塗布する。この樹脂組成物を塗布した際に樹脂組成物は毛細管現象により配線基板と半導体装置のキャリア基材とのすき間に浸透する。
【0050】
次に、加熱し熱硬化性樹脂組成物を硬化させる。この加熱の初期において粘度が大きく低下して流動性が高まり、配線基板と半導体装置との間にさらに浸透しやすくなる。また、基板に適当な空気抜け穴を設けておくことで、配線基板と半導体装置との間の全面に十分に浸透させることができる。熱硬化性樹脂組成物の塗布量は、半導体装置と配線基板との間をほぼ充填するように適宜調整する。
【0051】
ここで硬化条件は、上述の熱硬化性樹脂組成物を使用した場合、通常120℃〜150℃で、5〜20分程度である。このように本発明の熱硬化性樹脂を用いると、比較的低温かつ短時間の条件を採用できるので生産性がきわめてよい。このようにして図1に示す実装構造が完成する。尚、熱硬化性樹脂組成物中の可塑剤として(メタ)アクリル酸エステル類を使用し、さらに光重合開始剤を添加してある場合には、熱硬化に先立ち光照射によって仮硬化させることも可能である。
【0052】
[リペア]
本発明の熱硬化性樹脂組成物を用いた実装方法においては、上記のように半導体装置を配線基板上に実装した後に、半導体装置の特性、半導体装置と配線基板との接続、その他の電気的特性を検査する。このときに、万一不良が発見されたときには次のようにリペアすることができる。
【0053】
不良個所の半導体装置の部分を190〜260℃、10秒〜1分程度加熱する。加熱手段は特に制限はないが、部分的に加熱することが好ましく、例えば熱風を不良個所に当てる等の比較的簡単な手段を用いることができる。
【0054】
半田が溶融しかつ樹脂が軟化して接着強度が低下したところで半導体装置を引き剥がす。
【0055】
図2に示すように半導体装置4を取り外した後、配線基板5上には熱硬化性樹脂組成物の硬化物残さ12と半田の残さ14が残っている。熱硬化性樹脂組成物の硬化物残さは、所定温度に加熱するか、有機溶剤を含浸させるか、または所定温度に加熱しながら有機溶剤を含浸させて、樹脂の硬化物残さを柔らかくした後に、かき取るなどの方法によって取り除くことができる。
【0056】
最も容易に取り除くことができるのは、加熱と有機溶剤との両方を用いた場合であり、例えば100℃程度(通常80〜120℃)に配線基板全体を保温しながら、有機溶剤で樹脂の残さを膨潤させて柔らかくした後に、かき取って除去することができる。
【0057】
ここで用いられる有機溶剤は、熱硬化性樹脂組成物の硬化物を膨潤させ、配線基板からかき取れる程度に接着強度を低下させる溶媒であって、例えば、塩化メチレン等の塩化アルキル類、エチルセロソルブおよびブチルセロソルブ等のグリコールエーテル類、コハク酸ジエチル等の2塩基酸のジエステル類、N−メチルピロリドン等を用いることができる。また、配線基板上にすでに配線保護用のレジストが塗布されている場合は、グリコールエーテル類、N−メチルピロリドン等のレジストを損傷しない溶媒を使用することが好ましい。
【0058】
また、半田の残さは、例えば半田吸い取り用の編組線等を用いて除去することができる。
【0059】
このような操作によりきれいになった配線基板上に前述と同じ操作により再度半導体装置を実装することで不良個所のリペアが完了する。
【0060】
尚、配線基板側に不良が有った場合は、半導体装置側に残った熱硬化性樹脂組成物の硬化物残さ13、および半田の残さ15を同様にして除去することで、半導体装置を再度利用することができる。
【0061】
【実施例】
以下に具体例を示しながら本発明をさらに詳細に説明する。
【0062】
[実施例1]
(1)使用した熱硬化性樹脂組成物
次のi)〜iii)のエポキシ樹脂、硬化剤および可塑剤に、さらに脱泡剤0.1重量部を混合して熱硬化性樹脂組成物を得た。粘度は5200mPa・sであった。
【0063】
i)エポキシ樹脂:ビスフェノールA型エポキシ樹脂85重量部、ノボラックエポキシ樹脂4重量部、炭素数12〜14のアルキルグリシジルエーテル混合物11重量部
ii)硬化剤:ジシアンジアミド3重量部、アミンのエポキシ付加物19重量部
iii)可塑剤:アクリル変性アミンオリゴマー12重量部
【0064】
(2)実装方法
チップサイズが20mm□パッケージ、電極径(直径)0.5mm、電極ピッチ1.0mm、キャリア基材がアルミナであるCSPを、配線が施された厚さ1.6mmのガラスエポキシ基板上に、クリーム半田(ハリマ化成PS10R−350A−F92C)を用いて実装した。
【0065】
その後、熱硬化性樹脂組成物をディスペンサを用いてCSPの周囲に塗布し、引き続き150℃で5分間加熱して熱硬化性樹脂組成物を硬化させた。このとき熱硬化性樹脂組成物は、完全に硬化する前に半導体装置と配線基板の間に浸透した。
【0066】
(3)ヒートショック試験
−40℃30分〜常温3分〜+80℃30分を1サイクルとし、所定のサイクル数に達したときに試料の導通試験を行い、CSPと基板との電気的接続を確認した。1000サイクル以上でも導通があったものを合格とし、この回数より前に断線等で非導通となったものを不合格とした。この実施例の半導体実装構造は1000サイクルを越えても25試料中の全てが合格であった。
【0067】
(4)リペア
上記のように、配線基板に熱硬化性樹脂組成物で固着されたCSPの付近を、熱風発生器を用いて、250℃の熱風を1分間あてて加熱した。CSPとガラスエポキシ基板の間に金属片を差し込んで持ち上げたところ、CSPを容易に取りはずすことができた。
【0068】
ガラスエポキシ配線基板をホットプレート上にのせ(または遠赤外線ヒーター等で加温しても良い。)約100℃に保温しながら、溶剤(例えば第一工業製薬社製PS−1、ロックタイト社製7360等)を用いてガラスエポキシ基板上に残っている樹脂を膨潤させ、へらでかき取った。また、ガラスエポキシ基板上に残っている半田を半田吸い取り用編組線で除去した。このリペアに要した時間は3分以内で、十分に実用的なものであった。
【0069】
このようにしてCSPが取り除かれたガラスエポキシ基板上に再度、クリーム半田を塗布し、新たなCSPを実装した。尚、このとき新しいCSP側にクリーム半田を印刷しても良い。
【0070】
前記と同様に、熱硬化性樹脂組成物をCSPの周囲に塗布し、引き続き150℃で5分間加熱して熱硬化性樹脂組成物を硬化させた。
【0071】
このようにリペアされたCSP実装基板は、電気的接続も確実になされており、ヒートショック試験においても、リペアしない場合と同様に優れた特性を示した。
【0072】
[実施例2]〜[実施例5]
実施例1で用いた可塑剤のアクリル変性アミンオリゴマーの量を次のように変えた以外は実施例1を繰り返した。その結果ヒートショック試験合格で、リペア時間も3分以内であった。
【0073】
実施例2: 1.2重量部
実施例3: 6.0重量部
実施例4: 21.0重量部
実施例5: 50.0重量部
[比較例1]
実施例1において、可塑剤を使用しなかった以外は実施例1を繰り返した。その結果リペア性は合格であったが、ヒートショック性は、1000サイクル未満で試料が非導通となり不合格であった。
【0074】
[比較例2]
実施例1において、実施例1で用いた可塑剤のアクリル変性アミンオリゴマーの量を120重量部に変えた以外は実施例1を繰り返した。その結果リペア性は合格であったが、ヒートショック性は、1000サイクル未満で試料が非導通となり不合格であった。
【0075】
[実施例6]〜[実施例9]
実施例1で用いた炭素数12〜14のアルキルグリシジルエーテル混合物の量を次のように変えた以外は実施例1を繰り返した。その結果ヒートショック試験合格で、リペア時間も3分以内であった。
【0076】
実施例6: 0重量部
実施例7: 2.7重量部
実施例8: 5.3重量部
実施例9: 20.0重量部
[比較例3]
実施例1において、実施例1で用いた炭素数12〜14のアルキルグリシジルエーテル混合物の量を40重量部に変えた以外は実施例1を繰り返した。その結果リペア性は合格であったが、ヒートショック性は、1000サイクル未満で試料が非導通となり不合格であった。
【0077】
[実施例10]〜[実施例12]
可塑剤として実施例1で用いたアクリル変性アミンオリゴマーに代えて次のものを用いた以外は実施例1を繰り返した。その結果ヒートショック試験合格で、リペア時間も3分以内であった。
【0078】
実施例10: DOP(フタル酸ジオクチル)
実施例11: イソボルニルアクリレート
実施例12: 2−ヒドロキシエチルメタクリレート
[実施例13]
実施例1において、硬化剤として用いたアミンのエポキシ付加物に代えて、イミダゾールのエポキシ付加物を用いた以外は実施例1を繰り返した。その結果ヒートショック試験合格、リペア時間も3分以内であった。
【0079】
[比較例4]
実施例1で使用した熱硬化性樹脂組成物に代えて、アクリレートオリゴマー、アクリレートモノマーおよび光重合開始剤からなる接着剤((株)スリーボンド製TB3006B)を用いて、半導体装置と配線基板の隙間から光照射と加熱を行って接着剤を硬化させた。この接着剤を用いると半硬化の状態では容易に半導体装置を取り外すことができる。完全に硬化させた後、ヒートショック試験を行ったが1000サイクル未満で試料が非導通となりヒートショック性は不合格であった。
【0080】
[比較例5]
実施例1で使用した熱硬化性樹脂組成物に代えて、チップ部品仮止め用として用いられているエポキシ樹脂封止剤(アサヒ化研SA−51−2)を用いて、実施例1と同様に塗布し、100℃で90秒間加熱して硬化させた。ヒートショック試験を行ったところ、実施例1と同程度の 信頼性を示したが、リペアしようとして加熱して引き剥がそうとしたが、引き剥がすことができなかった。
【0081】
【発明の効果】
本発明によれば、短時間の熱硬化で生産性よく、キャリア基材上に半導体素子を保持するCSP/BGA等の半導体装置を確実に配線基板に接続し、ヒートショック性(熱サイクル性)に優れ、かつ不良が発見されたときに容易にCSP/BGA等を取り外すことが可能なアンダーフィル封止用熱硬化性樹脂組成物を提供することができる。
【図面の簡単な説明】
【図1】本発明の熱硬化性樹脂組成物を用いた実装構造の1例である。
【図2】熱硬化性樹脂組成物を硬化した後、リペアのために半導体装置を配線基板から取り外した図である。
【符号の説明】
1 キャリア基材
2 半導体素子
3 封止剤
4 半導体装置
5 配線基板
6 導電材料
8 電極(半導体装置側)
9 電極(配線基板側)
10 熱硬化性樹脂組成物の硬化物
12 熱硬化性樹脂組成物硬化物の残さ(配線基板側)
13 熱硬化性樹脂組成物硬化物の残さ(半導体装置側)
14 半田(導電材料)の残さ(配線基板側)
15 半田(導電材料)の残さ(半導体装置側)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underfill sealing material used when a chip size package, a ball grid array, or the like on which a semiconductor element such as an LSI is mounted on a carrier substrate is mounted on a wiring board.
[0002]
[Prior art]
In recent years, miniaturization of LSI devices has been demanded as small electronic devices such as camera-integrated VTRs and mobile phones have become widespread. Widespread use of CSP (chip scale package) and BGA (ball grid array) for the purpose of downsizing and improving the characteristics of a bare chip while protecting the features of semiconductor bare chips such as LSI and making testing easy. I am doing.
[0003]
The CSP / BGA is connected to the wiring on the wiring board by solder or the like. However, if a temperature cycle is applied after mounting, the connection reliability between the board and the CSP / BGA may not be maintained. Usually, after the CSP / BGA is mounted on the wiring board, the gap between the CSP / BGA and the board is not maintained. A method is adopted in which a sealing resin is added (underfill sealing) to relieve stress due to thermal cycling and improve heat shock properties.
[0004]
However, since a thermosetting resin is used as a sealing material in this method, after mounting the CSP / BGA on the wiring board, the LSI on the CSP / BGA is defective, and the connection between the CSP / BGA and the wiring board is poor. There is a problem that it is extremely difficult to exchange CSP / BGA when the above is discovered.
[0005]
By the way, as a technique relatively similar to mounting a CSP / BGA on a wiring board, a technique for mounting a bare chip on the wiring board is known. For example, Japanese Patent Laid-Open No. 5-102343 describes a mounting method in which a bare chip is fixedly connected to a wiring board using a photo-curable adhesive and removed when defective. However, this method is limited to a transparent substrate such as glass that can be irradiated with light from the back side as a wiring substrate, and has a problem inferior in heat shock property according to the study of the present inventor.
[0006]
Japanese Patent Laid-Open No. 6-69280 describes a method in which a bare chip and a substrate are fixedly connected using a resin that cures at a predetermined temperature, and when a defect occurs, the resin is softened at a temperature higher than the predetermined temperature to remove the bare chip. ing. However, there is no disclosure of the resin, and a method that satisfies both reliability and repair characteristics has not been known. Furthermore, in this prior art, there is no disclosure about the treatment of the resin remaining on the substrate.
[0007]
Regarding the removal of the resin residue remaining on such a substrate, Japanese Patent Laid-Open No. 6-77264, as a prior art, generally uses a solvent, but it takes time to swell with the solvent, and corrosiveness used as a solvent. It is pointed out that the reliability decreases when a certain organic acid remains on the substrate, and instead of using a solvent, a method of removing the resin residue by irradiating electromagnetic waves is adopted. In other words, it is apparent that it has been very difficult to remove the resin residue using a solvent in the prior art.
[0008]
Japanese Patent Laid-Open No. 5-251516 also discloses a mounting method in which a bare chip is connected and fixed on a wiring board using a bisphenol A type epoxy resin (CV5183, CV5183S manufactured by Matsushita Electric Works Co., Ltd.), and removed when defective. Is described. However, this method is not always easy to remove the tip. When the tip is cut by milling, there is a problem that the tip cannot be reused even when the tip is normal. It took 2 hours and 30 minutes at 120 ° C., and there was a problem that the productivity of the process was poor.
[0009]
[Problems to be solved by the invention]
The present invention is excellent in productivity by heat curing in a short time, and reliably connects a semiconductor device such as CSP / BGA holding a semiconductor element on a carrier substrate to a wiring board, and is excellent in heat shock property (thermal cycle property). And it aims at providing the thermosetting resin composition for underfill sealing which can remove CSP / BGA easily when a defect is discovered.
[0010]
[Means for Solving the Problems]
The present invention relates to a thermosetting resin composition used for underfill sealing between a semiconductor device holding a semiconductor element on a carrier substrate and a wiring board to which the semiconductor device is electrically connected. The present invention relates to a thermosetting resin composition comprising 100 parts by weight of a resin, 3 to 60 parts by weight of a curing agent, and 1 to 90 parts by weight of a plasticizer.
[0011]
Although the thermosetting resin composition of the present invention is cured at a relatively low temperature in a short time, the cured product has excellent heat shock resistance, and the cured product is easily torn when heated and applied with force. Furthermore, the cured product adhered to the substrate or the like has a property that it can be easily removed by heating, swelling with a solvent, or swelling with a solvent while heating. By using this thermosetting resin composition, it is possible to reliably connect a semiconductor device such as CSP / BGA to a wiring board with a short time of thermosetting with high productivity, and a semiconductor mounting structure after connection Is excellent in heat shock (heat cycle). And since a semiconductor device can be easily removed when a defect in electrical connection or the like is found, the semiconductor device, wiring board, etc. can be reused, improving the production process yield and reducing the production cost. Can be achieved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The plasticizer used in the present invention is practically relatively volatile with a boiling point of 130 ° C. or higher, and lowers the Tg of the cured resin, and particularly causes microphase separation when cured. Those are preferred. As such, (meth) acrylic acid esters and aromatic or aliphatic esters are preferred.
[0013]
(Meth) acrylic acid esters include monofunctional (meth) acrylic acid esters of linear or branched aliphatic alcohols, and (meth) acrylic acid (meth) acrylates substituted with aromatic hydrocarbon groups. ) Acrylic acid ester, (meth) acrylic acid ester of alicyclic alcohol, (meth) acrylic acid alkyl ester having a hydroxyl group, (meth) acrylic acid ester of hydroxy aliphatic amine, etc .; , Polyether (meth) acrylic acid esters, (meth) acrylic acid esters of polyvalent epoxy compounds, and the like.
[0014]
As the (meth) acrylic acid ester of the linear or branched aliphatic alcohol, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (meth) 2-ethylhexyl acrylate, n-octyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, cetyl (meth) acrylate, etc. Are preferably those having 4 to 16 carbon atoms.
[0015]
The (meth) acrylic acid ester of an aliphatic alcohol substituted with an aromatic hydrocarbon group includes an aliphatic alcohol having 1 to 8 carbon atoms substituted with an aromatic hydrocarbon group such as benzyl (meth) acrylate ( Meth) acrylic acid esters are preferred.
[0016]
As the (meth) acrylic acid ester of the alicyclic alcohol, cyclohexyl (meth) acrylate and isobornyl (meth) acrylate are preferable.
[0017]
As the (meth) acrylic acid alkyl ester having a hydroxyl group, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and 3-phenoxy-2-hydroxypropyl (meth) acrylate are preferable.
[0018]
As (meth) acrylic acid ester of hydroxy aliphatic amine,
General formula NR1R2R3
(However, R in the formula1, R2, R3Each independently represents H, an alkyl group, a hydroxyalkyl group or a hydro-poly (oxyalkylene) group;1, R2, R3At least one of is a hydroxyalkyl group or a hydro-poly (oxyalkylene) group. )
A (meth) acrylic acid ester of an amine represented by
[0019]
Specifically, (meth) acrylic acid esters of N, N′-dialkyl-substituted monoalkanolamines such as N, N′-dimethylaminoethyl (meth) acrylate and N, N′-diethylaminoethyl (meth) acrylate Mono- or di- (meth) acrylic acid esters of N-alkyl substituted dialkanolamines such as (meth) acrylic acid N-ethyl-N′-hydroxyethylaminoethyl, ethyldihydroxyethylamine di (meth) acrylic acid ester; (Meth) acrylic acid esters of trialkanolamines such as triethanolamine (meth) acrylic acid ester, triethanolamine di (meth) acrylic acid ester, triethanolamine tri (meth) acrylic acid ester; acrylated ami Mixture of e oligomer) alkanolamines which are generically referred to as (meth) acrylic acid ester; (CH3)2N- (CH2CH2O)2H (meth) acrylic acid ester, CH3N (-(CH2CH2O)2H)2Mono- or di- (meth) acrylic acid ester, N (-(CH2CH2O)2H)3And (meth) acrylic acid esters of hydro-poly (oxyalkylene) such as mono-, di- or tri- (meth) acrylic acid esters.
[0020]
In particular, the general formula (I)
(HOR4)3-xN (R4OCOC (R5) = CH2)x... (I)
And compounds thereof are preferred. However, in the formula, R4Is an alkylene group having 2 to 12 carbon atoms, particularly preferably — (CH2)n-Wherein n represents an integer from 2 to 12; or R4Is the formula (II)
-R6-(OR6)m-... (II)
(However, R6Is -CH2CH2-Or -CH2CH2(CH3)-, And m represents an integer of 1-6. ), Particularly preferably R6Is -CH2CH2A group represented by-. R5  Is hydrogen or a methyl group, and x is an integer of 1 to 3.
[0021]
Examples of the polyether (meth) acrylate ester include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, di (Meth) acrylic acid 1,3-butylene glycol, tri (meth) acrylic acid trimethylolpropane and the like can be mentioned.
[0022]
Examples of the (meth) acrylic acid ester of the polyvalent epoxy compound include di (meth) acrylic acid ester of a bisphenol A epichlorohydrin reactant.
[0023]
Aromatic or aliphatic esters include dimethyl phthalate such as dimethyl phthalate, diethyl phthalate, di-n-octyl phthalate, di-2-ethylhexyl phthalate, octyldecyl phthalate, etc.1~ C12Dialkyl aromatic carboxylic acid esters such as alkyl; aliphatic monobasic acid esters such as butyl oleate and glycerol monooleate; dibutyl adipate, di-2-ethylhexyl adipate, dibutyl sebacate, di-2-sebacate Examples thereof include aliphatic dibasic acid esters such as ethylhexyl.
[0024]
Particularly preferred among these plasticizers are (meth) acrylic acid esters of alkanolamines or hydro-poly (oxyalkylene) amines represented by the above general formula (I), diphthalic acid C4~ C12Alkyl, (meth) acrylic acid ester having a hydroxyl group, and (meth) acrylic acid ester of alicyclic alcohol, and the compound of general formula (I) is most preferable.
[0025]
The usage-amount of a plasticizer is 1-90 weight part normally with respect to 100 weight part of epoxy resins, Preferably it is 5-50 weight part.
[0026]
The thermosetting resin composition of the present invention may be a one-component type in which all the constituent components are mixed, or a two-component type in which the epoxy resin and the curing agent are stored separately and mixed at the time of use. Good. Accordingly, as the curing agent used in the present invention, those generally used for one-part epoxy resins and those used for two-part epoxy resins can be used as the curing agent. Mention may be made of amine compounds, imidazole compounds, modified amine compounds and modified imidazole compounds.
[0027]
Examples of the amine compound include dicyandiamide; aliphatic polyamines such as diethylenetriamine, triethylenetetramine, and diethylaminopropylamine; aromatic polyamines such as m-xylenediamine and diaminodiphenylmethane; alicyclic polyamines such as isophoronediamine and mensendiamine; Examples thereof include polyamide.
[0028]
Examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole and the like.
[0029]
Examples of the modified amine compound include an epoxy compound-added polyamine obtained by adding an amine compound to an epoxy compound, and examples of the modified imidazole compound include an imidazole adduct obtained by adding an imidazole compound to an epoxy compound. .
[0030]
Among these curing agents, latent curing agents used for one-part epoxy resins are preferable. From the viewpoint of repairability, dicyandiamide is cured by using 5 to 95% by weight of the modified amine, in particular, based on the total weight of the curing agent. It is preferable to use 95 to 5% by weight of the total weight of the agent.
[0031]
The compounding quantity of a hardening | curing agent is 3-60 weight part normally with respect to 100 weight part of epoxy resins, Preferably it is 5-40 weight part.
[0032]
As the epoxy resin used in the present invention, a general epoxy resin can be used, and a monofunctional epoxy resin is used in a polyfunctional epoxy resin as a diluent (crosslinking density regulator), preferably 0 to 30% by weight, preferably About 0 to 20% by weight (both are based on the weight of all epoxy resins).
[0033]
Here, examples of the polyfunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin and the like. These epoxy resins may be used in combination of two or more. These can be selected in consideration of viscosity and physical properties, but it is preferable that the polyfunctional epoxy resin contains bisphenol A type epoxy resin in an amount of 10 to 100%, particularly 50 to 100%.
[0034]
The monofunctional epoxy resin is a compound having one epoxy group in the molecule, and preferably has an alkyl group having 6 to 28 carbon atoms.6~ C28Alkyl glycidyl ether, C6~ C28Fatty acid glycidyl ester, C6~ C28Examples thereof include alkylphenol glycidyl ether. Preferably, C6~ C28These are alkyl glycidyl ethers, which may be used as a mixture.
[0035]
Moreover, it is preferable that the thermoplastic resin composition of this invention contains 5-40 weight% of the said plasticizer and monofunctional epoxy resin.
[0036]
The thermosetting resin composition blended in this way easily penetrates between the gap between the wiring board and the semiconductor device, or at least has physical properties such that the viscosity decreases when heated, and easily penetrates. When the ratio of each component and the type thereof are selected and blended so that the viscosity at 25 ° C. is 50000 mPa · s or less, particularly 30000 mPa · s or less, the permeability to the gap (for example, 100 to 200 μm) between the wiring board and the semiconductor device. Is preferable.
[0037]
The thermosetting resin composition of the present invention may further contain other additives such as a defoaming agent, a leveling agent, a dye, a pigment, and a filler as necessary. Further, a photopolymerization initiator and a small amount of filler may be blended unless particularly harmful.
[0038]
Next, a mounting structure using the thermosetting resin of the present invention is shown in FIG.
[0039]
The semiconductor device 4 is configured by connecting a semiconductor element 2 such as an LSI (so-called bare chip) on a carrier substrate 1 and appropriately sealing with a resin 3. This semiconductor device is mounted at a predetermined position on the wiring board 5, and the electrodes 8 and 9 are electrically connected by a connecting means such as solder. Between the carrier base material 1 and the wiring substrate 5, underfill sealing is performed with a cured product 10 of the thermosetting resin composition of the present invention in order to increase reliability. The sealing with the cured product 10 of the thermosetting resin composition does not have to fill all the gaps between the carrier base material 1 and the wiring substrate 5, but is filled to the extent that stress due to thermal cycling can be relieved. good.
[0040]
As carrier substrate, Al2O3, SiN3And mullite (Al2O3-SiO2Ceramic substrates such as); substrates or tapes made of a heat-resistant resin such as polyimide; substrates usually used as wiring substrates such as glass epoxy, ABS, and phenol are also used.
[0041]
The electrical connection between the semiconductor element and the carrier substrate is not particularly limited, and can be performed by connection using a high melting point solder, an (anisotropic) conductive adhesive, or the like, or by wire connection. In order to facilitate connection, the electrode may be formed in a protruding shape (bump). Further, the semiconductor element and the carrier base material may be sealed with an appropriate resin in order to enhance the connection reliability and durability.
[0042]
Such a semiconductor device that can be used taking advantage of the characteristics of the thermosetting resin of the present invention includes CSP and BGA.
[0043]
There is no restriction | limiting in particular in the wiring board used by this invention, The board | substrate normally used as wiring boards, such as glass epoxy, ABS, a phenol, is used.
[0044]
Next, a mounting method will be described.
[0045]
First, cream solder is printed on a necessary portion of the wiring board, the solvent is appropriately dried, and then the semiconductor device is mounted in accordance with the pattern on the board. The substrate is passed through a reflow furnace to melt the solder and perform soldering.
[0046]
Here, the electrical connection between the semiconductor device and the wiring board is not limited to cream solder, but may be a connection using solder balls. Moreover, you may connect using a conductive adhesive or an anisotropic conductive adhesive. Further, cream solder or the like may be applied or formed on either the wiring board side or the semiconductor device side.
[0047]
The solder and (anisotropic) conductive adhesive used here are used by appropriately selecting the melting point, the adhesive strength, etc. in consideration of the case of repairing later.
[0048]
Thus, after electrically connecting a semiconductor device and a wiring board, it is preferable to normally perform inspections, such as a continuity test, and to fix using the following resin composition when it passes. This is because if a defect is found, it is easier to remove it before fixing with resin.
[0049]
Next, the thermosetting resin composition is applied around the semiconductor device using an appropriate application means such as a dispenser. When this resin composition is applied, the resin composition penetrates into the gap between the wiring substrate and the carrier base material of the semiconductor device by capillary action.
[0050]
Next, the thermosetting resin composition is cured by heating. In the initial stage of this heating, the viscosity is greatly reduced, the fluidity is increased, and it is more likely to penetrate between the wiring board and the semiconductor device. Further, by providing an appropriate air hole in the substrate, it is possible to sufficiently penetrate the entire surface between the wiring substrate and the semiconductor device. The coating amount of the thermosetting resin composition is appropriately adjusted so as to substantially fill the space between the semiconductor device and the wiring board.
[0051]
Here, the curing conditions are usually 120 ° C. to 150 ° C. and about 5 to 20 minutes when the above-described thermosetting resin composition is used. As described above, when the thermosetting resin of the present invention is used, the productivity is very good because relatively low temperature and short time conditions can be adopted. In this way, the mounting structure shown in FIG. 1 is completed. In addition, when (meth) acrylic acid esters are used as a plasticizer in the thermosetting resin composition and a photopolymerization initiator is further added, it may be temporarily cured by light irradiation prior to thermosetting. Is possible.
[0052]
[repair]
In the mounting method using the thermosetting resin composition of the present invention, after mounting the semiconductor device on the wiring board as described above, characteristics of the semiconductor device, connection between the semiconductor device and the wiring board, and other electrical Inspect characteristics. At this time, if a defect is found, it can be repaired as follows.
[0053]
The part of the defective semiconductor device is heated at 190 to 260 ° C. for 10 seconds to 1 minute. There is no particular limitation on the heating means, but partial heating is preferable. For example, a relatively simple means such as applying hot air to a defective part can be used.
[0054]
The semiconductor device is peeled off when the solder is melted and the resin is softened to reduce the adhesive strength.
[0055]
As shown in FIG. 2, after the semiconductor device 4 is removed, the cured product residue 12 and the solder residue 14 of the thermosetting resin composition remain on the wiring substrate 5. The cured product residue of the thermosetting resin composition is heated to a predetermined temperature, impregnated with an organic solvent, or impregnated with an organic solvent while heating to a predetermined temperature to soften the cured product residue of the resin, It can be removed by scraping.
[0056]
The case where both heating and an organic solvent are used can be most easily removed. For example, while the entire wiring board is kept at about 100 ° C. (usually 80 to 120 ° C.), the resin residue is left in the organic solvent. After being swollen and softened, it can be scraped off and removed.
[0057]
The organic solvent used here is a solvent that swells the cured product of the thermosetting resin composition and lowers the adhesive strength to such an extent that it can be scraped off from the wiring board. For example, alkyl chlorides such as methylene chloride, ethyl cellosolve In addition, glycol ethers such as butyl cellosolve, diesters of dibasic acids such as diethyl succinate, N-methylpyrrolidone, and the like can be used. When a resist for protecting the wiring is already applied on the wiring board, it is preferable to use a solvent that does not damage the resist, such as glycol ethers and N-methylpyrrolidone.
[0058]
The solder residue can be removed using, for example, a braided wire for sucking out solder.
[0059]
By mounting the semiconductor device again on the wiring board cleaned by such an operation by the same operation as described above, the repair of the defective portion is completed.
[0060]
If there is a defect on the wiring board side, the cured product residue 13 of the thermosetting resin composition and the solder residue 15 remaining on the semiconductor device side are similarly removed, so that the semiconductor device can be removed again. Can be used.
[0061]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[0062]
[Example 1]
(1) Used thermosetting resin composition
A thermosetting resin composition was obtained by further mixing 0.1 parts by weight of a defoaming agent with the epoxy resins, curing agents and plasticizers of the following i) to iii). The viscosity was 5200 mPa · s.
[0063]
i) Epoxy resin: 85 parts by weight of bisphenol A type epoxy resin, 4 parts by weight of novolac epoxy resin, 11 parts by weight of alkyl glycidyl ether mixture having 12 to 14 carbon atoms
ii) Curing agent: 3 parts by weight of dicyandiamide, 19 parts by weight of an amine epoxy adduct
iii) Plasticizer: 12 parts by weight of acrylic modified amine oligomer
[0064]
(2) Mounting method
A CSP having a chip size of 20 mm □ package, an electrode diameter (diameter) of 0.5 mm, an electrode pitch of 1.0 mm, and a carrier substrate made of alumina is applied onto a 1.6 mm thick glass epoxy substrate on which wiring has been applied. Mounting was performed using solder (Harima Kasei PS10R-350A-F92C).
[0065]
Thereafter, the thermosetting resin composition was applied around the CSP using a dispenser, and subsequently heated at 150 ° C. for 5 minutes to cure the thermosetting resin composition. At this time, the thermosetting resin composition permeated between the semiconductor device and the wiring board before being completely cured.
[0066]
(3) Heat shock test
A cycle of −40 ° C. for 30 minutes to room temperature for 3 minutes to + 80 ° C. for 30 minutes was performed, and when a predetermined number of cycles was reached, a continuity test of the sample was performed to confirm the electrical connection between the CSP and the substrate. Those that were conductive even after 1000 cycles or more were accepted, and those that became non-conductive due to disconnection or the like before this number of times were rejected. Even if the semiconductor mounting structure of this example exceeded 1000 cycles, all of the 25 samples passed.
[0067]
(4) Repair
As described above, the vicinity of the CSP fixed to the wiring board with the thermosetting resin composition was heated by applying hot air at 250 ° C. for 1 minute using a hot air generator. When a metal piece was inserted between the CSP and the glass epoxy substrate and lifted, the CSP could be easily removed.
[0068]
A glass epoxy wiring board is placed on a hot plate (or may be heated with a far infrared heater or the like) while keeping the temperature at about 100 ° C., while maintaining a solvent (for example, PS-1 manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 7360 manufactured by Loctite) Etc.) was used to swell the resin remaining on the glass epoxy substrate and scraped it off with a spatula. Further, the solder remaining on the glass epoxy substrate was removed with a braided wire for sucking out solder. The time required for this repair was less than 3 minutes and was sufficiently practical.
[0069]
Cream solder was applied again on the glass epoxy substrate from which the CSP was removed in this way, and a new CSP was mounted. At this time, cream solder may be printed on the new CSP side.
[0070]
In the same manner as described above, the thermosetting resin composition was applied around the CSP and subsequently heated at 150 ° C. for 5 minutes to cure the thermosetting resin composition.
[0071]
The thus-repaired CSP mounting board is also securely connected electrically, and in the heat shock test, excellent characteristics were exhibited as in the case of no repair.
[0072]
[Example 2] to [Example 5]
Example 1 was repeated except that the amount of the acrylic-modified amine oligomer of the plasticizer used in Example 1 was changed as follows. As a result, the heat shock test was passed and the repair time was within 3 minutes.
[0073]
Example 2: 1.2 parts by weight
Example 3: 6.0 parts by weight
Example 4: 21.0 parts by weight
Example 5: 50.0 parts by weight
[Comparative Example 1]
In Example 1, Example 1 was repeated except that no plasticizer was used. As a result, the repair property was acceptable, but the heat shock property was unacceptable because the sample became non-conductive in less than 1000 cycles.
[0074]
[Comparative Example 2]
In Example 1, Example 1 was repeated except that the amount of the acrylic-modified amine oligomer of the plasticizer used in Example 1 was changed to 120 parts by weight. As a result, the repair property was acceptable, but the heat shock property was unacceptable because the sample became non-conductive in less than 1000 cycles.
[0075]
[Example 6] to [Example 9]
Example 1 was repeated except that the amount of the alkyl glycidyl ether mixture having 12 to 14 carbon atoms used in Example 1 was changed as follows. As a result, the heat shock test was passed and the repair time was within 3 minutes.
[0076]
Example 6: 0 parts by weight
Example 7: 2.7 parts by weight
Example 8: 5.3 parts by weight
Example 9: 20.0 parts by weight
[Comparative Example 3]
In Example 1, Example 1 was repeated except that the amount of the alkyl glycidyl ether mixture having 12 to 14 carbon atoms used in Example 1 was changed to 40 parts by weight. As a result, the repair property was acceptable, but the heat shock property was unacceptable because the sample became non-conductive in less than 1000 cycles.
[0077]
[Example 10] to [Example 12]
Example 1 was repeated except that the following were used in place of the acrylic-modified amine oligomer used in Example 1 as the plasticizer. As a result, the heat shock test was passed and the repair time was within 3 minutes.
[0078]
Example 10: DOP (dioctyl phthalate)
Example 11: Isobornyl acrylate
Example 12: 2-hydroxyethyl methacrylate
[Example 13]
In Example 1, Example 1 was repeated except that an imidazole epoxy adduct was used instead of the amine epoxy adduct used as the curing agent. As a result, the heat shock test passed and the repair time was within 3 minutes.
[0079]
[Comparative Example 4]
Instead of the thermosetting resin composition used in Example 1, an adhesive composed of an acrylate oligomer, an acrylate monomer and a photopolymerization initiator (TB3006B manufactured by ThreeBond Co., Ltd.) was used to remove the gap between the semiconductor device and the wiring board. The adhesive was cured by light irradiation and heating. When this adhesive is used, the semiconductor device can be easily removed in a semi-cured state. After complete curing, a heat shock test was conducted, but the sample became non-conductive in less than 1000 cycles and the heat shock property was unacceptable.
[0080]
[Comparative Example 5]
In place of the thermosetting resin composition used in Example 1, an epoxy resin sealant (Asahi Kaken SA-51-2) used for temporarily fixing chip parts was used, as in Example 1. And cured by heating at 100 ° C. for 90 seconds. When a heat shock test was performed, the same reliability as that of Example 1 was shown. However, although it was attempted to be peeled off by heating in an attempt to repair, it could not be peeled off.
[0081]
【The invention's effect】
According to the present invention, a semiconductor device such as CSP / BGA that holds a semiconductor element on a carrier base material is reliably connected to a wiring board with a short time of thermosetting and high productivity, and heat shock property (thermal cycle property) It is possible to provide a thermosetting resin composition for underfill sealing, which is excellent in quality and can easily remove CSP / BGA or the like when a defect is found.
[Brief description of the drawings]
FIG. 1 is an example of a mounting structure using a thermosetting resin composition of the present invention.
FIG. 2 is a view in which a semiconductor device is removed from a wiring board for repair after curing a thermosetting resin composition.
[Explanation of symbols]
1 Carrier base material
2 Semiconductor elements
3 Sealant
4 Semiconductor devices
5 Wiring board
6 Conductive material
8 Electrode (Semiconductor device side)
9 Electrode (wiring board side)
10 Cured product of thermosetting resin composition
12 Residue of cured product of thermosetting resin composition (wiring board side)
13 Residue of cured product of thermosetting resin composition (semiconductor device side)
14 Solder (conductive material) residue (wiring board side)
15 Solder (conductive material) residue (semiconductor device side)

Claims (9)

キャリア基材上に半導体素子を保持する半導体装置と、この半導体装置が電気的に接続される配線基板とのアンダーフィル封止に用いられる熱硬化性樹脂組成物であって、
エポキシ樹脂100重量部と、
硬化剤3〜60重量部と、
可塑剤1〜90重量部と
からなることを特徴とする熱硬化性樹脂組成物。
A thermosetting resin composition used for underfill sealing between a semiconductor device holding a semiconductor element on a carrier substrate and a wiring substrate to which the semiconductor device is electrically connected,
100 parts by weight of epoxy resin,
3 to 60 parts by weight of a curing agent,
A thermosetting resin composition comprising 1 to 90 parts by weight of a plasticizer.
前記可塑剤が、(メタ)アクリル酸エステル類、および芳香族または脂肪族エステル類から選ばれる少なくとも1種からなることを特徴とする請求項1記載の熱硬化性樹脂組成物。2. The thermosetting resin composition according to claim 1, wherein the plasticizer comprises at least one selected from (meth) acrylic acid esters and aromatic or aliphatic esters. 前記硬化剤が、アミン化合物、イミダゾール化合物、変性アミン化合物および変性イミダゾール化合物からなる群より選ばれる少なくとも1種からなることを特徴とする請求項1または2に記載の熱硬化性樹脂組成物。The thermosetting resin composition according to claim 1 or 2, wherein the curing agent comprises at least one selected from the group consisting of an amine compound, an imidazole compound, a modified amine compound, and a modified imidazole compound. 前記エポキシ樹脂が、多官能性エポキシ樹脂と0〜30重量%(全エポキシ樹脂中の重量%)の単官能エポキシ樹脂とからなることを特徴とする請求項1〜3のいずれかに記載の熱硬化性樹脂組成物。The said epoxy resin consists of a polyfunctional epoxy resin and 0-30 weight% (weight% in all the epoxy resins) monofunctional epoxy resin, The heat in any one of Claims 1-3 characterized by the above-mentioned. Curable resin composition. 前記可塑剤と前記単官能エポキシ樹脂の合計が、組成物中に5〜40重量%含まれることを特徴とする請求項4記載の熱硬化性樹脂組成物。The thermosetting resin composition according to claim 4, wherein the total of the plasticizer and the monofunctional epoxy resin is contained in the composition in an amount of 5 to 40% by weight. 前記単官能エポキシ樹脂が、炭素数6〜28のアルキル基を有することを特徴とする請求項4または5に記載の熱硬化性樹脂組成物。The thermosetting resin composition according to claim 4 or 5, wherein the monofunctional epoxy resin has an alkyl group having 6 to 28 carbon atoms. 前記多官能性エポキシ樹脂が、ビスフェノールA型エポキシ樹脂を10〜100重量%含むことを特徴とする請求項4〜6のいずれかに記載の熱硬化性樹脂組成物。The thermosetting resin composition according to any one of claims 4 to 6, wherein the polyfunctional epoxy resin contains 10 to 100% by weight of a bisphenol A type epoxy resin. 前記可塑剤が、ヒドロキシ脂肪族アミンの(メタ)アクリル酸エステルであることを特徴とする請求項1〜7のいずれかに記載の熱硬化性樹脂組成物。The thermosetting resin composition according to claim 1, wherein the plasticizer is a (meth) acrylic acid ester of a hydroxy aliphatic amine. 前記熱硬化性樹脂の粘度が、25℃において50000mPa・s以下であることを特徴とする請求項1〜8のいずれかに記載の熱硬化性樹脂組成物。The thermosetting resin composition according to claim 1, wherein a viscosity of the thermosetting resin is 50000 mPa · s or less at 25 ° C.
JP00657197A 1997-01-17 1997-01-17 Thermosetting resin composition Expired - Fee Related JP3613367B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP00657197A JP3613367B2 (en) 1997-01-17 1997-01-17 Thermosetting resin composition
CN98801882A CN1243526A (en) 1997-01-17 1998-01-16 Thermosetting resin compositions
US09/341,289 US6316528B1 (en) 1997-01-17 1998-01-16 Thermosetting resin compositions
IDW990703A ID22238A (en) 1997-01-17 1998-01-16 THERMAL HARDENING RESIN COMPOSITIONS
BR9806743-5A BR9806743A (en) 1997-01-17 1998-01-16 Thermosetting resin compositions
EP98904585A EP0953008A4 (en) 1997-01-17 1998-01-16 Thermosetting resin compositions
PCT/US1998/000858 WO1998031738A1 (en) 1997-01-17 1998-01-16 Thermosetting resin compositions
MYPI98000177A MY118700A (en) 1997-01-17 1998-01-16 Thermosetting resin compositions
KR1019997006429A KR100554323B1 (en) 1997-01-17 1998-01-16 Thermosetting resin compositions
TW087100682A TW561178B (en) 1997-01-17 1998-01-17 Thermosetting resin compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00657197A JP3613367B2 (en) 1997-01-17 1997-01-17 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPH10204259A JPH10204259A (en) 1998-08-04
JP3613367B2 true JP3613367B2 (en) 2005-01-26

Family

ID=11642033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00657197A Expired - Fee Related JP3613367B2 (en) 1997-01-17 1997-01-17 Thermosetting resin composition

Country Status (9)

Country Link
EP (1) EP0953008A4 (en)
JP (1) JP3613367B2 (en)
KR (1) KR100554323B1 (en)
CN (1) CN1243526A (en)
BR (1) BR9806743A (en)
ID (1) ID22238A (en)
MY (1) MY118700A (en)
TW (1) TW561178B (en)
WO (1) WO1998031738A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612805B1 (en) * 1999-02-18 2006-08-18 가부시끼가이샤 쓰리본드 Epoxy Resin Composition
EP1195083B1 (en) * 1999-07-08 2006-01-11 Sunstar Giken Kabushiki Kaisha Underfilling material for semiconductor package
US6255500B1 (en) 2000-01-21 2001-07-03 Loctite Corporation Process for the epoxidation of diene esters
US7012120B2 (en) 2000-03-31 2006-03-14 Henkel Corporation Reworkable compositions of oxirane(s) or thirane(s)-containing resin and curing agent
US20050288458A1 (en) 2002-07-29 2005-12-29 Klemarczyk Philip T Reworkable thermosetting resin composition
JP4609617B2 (en) * 2000-08-01 2011-01-12 日本電気株式会社 Semiconductor device mounting method and mounting structure
US6627683B1 (en) 2000-09-05 2003-09-30 Henkel Loctite Corporation Reworkable thermosetting resin compositions and compounds useful therein
US7108920B1 (en) 2000-09-15 2006-09-19 Henkel Corporation Reworkable compositions incorporating episulfide resins
AU2001296564A1 (en) * 2000-10-04 2002-04-15 Henkel Loctite Corporation Reworkable epoxidized 1-(cyclo)alkenyl ether/polycarboxylic acid product
EP1334513A2 (en) 2000-11-14 2003-08-13 Henkel Loctite Corporation Wafer applied fluxing and underfill material, and layered electronic assemblies manufactured therewith
TW574739B (en) * 2001-02-14 2004-02-01 Nitto Denko Corp Thermosetting resin composition and semiconductor device using the same
JP5280597B2 (en) * 2001-03-30 2013-09-04 サンスター技研株式会社 One-component thermosetting epoxy resin composition and underfill material for semiconductor mounting
JP3566680B2 (en) * 2001-09-11 2004-09-15 富士通株式会社 Method for manufacturing semiconductor device
US6916890B1 (en) 2001-10-09 2005-07-12 Henkel Corporation Thermally reworkable epoxy resins and compositions based thereon
US6887737B1 (en) 2001-12-13 2005-05-03 Henkel Corporation Epoxidized acetals and thioacetals, episulfidized acetals and thioacetals, and reworkable thermosetting resin compositions formulated therefrom
US7242082B2 (en) 2002-02-07 2007-07-10 Irvine Sensors Corp. Stackable layer containing ball grid array package
JP2007521631A (en) * 2003-08-08 2007-08-02 アービン センサーズ コーポレーション Stackable layer and method for manufacturing the same
JP5175431B2 (en) * 2005-09-16 2013-04-03 日本電気株式会社 Semiconductor device repair method
JP2007258207A (en) * 2006-03-20 2007-10-04 Three M Innovative Properties Co Mounting method of bumped chip or package
EP2026973B1 (en) 2006-04-28 2011-04-06 Telecom Italia S.p.A. Ink-jet printhead die and manufacturing method thereof
WO2007142654A1 (en) * 2006-06-09 2007-12-13 Advanced Applied Adhesives Reworkable compositions and methods for use thereof
US7714426B1 (en) 2007-07-07 2010-05-11 Keith Gann Ball grid array package format layers and structure
WO2009147828A1 (en) 2008-06-05 2009-12-10 住友ベークライト株式会社 Manufacturing method for semiconductor device and semiconductor device
WO2010050185A1 (en) 2008-10-27 2010-05-06 パナソニック株式会社 Semiconductor mounting structure and method for manufacturing same
CN103172306A (en) * 2013-04-08 2013-06-26 天津大学 Hydroelastic model material and preparation method thereof
KR102340799B1 (en) * 2018-09-20 2021-12-16 주식회사 엘지화학 Thermosetting resin composition for coating metal thin film, resin coated metal thin film, and metal clad laminate using the same
KR102092649B1 (en) * 2018-11-07 2020-03-24 (주)티에이치엔 Manufacturing method of packaging electronic device equipped with thermal radiation and dissipation function
DE102020127468A1 (en) 2020-10-19 2022-04-21 Werner H. Salewski Multifunctional epoxy systems
DE102022120396A1 (en) 2022-08-12 2024-02-15 Delo Industrie Klebstoffe Gmbh & Co. Kgaa Use of a hardenable and resoluble mass for producing a component, and mass therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463199A (en) * 1977-10-31 1979-05-21 Mitsui Petrochem Ind Ltd Curable composition for elastomers
SU990781A1 (en) * 1979-12-06 1983-01-23 Предприятие П/Я В-8657 Alcohol- and gasoline-resistant marking paint
SU1100295A1 (en) * 1982-12-24 1984-06-30 Предприятие П/Я В-2756 Adehesive
US4794314A (en) * 1987-08-28 1988-12-27 Johnson Service Company Environmental position actuator apparatus having load responsive limit control apparatus
DD266361A1 (en) * 1987-12-03 1989-03-29 Leuna Werke Veb DIVING CONCRETE MEASURES FOR ELECTRICAL AND ELECTRONIC COMPONENTS
US4866108A (en) * 1988-01-19 1989-09-12 Hughes Aircraft Company Flexible epoxy adhesive blend
JP2679849B2 (en) * 1989-07-26 1997-11-19 松下電器産業株式会社 Electronic component mounting method and adhesive used in this method
JP3543902B2 (en) * 1997-01-17 2004-07-21 ヘンケル ロックタイト コーポレイション Semiconductor device mounting structure and mounting method

Also Published As

Publication number Publication date
KR20000070203A (en) 2000-11-25
WO1998031738A1 (en) 1998-07-23
TW561178B (en) 2003-11-11
EP0953008A4 (en) 2000-05-03
ID22238A (en) 1999-09-23
JPH10204259A (en) 1998-08-04
CN1243526A (en) 2000-02-02
EP0953008A1 (en) 1999-11-03
BR9806743A (en) 2000-02-29
MY118700A (en) 2005-01-31
KR100554323B1 (en) 2006-02-24

Similar Documents

Publication Publication Date Title
JP3613367B2 (en) Thermosetting resin composition
US20040079464A1 (en) Manufacturing method for electric device
US8217275B2 (en) Sealing material and mounting method using the sealing material
US6316528B1 (en) Thermosetting resin compositions
JP3543902B2 (en) Semiconductor device mounting structure and mounting method
US6274389B1 (en) Mounting structure and mounting process from semiconductor devices
WO2004059721A1 (en) Electronic component unit
KR101308307B1 (en) Low exothermic thermosetting resin compositions useful as underfill sealants and having reworkability
JP3644340B2 (en) Epoxy resin composition
EP1153980B1 (en) Epoxy resin composition
JP2004204047A (en) Liquid epoxy resin composition
KR20110069393A (en) Epoxy resin composition and sealant comprising the same
JP2007317996A (en) Semiconductor device packaging structure
MXPA99006673A (en) Mounting structure and mounting process from semiconductor devices
KR20170120513A (en) Heat curable resin composition and electronic component mounted substrate
MXPA99006668A (en) Thermosetting resin compositions
JPH1067916A (en) Epoxy resin composition, its production, mounting of semiconductor element and repairing of mounted semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20040924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees